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Abstract
Background: The risk of developing atherosclerotic cardiovascular disease (ASCVD) varies among individuals and is related
to a variety of lifestyle factors in addition to the presence of chronic diseases.
Objective: We aimed to assess the predictive accuracy of machine learning (ML) models incorporating lifestyle risk behaviors
for ASCVD risk using the Korean nationwide database.
Methods: Using data from the Korea National Health and Nutrition Examination Survey, 5 ML algorithms were used for the
prediction of high ASCVD risk: logistic regression (LR), support vector machine, random forest, extreme gradient boosting,
and light gradient boosting models. ASCVD risk was assessed using the pooled cohort equations, with a high-risk threshold of
≥7.5% over 10 years. Among the 8573 participants aged 40‐79 years, propensity score matching (PSM) was used to adjust for
demographic confounders. We divided the dataset into a training and a test dataset in an 8:2 ratio. We also used bootstrapping
to train the ML model with the area under the receiver operating characteristics curve score. Shapley additive explanations
were used to identify the models’ important variables in assessing high ASCVD risks. In sensitivity analysis, we additionally
performed binary LR analysis, in which the ML model’s results were consistent with the conventional statistical model.
Results: Of the 8573 participants, 41.7% (n=3578) had high ASCVD risk. Before PSM, age and sex differed significantly
between groups. PSM (1:1) yielded 1976 patients with balanced demographics. After PSM, the high ASCVD risk group had
higher alcohol or tobacco use, lower omega-3 intake, higher BMI, less physical activity, and spent less time sitting. In 5
ML models, the extreme gradient boosting model showed the highest area under the receiver operating characteristics curve,
indicating superior overall discrimination between high and low ASCVD risk groups. However, the light gradient boosting
model demonstrated better performance in accuracy, recall, and F1-score. Variable importance analysis using Shapley additive
explanations identified smoking and age as the strongest predictors, while BMI, sodium or omega-3 intake, and low-density
lipoprotein cholesterol also had significant variables. Sensitivity analysis using multivariable LR analysis also confirmed these
findings, showing that smoking, BMI, and low-density lipoprotein cholesterol increased ASCVD risk, whereas omega-3 intake
and physical activity were associated with lower risk.
Conclusions: Analyzing lifestyle behavioral factors in ASCVD risk with an ML model improves the predictive performance
compared to traditional models. Personalized prevention strategies tailored to an individual’s lifestyle can effectively reduce
ASCVD risk.
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Introduction
Atherosclerotic cardiovascular disease (ASCVD) remains the
leading cause of morbidity and mortality worldwide [1]. In
2019, cardiovascular diseases (CVDs) were responsible for
an estimated 32% of all global deaths [2]. Of the 17 million
premature deaths caused by noncommunicable diseases in
2019, 38% were attributable to CVDs [2]. The prevalence
of CVDs in South Korea has recently been increasing [3].
While the CVD mortality rate declined until 2010, it has
been steadily rising since then [4]. Considering these trends,
addressing CVDs is crucial for improving public health
outcomes.

The main risk factors for developing ASCVD include
hypertension, smoking, and dyslipidemia [5]. Additionally,
ASCVD outcomes vary across different ethnic groups based
on socioeconomic status, which also influences health-rela-
ted lifestyle behaviors [6-8]. As the prevalence of ASCVD
is increasing, the importance of primary prevention has
been emphasized from a public health perspective [9].
ASCVDs are closely related to modifiable risk factors
that can be controlled through lifestyle modification, which
is the cornerstone of ASCVD prevention [9]. The most
effective prevention strategy is a comprehensive approach
that promotes a healthy lifestyle and addresses all major risk
factors [10].

Machine learning (ML) has been increasingly applied
in medical data analysis, offering numerous benefits for
enhancing patient care and improving clinical outcomes [11].
Additionally, ML facilitates precision medicine by enabling
early identification of high-risk patients for disease progres-
sion with high accuracy [11]. Previous studies have construc-
ted ML models for predicting ASCVD, but few have modeled
the impact of lifestyle behaviors on ASCVD risk [11-13].
Despite advances in ML, the combined predictive power
of detailed lifestyle factors—especially within interpreta-
ble ML frameworks—remains underexplored. Although ML
improves risk prediction, understanding which lifestyle
factors have the greatest impact is crucial for prevention—
yet this is often unclear with black-box models. This study
addresses that gap by applying interpretable ML techniques to
accurately predict ASCVD risk and clarify the specific impact
of individual lifestyle factors. ASCVD risk is influenced by
demographic variables such as age, race, and sex, as well as
lifestyle behaviors [14,15]. Using data from the nationwide
Korea National Health and Nutrition Examination Survey
(KNHANES), we used five ML models to (1) examine the
relationship between lifestyle factors and ASCVD risk, (2)
evaluate the predictive performance of these models, and
(3) identify the most influential predictors using interpretable
methods.

Methods
Participants
This retrospective case-control study used nationally
representative data from the KNHANES. The KNHANES
is an ongoing, cross-sectional survey initiated in 1998 by
the Korea Disease Control and Prevention Agency (KDCA)
to assess the health and nutritional status of the Korean
population. We used anonymized, publicly available data
from 2019 to 2021. Among the 22,559 total participants in the
2019‐2021 KNHANES dataset, we initially screened 10,481
individuals aged 40‐79 years with no history of cardiovascu-
lar events. We excluded 1908 participants with missing data
on sodium intake, low-density lipoprotein (LDL) cholesterol,
time spent sitting, occupation, marital status, smoking status,
income, BMI, or weight change over 1 year. The final
analytic sample included 8573 participants.

Ethical Considerations
The original KNHANES surveys received ethical appro-
val from the KDCA Institutional Review Board, and
informed consent was obtained from all participants. All
data were anonymized and deidentified by KDCA prior
to public release. As this study involved the secondary
analysis of deidentified public data, it was exempt from
additional institutional review board review by our institution
(2024-03-008).

Measurement of ASCVD Risk Score
The 10-year ASCVD risk was assessed using the American
College of Cardiology/American Heart Association pooled
cohort equations (PCEs) risk score [15]. They recommended
that PCEs for non-Hispanic White people may be considered
for risk estimation in populations other than non-Hispanic
African American and non-Hispanic White people [15,16].
Therefore, the estimation function of the ASCVD risk score
for the White population was used in this study. This score
algorithm is designed to predict both the 10-year (40‐79 years
of age) and lifetime (20‐59 years of age) risk of ASCVD.
This includes the assessment of both fatal and nonfatal
coronary heart disease and stroke [17,18]. We categorized
participants into two groups based on their 10-year ASCVD
risk calculated using the PCEs: a low ASCVD risk group
(ASCVD risk <7.5%) and a high ASCVD risk group
(ASCVD risk ≥7.5%).
Measurement of Lifestyle Risk Behaviors
The lifestyle risk behaviors analyzed in this study inclu-
ded sex, age, occupation, marital status, residential area,
household income, alcohol consumption, smoking, omega-3
intake, sodium intake, BMI, weight change over 1 year,
LDL cholesterol, physical activity, and time spent sitting. The
occupation was classified into three categories of nonmanual
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workers, manual workers, and other workers. Marital status
was separated and widowed, and divorced participants were
assigned the no spouse status. The residential area was
grouped as urban or rural areas. Alcohol consumption was
divided into two categories, where participants drank at least
2 days per week and fewer than 2 days per week [19],
regardless of the amount of alcohol consumed. Individuals
who had smoked at least 100 cigarettes in their lifetime
and currently smoked were classified as smokers, whereas
those who had smoked fewer than 100 cigarettes in their
lifetime but did not currently smoke and never smoked
in their lifetime were classified as nonsmokers. BMI was
calculated as weight in kilograms divided by height in meters
squared. Weight change over 1 year was classified into three
categories of no weight change, weight gain, and weight
loss. Using the criteria specified in the questionnaire, weight
gains and losses of 0 to less than 3 kg over 1 year were
classified as no change, gains of more than 3 kg as weight
gain, and losses of more than 3 kg as weight loss. Physi-
cal activity was calculated using the sum of the minutes
of exercise per week and considering the strength of the
exercise intensity (vigorous and moderate). The combination
of vigorous intensity and moderate intensity exercise was
considered by calculating the minutes exercised per week
as follows: 2×moderate activity (minutes per week)+vigo-
rous activity (minutes per week) [20]. “Physically active”
is defined as engaging in at least 150 minutes of moderate
activity per week [21]. We used omega-3 or sodium intake in
grams per day and time spent sitting in minutes per day, and
these variables were entered into the ML model as continuous
variables.
Statistical Analysis
We categorized ASCVD risk into two groups: high and low
risk. The ASCVD risk score itself is calculated using age
and sex. Consequently, the high-risk and low-risk groups are
inherently expected to differ significantly in these demo-
graphic factors by definition. In addition, our primary goal
was to assess how lifestyle behaviors differ between high
and low-risk individuals after accounting for nonmodifiable
or less modifiable factors. Therefore, we performed 1:1
propensity score matching (PSM) based on sociodemographic
characteristics to assess the impact of lifestyle behaviors on
ASCVD risk.

The propensity score was calculated with the follow-
ing variables: sex, age, job or marital status, residential
area, and household income. In descriptive analyses of
two-group comparisons, continuous variables were presented
as median and IQR, and categorical variables were presen-
ted as proportions (%). Differences between high and low
ASCVD groups were compared using the Mann-Whitney U
test for continuous variables after a normality test, and the
chi-square test for categorical variables.

We used 5 ML algorithms for the prediction of high
ASCVD risk: logistic regression (LR), support vector
machine, random forest (RF), extreme gradient boosting
(XGB), and light gradient boosting (LGB) model. We
specifically included ensemble methods, particularly RF,

XGB, and LGB models. These ensemble ML models
can effectively capture complex, nonlinear relationships
and high-order interactions between various risk factors
(eg, lifestyle, demographic, and clinical variables) without
requiring explicit prespecification [22]. In addition, they
include built-in regularization techniques (like L1 and L2
penalties) to mitigate overfitting, a common concern with
complex medical data [23]. In the ML model, categorical
variables (including sex [after PSM, though balanced], job
category, marital status, residential area, alcohol consump-
tion frequency category, smoking status, and weight change
category) were retained in their original numeric coding
format. Continuous variables (including age [after PSM],
omega-3 intake, sodium intake, BMI, LDL cholesterol, and
time spent sitting) were scaled to a range of [0, 1] using
min-max normalization. In this study, we adopted a strict
data separation strategy for model development and evalua-
tion. First, the entire dataset was randomly partitioned into
a training set (80%) and a test set (20%), and stratification
was applied to the partitioning to ensure that both sets
retained the same class distribution as the original data. We
also fixed the random seed to ensure the reproducibility of
the data. Then, we performed a 5-fold stratified cross-val-
idation on the training dataset only. In this process, we
divided the training data into five equal-sized folds and
repeated it five times, using 4-fold for training and one for
validation in each iteration. Based on the results of this
cross-validation, the optimal model structure and hyperpara-
meters with the lowest loss were selected. Hyperparameter
optimization for each of the five ML models (LR, sup-
port vector machine, RF, XGB, and LGB) was performed
using Optuna, an automated hyperparameter optimization
framework [24]. We used Optuna’s Tree-structured Parzen
Estimator sampler, a Bayesian optimization approach, to
efficiently search for optimal hyperparameter combinations.
For each model, optimization was conducted over 100
trials, aiming to minimize the loss obtained from the 5-fold
cross-validation within the training dataset. The specific
hyperparameters tuned for each model, their respective search
spaces (eg, ranges for continuous parameters and choices for
categorical parameters), and the final optimal configurations
identified by Optuna and used for training are all detailed
in Table S1 in Multimedia Appendix 1. We evaluated the
final model using a separate test set (20% of the total data).
This is to objectively measure the generalization performance
of the model. To calculate CIs for the ML model’s perform-
ance metrics, we used the bootstrapping method. The 95%
CIs were calculated by repeating the bootstrapping samples
1000 times with 50% of the data as restoration extraction
from the test dataset. Understanding the performance of ML
models is becoming increasingly important, which highlights
the growing significance of explainable artificial intelligence
in interpreting model results. We used the SHapley Addi-
tive exPlanations (SHAP) value to visualize the importance
and relationships among the input features of the model.
In addition to the area under the receiver operating charac-
teristics curve (AUROC) score, accuracy, precision, recall,
F1-score, specificity, and area under the precision-recall curve
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were calculated to assess the performance of the developed
ML models.

We conducted a multivariable LR analysis as a sensitiv-
ity test to verify whether the ML model’s findings on high
ASCVD risk were consistent with conventional statistical
methods. Univariable LR analysis was first performed on
1:1 matched patients (high vs low ASCVD risk) to identify
lifestyle and sociodemographic factors associated with high
ASCVD risk. Variables with a P value <.05 in the univariable
model were entered into the multivariable model, and their
significance was reported as adjusted odds ratios with 95%
CIs.

Results
Baseline Characteristics
Of the 8573 participants, the proportion of the high
ASCVD risk group was 41.7% (3578/8573), and 5059 (59%)
participants were women (Table 1). As detailed in Table 1,
prior to PSM, substantial baseline differences were evident
across nearly all measured characteristics. Notably, the high
ASCVD risk group was significantly older (median age
68.0, IQR 62.0-73.0 vs 51.0, IQR 45.0-58.0 y; P<.001)
and comprised a much higher proportion of men (61.9%
vs 26%; P<.001) compared to the low-risk group. Signifi-
cant disparities also existed in socioeconomic factors (job
distribution, marital status, residential area, and income) and
various lifestyle behaviors, including higher rates of frequent
alcohol consumption and smoking, lower omega-3 intake,
higher BMI, lower physical activity levels, and differences

in weight change patterns and sitting time (all P≤.02).
The propensity score distribution and standardized differen-
ces before and after PSM for the variables used in propen-
sity score calculation are presented in Figures S1 and S2
in Multimedia Appendix 1. Using the 1:1 PSM method,
1976 patients were included in the final population for
analysis, ensuring no significant differences in sociodemo-
graphic variables between the two groups, except for lifestyle
behaviors. Following 1:1 PSM, which successfully balanced
the groups for key demographic and socioeconomic con-
founders (sex, age, job, marital status, residential area, and
income; all P>.20), several crucial differences in lifestyle
behaviors remained statistically significant. Specifically, even
after matching, the high ASCVD risk group demonstra-
ted markedly higher rates of frequent alcohol consumption
(25.3% vs 18.3 %; P<.001) and current smoking (42.2%
vs 6.3%; P<.001). Furthermore, this group had significantly
lower daily omega-3 intake (median 1.3, IQR 0.7-2.3 vs
1.5, IQR 0.9-2.6 g; P<.001) and a higher BMI (median
25.1, IQR 23.2-27.3 vs 23.9, IQR 21.9-25.8 kg/m²; P<.001).
They also reported engaging in less physical activity (16.6%
active vs 22% active; P=.003). Interestingly, the high-risk
group reported slightly less time spent sitting compared to
the low-risk group after matching (median 8, IQR 5-10 h
per day; P=.003). Notably, the initial significant differences
observed in sodium intake and LDL cholesterol levels before
matching were no longer significant after PSM (P=.15 and
P=.12, respectively), suggesting these factors were partly
confounded by the demographic variables adjusted for in the
matching process. The flowchart of participants is presented
in Figure 1.

Table 1. Comparison of baseline characteristics of high and low ASCVDa risk groups before and after propensity score matching.
Variable Before PSMb After PSM

Low ASCVD risk
group (n=4995)

High ASCVD group
(n=3578)

P value High ASCVD group
(n=988)

Low ASCVD group
(n=988)

P value

Gender (women), n (%) 3695 (74) 1364 (38.1) <.001 493 (49.9) 482 (48.8) .65
Age (years), median
(IQR)

51.0 (45.0‐58.0) 68.0 (62.0‐73.0) <.001 59.0 (54.0‐65.0) 61.0 (52.0‐67.0) .20

Job, n (%) <.001 .62
  Nonmanual workers 1886 (37.8) 1543 (43.1) 435 (44) 454 (46)
  Other workers 1632 (32.7) 1641 (45.9) 355 (35.9) 350 (35.4)
  Manual workers 1477 (29.6) 394 (11) 198 (20) 184 (18.6)
Marital status (without
spouse), n (%)

867 (17.4) 922 (25.8) <.001 229 (23.2) 235 (23.8) .36

Residential area
(urban), n (%)

881 (17.6) 1001 (28) <.001 216 (21.9) 234 (23.7) .93

Income (10,000 won
per month), median
(IQR)

492 (292‐700) 230 (109-450) <.001 360 (200‐614) 355 (193‐600) .98

Alcohol drinking (≥2
per week), n (%)

839 (16.8) 873 (24.4) <.001 181 (18.3) 250 (25.3) <.001

Smoking, n (%) 442 (8.8) 915 (25.6) <.001 62 (6.3) 417 (42.2) <.001
Omega-3 intake (g per
day), median (IQR)

1.4 (0.8‐2.3) 1.3 (0.7‐2.3) <.001 1.5 (0.9‐2.6) 1.3 (0.7‐2.3) <.001
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Variable Before PSMb After PSM

Low ASCVD risk
group (n=4995)

High ASCVD group
(n=3578)

P value High ASCVD group
(n=988)

Low ASCVD group
(n=988)

P value

Sodium intake (g per
day), median (IQR)

2.8 (1.9‐4.0) 2.9 (1.9‐4.2) .02 3.1 (2.0‐4.2) 2.9 (2.0‐4.2) .15

BMI (kg/m²), median
(IQR)

23.5 (21.4‐25.9) 24.4 (22.5‐26.5) <.001 23.9 (21.9‐25.8) 25.1 (23.2‐27.3) <.001

Weight change over 1 year, n (%) <.001 .14
  Weight loss 528 (10.6) 506 (14.1) 116 (11.7) 121 (12.2)
  No weight change 3171 (63.5) 2584 (72.2) 703 (71.2) 666 (67.4)
  Weight gain 1296 (25.9) 488 (13.6) 169 (17.1) 201 (20.3)
LDLc (mg/dL), median
(IQR)

120 (97‐143) 110 (85‐135) <.001 114 (91‐139) 116 (92‐143) .12

Physical activity, n (%) 1074 (21.5) 534 (14.9) <.001 217 (22) 164 (16.6) .003
Time spent sitting
(hours/day), median
(IQR)

8.0 (5.0‐10.0) 8.0 (5.8‐11.0) <.001 8.0 (5.0‐10.0) 8.0 (5.7‐10.9) .003

aASCVD: atherosclerotic cardiovascular disease.
bPSM: propensity score matching.
cLDL: low-density lipoprotein.

Figure 1. Flowchart of the participants. ASCVD: atherosclerotic cardiovascular disease; CVD: cardiovascular disease; KNHANES: Korea National
Health and Nutrition Examination Survey; LDL: low-density lipoprotein.

Evaluation Outcomes: Performance of
ML Model for ASCVD Risk
The 1976 matched patients were allocated to the training
and test datasets in an 8:2 ratio while maintaining the same
ASCVD risk proportion. A comparison of variables between
these two groups is presented in Table S2 in Multimedia
Appendix 1, showing no significant differences in variable
distribution. Figure 2 shows the result of ML performance for
predicting high ASCVD risk in the test dataset, with XGB
showing the highest AUROC (0.811, 95% CI, 0.748‐0.867).
Table 2 presents the other performances of the five ML
models; the LGB model demonstrated the best performance,

including accuracy, recall, and F1-score. The high AUROC
values achieved, particularly by XGB (0.811) and LGB
(0.810), indicate valid discriminative power, suggesting these
models are capable of effectively distinguishing between
individuals at high versus low 10-year ASCVD risk based
on the included lifestyle and clinical factors. Additionally,
the LGB model achieved the highest recall (0.692), meaning
it correctly identified approximately 69% of the high-risk
individuals in the test set. The superior F1-score (LGB 0.735)
and area under the precision-recall curve score (LGB 0.829,
XGB 0.828) in the test dataset showed the models’ robust
performance, even in a real-world imbalanced dataset.
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Figure 2. The area under the receiver operating characteristics curve values for 5 machine learning models for predicting high atherosclerotic
cardiovascular disease risk (≥7.5% of 10-year risk) in the test dataset. LGB: light gradient boosting; LR: logistic regression; RF: random forest; SVM:
support vector machine; XGB: extreme gradient boosting.

Table 2. Overall performance of the 5 machine learning models for high ASCVDa risk prediction on the test dataset with propensity score matchingb.
Model LRc (95% CI) SVMd (95% CI) RFe (95% CI) XGBf (95% CI) LGBg (95% CI)
Accuracy 0.730 (0.672‐0.788) 0.730 (0.672‐0.788) 0.732 (0.672‐0.793) 0.722 (0.662‐0.783) 0.750 (0.692‐0.808)
Precision 0.776 (0.701‐0.853) 0.827 (0.750‐0.901) 0.791 (0.714‐0.870) 0.768 (0.693‐0.846) 0.783 (0.711‐0.855)
Recall 0.646 (0.556‐0.737) 0.581 (0.485‐0.677) 0.631 (0.535‐0.727) 0.636 (0.535‐0.727) 0.692 (0.596‐0.778)
F1-score 0.705 (0.630‐0.776) 0.682 (0.600‐0.757) 0.702 (0.624‐0.774) 0.696 (0.618‐0.767) 0.735 (0.663‐0.802)
AUROCh 0.809 (0.748‐0.867) 0.800 (0.737‐0.859) 0.786 (0.720‐0.847) 0.811 (0.748‐0.867) 0.810 (0.749‐0.869)
Specificity 0.813 (0.737‐0.889) 0.879 (0.808‐0.939) 0.833 (0.758‐0.909) 0.808 (0.727‐0.879) 0.808 (0.727‐0.879)
AUPRCi 0.811 (0.741‐0.881) 0.803 (0.730‐0.873) 0.805 (0.737‐0.868) 0.828 (0.766‐0.884) 0.829 (0.771‐0.886)

aASCVD: atherosclerotic cardiovascular disease.
bData are represented as averaged value with 95% CI.
cLR: logistic regression.
dSVM: support vector machine.
eRF: random forest.
fXGB: extreme gradient boosting.
gLGB: light gradient boosting.
hAUROC: area under the receiver operating characteristics curve.
iAUPRC: area under the precision-recall curve.

Variable Importance in ML Model
To visualize the importance of variables included in the ML
model, we presented SHAP values for the XGB model used
to predict high ASCVD risk (Figure 3). Current smoking
and age were the strongest predictors of high ASCVD risk
over 10 years. Among lifestyle factors, BMI, sodium or
omega-3 intake, and LDL cholesterol were also associated

with increased risk. In contrast, factors such as “time spent
sitting,” physical activity, sex, and marital status had a
relatively smaller impact. The SHAP values for the LGB
model, presented in Figure S3 in Multimedia Appendix 1,
show a similar pattern of variable importance as the XGB
model.
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Figure 3. Variable importances of extreme gradient boosting models for high ASCVD risk in the test dataset. (A) Importance matrix plot showing the
direction of the relationship between an input variable and high ASCVD risk. (B) Shapley Additive exPlanations summary plot of lifestyle variables
predictive features of the ML model. As demonstrated by the color bar, higher values are shown in red, while lower values are shown in blue.
ASCVD: atherosclerotic cardiovascular disease; LDL: low-density lipoprotein; ML: machine learning.

Associations of Lifestyle Risk Factors
With 10-Year ASCVD Risk
For sensitivity analysis, we examined whether the ML
model’s results were consistent with binary LR (Table 3)
using high ASCVD risk as the outcome. Multivariable binary

LR showed that smoking and BMI were positively associated
with high ASCVD risk, while omega-3 intake and physical
activity were significantly negatively associated. Compared to
the SHAP values of the XGB and LGB models, factors such
as smoking status, BMI, and omega-3 intake showed similar
associations in the multivariable binary LR model.

Table 3. Result of binary logistic regression analysis of lifestyle variables for predicting 10-year high ASCVDa risk in propensity score matched
cohort.
Variable Univariable analysis Multivariable analysis

ORb (95% CI) P value Adjusted OR (95% CI) P value
Gender (women) 0.96 (0.80‐1.14) .62 —c —
Age (years) 1.01 (1.00‐1.02) .20 — —
Job
  Manual workers 1.00 (reference) — — —
  Nonmanual workers 1.12 (0.88‐1.43) .34 — —
  Other workers 1.06 (0.83‐1.36) .64 — —
Marital status (without spouse) 1.03 (0.84‐1.27) .75 — —
Residential area (urban) 1.11 (0.90‐1.37) .33 — —
Income (10,000 won per month) 1.00 (1.00‐1.00) .98 — —
Alcohol drinking (≥2 per week) 1.51 (1.22‐1.87) <.001 0.89 (0.68‐1.15) .37
Smoking 10.91 (8.19‐14.53) <.001 11.52 (8.20‐15.60) <.001
Omega-3 intake (g per day) 0.93 (0.89‐0.97) .003 0.93 (0.88‐0.98) .01
Sodium intake (g per day) 1.00 (1.00‐1.00) .97 — —
BMI (kg/m2) 1.13 (1.10‐1.17) <.001 1.13 (1.09‐1.16) <.001
Weight change over 1 year
  Weight loss 1.00 (reference) — — —
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Variable Univariable analysis Multivariable analysis

ORb (95% CI) P value Adjusted OR (95% CI) P value
  No weight change 0.91 (0.69‐1.20) .49 — —
  Weight gain 1.14 (0.82‐1.58) .43 — —
LDLd (mg/dL) 1.00 (1.00‐1.01) .04 1.00 (1.00‐1.00) .67
Physical activity 0.71 (0.56‐0.89) .003 0.61 (0.47‐0.79) <.001
Time spent sitting (hours per day) 1.00 (1.00‐1.00) .003 1.00 (1.00‐1.00) .42

aASCVD: atherosclerotic cardiovascular disease.
bOR: odds ratio.
cNot applicable.
dLDL: low-density lipoprotein.

Discussion
Principal Findings
This study assessed the performance of ML models, including
XGB and LGB, in predicting 10-year high ASCVD risk
in adults and identifying key risk factors. After adjusting
for confounders using PSM, both models demonstrated
high AUROC values, with LGB outperforming in accuracy,
recall, and F1-score. Variable importance analysis identified
smoking and age as the strongest predictors, while BMI,
sodium or omega-3 intake, and LDL cholesterol also had
significant variables. Multivariable LR also confirmed these
findings, showing that smoking, BMI, and LDL cholesterol
increased ASCVD risk, whereas omega-3 intake and physical
activity were associated with lower risk.

Age is associated with increased oxidative stress, which
leads to an increased susceptibility to CVD onset [25].
Excessive generation of reactive oxygen species leads to a
state of oxidative stress, which is a major risk factor for the
development and progression of atherosclerosis [26]. Aging is
an unmodifiable ASCVD risk factor, but it can be preven-
ted if other factors can be corrected. Cigarette smoking is
widely accepted as a major risk factor for the development of
clinical CVD, resulting from direct effects on atherosclerosis.
Epidemiologic studies strongly support that cigarette smoking
in both men and women increases the incidence of myocar-
dial infarction and fatal coronary artery disease [27,28].

Cigarette smoking is widely accepted as a major risk factor
for the development of clinical CVD, resulting from direct
effects on atherosclerosis. Epidemiologic studies strongly
support that cigarette smoking in both men and women
increases the incidence of myocardial infarction and fatal
coronary artery disease [29]. Because the chemical constitu-
ents of smoke have high oxidant and inflammatory capacities,
they can directly induce endothelial damage and potentiate
an inflammatory response [30]. Smoke is able to increase
LDL levels through metabolic alterations and the induction of
LDL oxidation due to the direct oxidant capacity of smoke
components [30,31]. Obesity has been linked to persistent
inflammation and oxidative stress. Oxidative stress plays a
crucial role in disorders related to obesity, such as dyslipide-
mia and hypertension, causing CVDs [32]. The prevalence of
overweight and obesity has been strongly increasing over the

last few decades, and it is considered to be one of the largest
challenges for public health work worldwide [33].

Interestingly, some lifestyle factors commonly associated
with cardiovascular health, such as sodium intake and time
spent sitting, showed weaker associations with high ASCVD
risk in our final models after adjusting for confounders.
For instance, while sodium intake was significantly different
between groups before PSM, this difference did not persist
after matching, and it did not emerge as a strong predictor
in the multivariable LR or the SHAP analyses for the ML
models. Similarly, “time spent sitting” did not demonstrate
a strong independent association in the multivariable LR
model (P=.42) despite being significant in the univariable
analysis and showing a difference post-PSM. Furthermore,
its importance ranking in the SHAP analyses was relatively
low. The lack of a strong independent association between
sitting time and ASCVD risk may reflect collinearity with
physical activity, limitations in the variable’s definition (eg,
failure to capture prolonged uninterrupted sitting), potential
inaccuracies in self-reported data, and residual confounding
suggested by the unexpected postmatching trend.

The American Heart Association has recently outlined
a new framework that focuses on defining and optimiz-
ing cardiovascular health through the adoption of 8 simple
health components: healthy diet, engaging in regular physical
activity, avoidance of nicotine, healthy sleep, and healthy
levels of blood lipids, glucose, and blood pressure [34]. Most
clinical guidelines for the primary or secondary prevention
of ASCVD emphasize the importance of lifestyle modifi-
cation. These lifestyle changes are also an important part
of public health policy for CVD prevention. Therefore, a
lifestyle approach to ASCVD risk may be important for
accurate prediction and prioritization of treatment strategies
for prevention.

Beyond simply ranking variable importance, the applica-
tion of SHAP analysis provides crucial granular insights into
how individual factors contribute to the predicted ASCVD
risk for each patient, offering significant advantages over
traditional “black-box” models. Our SHAP results (Figure
3 and Figure S3 in Multimedia Appendix 1) confirm that
current smoking and age are not just important, but con-
sistently exert the strongest positive influence toward a
high-risk prediction across the cohort. The magnitude of
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the positive SHAP values associated with current smok-
ing underscores its overwhelming impact, reinforcing the
paramount importance of smoking cessation as a primary
prevention strategy from a clinical standpoint. Similarly, the
consistent positive contribution of increasing age highlights
the nonmodifiable baseline upon which lifestyle interventions
must act. Furthermore, the SHAP visualizations offer nuances
beyond simple correlation. Especially, higher omega-3 intake
consistently generated negative SHAP values, indicating its
protective effect by lowering the predicted risk score. While
LDL cholesterol’s influence appeared less dominant after
PSM in the LR, SHAP analysis still identified it as a
contributor, potentially highlighting its relevance within the
complex interplay captured by the ML model.
Limitations
This study has several limitations. First, it is a cross-sectional
study, which does not allow for establishing causal relation-
ships. While our ML models identify strong associations and
predictive patterns (eg, smoking status being highly predictive
of high ASCVD risk), this design prevents us from defini-
tively concluding that altering a specific lifestyle factor will
cause a change in ASCVD risk. For instance, the model
might show that higher omega-3 intake is associated with
lower predicted risk, but we cannot ascertain from this data
alone whether increasing omega-3 intake would directly lead
to a reduction in an individual’s true risk, or if the associa-
tion is partly due to other unmeasured confounding factors
linked to both omega-3 intake and cardiovascular health.
This limitation significantly impacts the direct translation of
our ML model’s findings, particularly the feature importance
results (like SHAP values), into prescriptive clinical actions.
Second, some variables were measured by questionnaire,
which may lead to underestimation or overestimation for the
prediction of ASCVD risk. Especially in the case of nutrition,
it is particularly difficult to accurately reflect daily intake.

Third, the study involved a secondary analysis of data from
the KNHANES, so it was not possible to include all lifestyle
and socioeconomic status variables in the analysis. Finally,
we excluded 1908 participants (approximately 18% of the
initially eligible cohort after age screening) due to missing
data on one or more key analytical variables (sodium intake,
LDL-cholesterol, time spent sitting, etc). This exclusion was
based on a complete case analysis approach, meaning only
participants with complete records for all variables used in
the models were included. Multiple imputation techniques
could potentially allow for the inclusion of this population
and might mitigate some of the selection bias. Future studies
should investigate the impact of handling missing data via
multiple imputation compared to complete case analysis,
specifically assessing potential improvement in the perform-
ance metrics of the developed ML models. Nevertheless,
the strength of this study is that it used representative and
reliable data from KNHANES to predict modifiable lifestyle
risk factors using an ML approach.
Conclusions
This study demonstrates that ML models are effective tools
for assessing ASCVD risk and highlights the significant
impact of lifestyle factors such as smoking, BMI, and
omega-3 intake. These findings highlight the significant
clinical informatics potential for integrating the developed
interpretable ML models into electronic health records,
clinical decision support tools, and digital health platforms
to enable dynamic, personalized ASCVD risk assessment
and guide targeted lifestyle interventions within routine
clinical practice. Longitudinal studies are needed to estab-
lish causal links between the identified lifestyle factors and
ASCVD development in a multiethnic population. Further-
more, additional measures of lifestyle with wearable devices
could enhance the clinical utility of the ML model.
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