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Abstract
Background: Electronic health records (EHRs) contain comprehensive information regarding diagnoses, clinical procedures,
and prescribed medications. This makes them a valuable resource for developing automated hypertension medication rec-
ommendation systems. Within this field, existing research has used machine learning approaches, leveraging demographic
characteristics and basic clinical indicators, or deep learning techniques, which extract patterns from EHR data, to predict
optimal medications or improve the accuracy of recommendations for common antihypertensive medication categories.
However, these methodologies have significant limitations. They rarely adequately characterize the synergistic relationships
among heterogeneous medical entities, such as the interplay between comorbid conditions, laboratory results, and specific
antihypertensive agents. Furthermore, given the chronic and fluctuating nature of hypertension, effective medication recom-
mendations require dynamic adaptation to disease progression over time. However, current approaches either lack rigorous
temporal modeling of EHR data or fail to effectively integrate temporal dynamics with interentity relationships, resulting in the
generation of recommendations that are not clinically appropriate due to the neglect of these critical factors.
Objective: This study aims to overcome the challenges in existing methods and introduce a novel model for hypertension
medication recommendation that leverages the synergy and selectivity of heterogeneous medical entities.
Methods: First, we used patient EHR data to construct both heterogeneous and homogeneous graphs. The interentity
synergies were captured using a multihead graph attention mechanism to enhance entity-level representations. Next, a
bidirectional temporal selection mechanism calculated selective coefficients between current and historical visit records and
aggregated them to form refined visit-level representations. Finally, medication recommendation probabilities were determined
based on these comprehensive patient representations.
Results: Experimental evaluations on the real-world datasets Medical Information Mart for Intensive Care (MIMIC)-III v1.4
and MIMIC-IV v2.2 demonstrated that the proposed model achieved Jaccard similarity coefficients of 58.01% and 55.82%,
respectively; areas under the curve of precision-recall of 83.56% and 80.69%, respectively; and F1-scores of 68.95% and
64.83%, respectively, outperforming the baseline models.
Conclusions: The findings indicate the superior efficacy of the introduced model in medication recommendation, highlighting
its potential to enhance clinical decision-making in the management of hypertension. The code for the model has been released
on GitHub.
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Introduction
Background
Hypertension represents a prevalent chronic condition and
serves as a significant contributor to cardiovascular mortal-
ity, making timely pharmacological intervention for blood
pressure management crucial [1]. With the increasing trend
of an aging population, the growing number of patients with
hypertension has placed a significant burden on health care
systems [2]. Consequently, automated medication recommen-
dation systems for hypertension have been developed.
Prior Work and Limitations
Early hypertension medication recommendation methods
were primarily rule-based. For example, Wu and Xie [3]
developed a hypertension ontology and reasoning rules
to recommend appropriate antihypertensive medications to
patients. However, these methods relied only on predefined
rules and a limited set of case data, neglecting other
critical patient information, which resulted in recommenda-
tions that lacked flexibility and personalization. In recent
years, numerous neural network models for recommending
hypertension medications based on electronic health records
(EHRs) have been proposed [4,5]. These models have shown
improved outcomes and effectively address many limitations
inherent in earlier algorithms.

Nevertheless, the complexity of EHR data continues
to present significant challenges for medication recommen-
dation tasks, particularly in 2 critical areas: insufficient
synergy among heterogeneous medical entities and neglect
of temporal dynamics in the patient’s condition.
Insufficient Synergy Among
Heterogeneous Medical Entities
EHR data contains heterogeneous but interrelated medical
entities—such as diagnoses, procedures, and medications—
that jointly influence treatment outcomes. For example, a
diagnosis indicates a patient’s health status, which sub-
sequently informs procedure and medication decisions.
Effective modeling of such cross-entity relationships is
essential for generating accurate and personalized treatment
recommendations.

Existing approaches like Multilevel Medical Embedding
(MiME) [6] and graph convolutional transformer (GCT) [7]
attempt to model medical concepts and their causal rela-
tions using homogeneous graph structures. However, these
structures fail to capture the inherent heterogeneity across
EHR entities. The Heterogeneous Information Network for
Medical Diagnosis (HeteroMed) [8] introduces semantic
associations via metapaths, but it does not model dynamic
interentity interactions. CausalMed [9] explores causal
inferences between treatment elements but overlooks the
reinforcement between medications and procedures. Graph
transformers of bidirectional encoder representations from

transformers on EHRs (GT-BEHRT) [10] integrates graph
transformers with temporal modeling yet does not incorporate
contextual synergy among entities.

Further, current models inadequately balance efficacy and
safety. For instance, Graph-Augmented Memory Networks
(GAMENet) [11] uses a drug-drug interaction (DDI) graph to
reduce adverse effects but does not consider diagnostic and
procedural inputs. Graph-augmented bidirectional encoder
representations from transformers (G-BERT) [12] extends to
multientity modeling yet omits DDI-aware safety metrics.
Competitive neural network (CompNet) [13] faces issues with
computational efficiency and model stability on large-scale
datasets. Recent work like that by Yang et al [14] (using
medication molecular structure graphs) and Li et al [15]
(using contrastive learning) enhance representation power,
but they still lack a unified mechanism for modeling both
“multientity synergy” and “safety constraints.”
Neglect of Temporal Dynamics in the
Patient’s Condition
As a chronic disease, hypertension evolves over time. In
clinical practice, treatment strategies are often adjusted based
on both current and historical visit data. Hence, capturing the
temporal dynamics of the patient’s condition is essential for
effective medication recommendation.

Several studies have addressed sequential modeling. Yang
et al [16] used dual medical sequences to represent medi-
cation history but did not account for intersequence rela-
tionships. Liu et al [17] developed 3 long short-term
memory (LSTM) variants to model correlations across
medical sequences but failed to consider the immediate
influence of current clinical status. Although models like the
Reverse Time Attention model (RETAIN) [18] use atten-
tion mechanisms to prioritize relevant historical visits and
An et al [19] introduced hierarchical temporal modeling,
these methods primarily focus on general temporal behavior
without consideration for hypertension-specific patterns like
long-term management or phased treatment adjustment.

Advanced designs have attempted to improve modeling
capabilities. Le et al [20] used a memory-enhanced neural
network to represent long-term dependencies, while Yang
et al [21] adopted a residual mechanism to capture patient
status transitions. Wu et al [22] introduced a transformer
with a “copy-generate” mechanism to decide whether to reuse
previous prescriptions. However, none of these methods fully
addresses the task-specific temporal dynamics required for
hypertension medication recommendations.
Objective and Contributions
To address the aforementioned limitations, this study
proposed CSRec, a novel hypertension medication rec-
ommendation framework that integrates the synergistic
interactions of heterogeneous medical entities with selective
modeling of temporal progression. CSRec is designed to
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capture cross-entity synergies through both heterogeneous
and homogeneous graph construction based on EHR data,
model time-aware patient representations using a temporal
selectivity module that weighs current versus historical visits,
and enhance safety by incorporating DDI information in the
recommendation process.

The primary contributions of this paper are summarized in
the following paragraphs.

We propose a novel medication recommendation model,
named CSRec, specifically designed for hypertension
treatment. CSRec effectively integrates the synergistic
interactions and selective characteristics among diverse
medical entities. By constructing a heterogeneous medical
entity graph derived from EHRs, our model utilizes a graph
attention mechanism to generate enhanced collaborative
embeddings among medical entities. Additionally, a temporal
selection mechanism was incorporated to simulate hyperten-
sion progression, thereby producing a comprehensive patient
representation to facilitate accurate medication recommenda-
tions.

To better capture synergistic relationships between
medical entities, we innovatively modified the traditional
graph attention network (GAT) to focus more on neighboring
node information, thus obtaining a more aggregated represen-
tation of the principal nodes.

Extensive experiments on the publicly available datasets
Medical Information Mart for Intensive Care (MIMIC)-III

[23] and MIMIC-IV [24] were conducted to validate the
superiority and effectiveness of our proposed method.

Methods
Overview
In this section, we present a comprehensive description of
the CSRec model’s structure. As depicted in Figure 1, our
model comprises 3 core modules for end-to-end hyperten-
sion medication recommendations: (1) The Heterogeneous
Collaborative Module, with heterogeneous and homogene-
ous graph networks, learns entity-level representations by
aggregating collaboration patterns between medical entities,
which are then passed to the Temporal Selectivity Module;
(2) the Temporal Selectivity Module, using a bidirectional
selection mechanism, processes these entity-level representa-
tions to calculate relevance coefficients between current and
previous visits, generating visit-level entity representations
that are transmitted to the Interaction Prediction Module;
and (3) the Interaction Prediction Module concatenates these
visit-level entity representations to enrich entity information,
forming a patient representation. This is converted into
medication recommendation probabilities, with medications
exceeding a threshold output as results.

Figure 1. The framework of CSRec. Diag: diagnosis; GAT: graph attention network; GRU: gated recurrent unit; Med: medication; MLP: multilayer
perceptron; Proc: procedures.
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Problem Formulation

Electronic Health Records
EHRs encompass a variety of medical visit information
collected from patients. For a specific patient, EHRs can
be structured into a sequence comprising multiple clinical
visit records, represented as V = V1, V2,⋯, VT , whereV t represents the t-th visit and T indicates the total num-
ber of visits for that patient. Specifically, each clinical
visit V t can be represented as V t = Vdt , Vpt , Vmt , in whichVdt ∈ 0, 1 D , Vpt ∈ 0, 1 P , and Vmt ∈ 0, 1 M  represent
multihot encoded vectors corresponding to diagnosis,
procedures, and medications, respectively. Here, the notation

 indicates the total number of distinct categories within
each respective medical entity type.

Heterogeneous Medical Entities
In this paper, distinct medications were modeled as med-
ication entities. Each medication recorded in the EHR
corresponds to a unique medication entity, identified by
a specific identifier denoted as m1, m2,⋯ , and each
entity is independently embedded within the model using
embeddings of identical dimensionality. Likewise, diagno-
ses and procedures were categorized into diagnostic entities
and procedural entities, respectively. Collectively, these 3
categories of entities were termed heterogeneous medical
entities.

Hypertension Medication Recommendation
Based on the patient’s current diagnostic informationVdt , procedural data Vpt , historical visit sequence

V = V1, V2,⋯, VT − 1 , and heterogeneous medical entity
graph G, the model recommends appropriate antihypertensive
medications yt ∈ 0, 1 Μ  to the patient.

Heterogeneous Collaborative Module
For a specific patient, we first constructed a medication
homogeneous graph, which was explicitly designed to
characterize relationships between medications and provide
a foundation for subsequent cross-entity modeling. This graph
comprised 2 components, both of which take medications as
the sole node type.

One component is the medication collaboration graphGmm t − 1 = M t − 1 , Amm , which serves to capture
the patterns of combined medication use in clinical prac-
tice. Specifically, M t − 1  denotes the collection of all
prescribed medications from the patient’s previous visits, andAmm signifies the adjacency matrix representing collabora-
tive interactions among medications. Each entry within this
adjacency matrix indicates the initial collaboration weight
between the respective medication nodes. The detailed
procedure for generating this matrix is illustrated in Figure
2. Initially, Amm is set as a zero matrix. If medicationi and medication j co-occur during a specific visit, thenA i, j = 1; if medication i and j co-occur across multiple
visits, the corresponding value in Amm is incremented, with
higher values indicating stronger collaboration between the
medications.

Figure 2. The medication-medication synergy matrix construction process.
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Each medication node m ∈ M t − 1  in the graph corre-
sponds to its initial embedding vector, expressed as:

(1)em = Vmt − 1Em
Specifically, Em refers to the embedding matrix associated
with medication entities. The selector vector Vmt − 1 specif-
ically extracts the relevant embedding from Em for the
medication at the previous time step t-1.

Moreover, some medications may have harmful interac-
tions (DDI) and should be avoided when used together.
To address this, we integrated the medication collaboration
graph Gmm with the medication safety graph Gddi , enhancing
the comprehensive representation of the medication nodes.
Notably, the methodology used to construct the medication
safety graph Gddi closely mirrors that of Gmm. Specifically,
we used Addi as the adjacency matrix, where Addi i, j = 1
signifies that the i-th and j-th medications exhibit a paired
harmful medication interaction.

(2)Gm = Gmm − λGddi
Subsequently, we adopted a GAT-based graph neural
approach to obtain embeddings for medication nodes within
the medication graph Gm.

First, we utilized the attention mechanism to calculate
the attention coefficients between a node and its neighbors,
followed by normalization:

(3)αijm = exp gijm∑k ∈ Nim exp gikm
Here, gijm = LeakyℜLU β m T ℎi m ∥ ℎjm  denotes the
output of the LeakyReLU activation function applied to the
linear transformation of the concatenated feature vectors ℎi m
and ℎjm , parameterized by the learnable weight vector β m .
The notation Nim  represents the neighboring node set of nodemi in the graph Gm, while ∥ signifies the vector concatenation
operation.

Second, we used the calculated attention coefficients to
perform weighted aggregation of neighbor nodes, thereby
obtaining the representation of node mi:

(4)ei m = σ ∑j ∈ Ni m γijm ℎjm
To overcome the limitations posed by single-view atten-
tion, we further introduced a multihead attention mecha-
nism, using a linear layer to map node representations into
multiple subspaces, then aggregate representations under each
subspace. Formally, this operation is expressed as:

(5)ei m = ∥ℎ = 1H σ ∑j ∈ Ni m ℎ γijm ℎ ℎjm ℎ

In this equation, H denotes the total number of attention
heads, the superscript ℎ  indicates the current attention head
index, and ∥ represents concatenating outputs from different
heads. Through this strategy, distinct node-specific informa-
tion is captured across various dimensions and integrated
from multiple subspaces, thereby significantly improving the
precision and robustness of the learned node representations.

During the training process, each medication entity
is updated according to the aforementioned steps, result-
ing in an aggregated representation of the medication setVm = vm1 , vm2 ,⋯vmt − 1 .

Similarly, to capture the unique clinical relation-
ships of hypertension, such as the interactions
between comorbidities, long-term monitoring data, and
combination therapy dynamics, we defined 3 heter-
ogeneous complete graphs: diagnosis-procedure graphGdp t = D t , P t , Adp , medication-diagnosis graphGmd t = M t − 1 , D t , Amd , and medication-proce-
dure graph Gmp t = M t − 1 , P t , Amp . This
established an association model that is crucial for accu-
rate hypertension medication recommendations but has low
correlation with other medication categories. Following a
similar learning approach to the medication graph Gm, we
first initialized the diagnosis and procedure nodes in the 3
heterogeneous graphs.

(6)ed = VdtEd, ep = VptEp
Using the approach outlined in equations (3)-(5), we
then learned from the diagnosis-procedure graph to obtain
aggregated sets of diagnosis codes Vd = vd1, vd2,⋯vdt  and
procedure nodes Vp = vp1, vp2,⋯vpt .

Finally, based on the aggregated medication nodes from
the medication graph Gm and the learned diagnosis and
procedure nodes from the diagnosis-procedure graph Gdp,
we learned from the medication-diagnosis graph Gmd and
the medication-procedure graph Gmp, updating to obtain
entity-level representations of the medication, diagnosis, and
procedure sets:

VD = Vd1, Vd2,⋯Vdt
VP = Vp1, Vp2,⋯Vpt

(7)VM = Vm1 , Vm2 ,⋯Vmt − 1
It is noteworthy that this study used a multihead GAT
mechanism to learn and update nodes within the graph.
Although traditional GAT models consider intrinsic features
and aggregate neighboring features, our proposed hetero-
geneous graph-based method places greater emphasis on
enhancing the embeddings of medications, diagnoses, and
procedures by explicitly modeling interactions among diverse
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medical entities. Consequently, our model focuses more
intensively on neighboring nodes to prevent excessive node
information merging. To this end, we modified the standard
GAT approach to explicitly focus on information derived
from neighboring nodes within the heterogeneous graph
learning process.
Temporal Selectivity Module
To effectively model the temporal evolution of patient health
conditions, this paper introduces a bidirectional temporal
selection mechanism using gated recurrent units (GRUs),
with 3 key innovations that distinguish it from conventional
applications.

First, we adopted a bidirectional temporal architecture to
capture multiscale temporal dependencies. Specifically, we
first used GRUα to learn the diagnostic sequence, generating
forward diagnostic selection coefficients that emphasize the
impact of historical visits on current states (eg, past hyperten-
sive crisis records influencing present medication titration):

(8)g1, g2,⋯, gt = GRUdα Vd1, Vd2,⋯, Vdt
(9)αj = tanℎ Wαgj + bα , j = 1,⋯, t

Concurrently, a backward GRUβ was used in the reverse
temporal order to learn the diagnostic sequence, generat-
ing backward selection coefficients at different time steps
that highlight recent critical changes. For example, recent
fluctuations in blood pressure require immediate therapeutic
adjustment. This bidirectional design enhances computational
stability while overcoming the limitations of unidirectional
GRUs or traditional recurrent neural networks (RNNs), which
often overlook either long-term or short-term temporal cues:

(10)ℎt, ℎt − 1,⋯, ℎ1 = GRUdβ Vdt , Vdt − 1,⋯, Vd1
(11)βj = tanℎsℎrink Wβℎj + bβ , j = t,⋯, 1

Second, we proposed an adaptive selection coefficient
integration strategy. Based on the generated bidirectional
diagnostic selection coefficients, we can capture key visit
information and entity information within the visit sequence,
rather than relying on static aggregation methods. This
allowed us to capture key visit information and entity
interactions, thereby obtaining a diagnostic representation that
integrates historical context with current needs:

(12)dt = ∑j = 1t αjβj⊙Vdj
Third, leveraging GRU’s inherent advantages, our design
achieved computational efficiency without sacrificing
performance. Compared with traditional RNNs, GRU
effectively mitigates gradient vanishing issues; relative to
LSTMs, its simplified gating mechanism reduces parameter
complexity by avoiding redundant memory cells, result-
ing in faster training efficiency, a critical advantage for
handling large-scale longitudinal EHR data in medication

recommendation tasks. After a series of similar process-
ing steps, we obtained the patient’s final procedural and
medication representations.

(13)pt = ∑j = 1t αjβj⊙Vpj, mt − 1 = ∑j = 1t − 1 αjβj⊙Vmj
Interaction Prediction Module
Based upon the outputs generated by the aforementioned
modules, for the patient’s t-th visit, we concatenated the
medical entity sequence to make medication recommenda-
tions:

(14)yt = σ dt; pt; mt − 1
In our approach, the medication recommendation task is
formulated as a multilabel classification problem [25,26].
To address the complexities and potential imbalances in
medical datasets, we used a comprehensive strategy during
model training. We enhanced the model’s generalization
capabilities and mitigated overfitting through the use of
regularization techniques, which limit the complexity of the
parameters learned. Additionally, an early-stopping mecha-
nism was implemented to curtail training based on validation
set performance. To optimize parameters, we used the Adam
optimization algorithm [27], which minimizes the binary
cross-entropy loss function to promote efficient and stable
model convergence.

(15)L = − t = 1
T

i = 1
|M| yitlog yit + 1 − yit log 1 − yit

Ethical Considerations
This study made use of the standardized, publicly avail-
able MIMIC-III and MIMIC-IV datasets from the Massa-
chusetts Institute of Technology [23,24] and was therefore
deemed exempt from ethical approval requirements. Prior
to their release, these datasets underwent comprehensive
ethical review and privacy protection processes conducted
by the data provider (Massachusetts Institute of Technol-
ogy). These processes included deidentifying all personally
identifiable information in patients’ EHRs, such as names,
hospital admission numbers, and dates of birth. Addition-
ally, the datasets’ usage license explicitly covers secondary
analysis scenarios for academic research, eliminating the
need for users to obtain additional ethical approval inde-
pendently. Since this study did not involve independent
collection of human subject data and solely relied on the
aforementioned publicly available and compliant existing
datasets for secondary analysis, we do not possess separate
ethical approval documents to provide. The ethical approval
statement is published on the official website of the data
provider [23,24], and we can be contacted to obtain the
original copy of the datasets’ usage license.

JMIR MEDICAL INFORMATICS Zhang et al

https://medinform.jmir.org/2025/1/e74170 JMIR Med Inform2025 | vol. 13 | e74170 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e74170


Results
Dataset Description
Our experiments were conducted using the MIMIC-III v1.4
and MIMIC-IV v2.2 datasets provided by the Massachu-
setts Institute of Technology. The datasets comprise medical
records collected from patients admitted to intensive care
units, such as diagnoses, procedures, and medications. The
diagnostic and procedural information uses the International
Classification of Diseases, Ninth Revision (ICD-9) coding
system. To study medication recommendations for patients
with hypertension, this paper extracted relevant data from
the aforementioned datasets based on the ICD-9 hypertension
codes under the guidance of clinical experts. Meanwhile,
referring to previous research norms [4,21,22], patients who
completed at least two visits were included, and medications
with a frequency <2000 occurrences were excluded.

During data analysis, we observed that the number of
frequently used antihypertensive medications was relatively
limited and the recommendations based on overly broad
Anatomical Therapeutic Chemical (ATC) categories often

lacked the specificity needed for precise clinical decision-
making. Given the systematic medication classification
framework of the ATC classification system, this study
overcame the limitation of previous studies that only focused
on the ATC04 level for recommendation. It not only predicted
the medication categories at the ATC04 level (such as C02A,
anti-adrenergic medications with central effects) but also
further refined to the specific medication types at the ATC05
level (such as C02AA, reserpine-like medications).

After data extraction, we carried out meticulous prepro-
cessing. We normalized features to standardize the scale of
different variables, which prevented certain features from
dominating others during model training. Moreover, we
selectively chose variables most relevant to hypertension
medications. Finally, the preprocessed dataset was partitioned
into training, validation, and testing subsets according to a
ratio of 23 : 16 : 16 .

Detailed information about the dataset used in the
experiments and examples from patients are shown in Table 1
and Table 2.

Table 1. Detailed information for the experimental datasets, by Anatomical Therapeutic Chemical (ATC)–level encoding.
Item MIMIC-IIIa MIMIC-IV

ATC04 ATC05 ATC04 ATC05
Patients, n 3115 3109 19,609 19,609
Visits, n 7308 7263 55,239 55,236
Diagnoses, n 1966 1965 2000 2000
Procedures, n 1145 1145 5488 5488
Medications, n 14 18 14 18
Number of visits, mean 2.3460 2.3361 2.8169 2.8169
Number of diagnoses, mean 10.8927 10.9262 9.3666 9.3666
Number of procedures, mean 4.0463 4.0609 2.5492 2.5492
Number of medications, mean 1.5508 1.4400 1.0804 1.1352

aMIMIC: Medical Information Mart for Intensive Care.

Table 2. Samples from electronic health records.
Sub_ID Hadm_ID Diagnoses (Anatomical Therapeutic Chemical code) Procedures Medications
10001217 24597018 3240, 3484, 3485, 5180, 340, 04109, 3051, 4019,

V168,V161
139, 331, 3897 HydrALAzine, LeVETiracetam, Vancomy-

cin ,Bisacodyl, Meropenem,…
10001217 27703517 3240, 3485, 340, 04102, 04184, 4019, 3051 139 HydrALAzine, Vancomycin, Meropenem,

Bisacodyl, Lidocaine,…

Evaluation Metrics
To validate the effectiveness of CSRec, the evaluation metrics
described in the following sections were used.

Jaccard Similarity Coefficient
A higher Jaccard coefficient reflects greater overlap between
the predicted medication set and the actual medication set.

(16)Jaccard = 1T t = 1
T yt ∩ ytyt ∪ yt

Area Under the Curve of Precision-Recall
A high area under the curve of precision-recall (PRAUC)
indicates that the model recommends appropriate medications
while keeping a low error rate.

(17)Δℜcall i t = ℜcall i t −ℜcall i − 1 t

(18)PRAUC = 1T t = 1
T

i = 1
M Precision i tΔℜcall i t
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F1-Score
The elevated F1-score metric in medication recommendations
signifies an optimal equilibrium between minimizing false
negatives and maintaining classification specificity.

(19)Precisiont = yt ∩ ytyt , Recallt = yt ∩ ytyt
(20)F1 = 1T∑t = 1T 2 × Precisiont ×ℜcalltPrecisiont +ℜcallt

DDI Rate
A lower DDI rate ensures that the recommended combination
of medications is safer in clinical practice.

(21)DDI = 1T t = 1
T ∑i = 1|yt| ∑j = i + 1|yt| 1{Ad[yit, yjt]}∑i = 1|yt| ∑j = i + 1|yj| 1

Comparative Models
The following baseline models were selected for comparison
with the proposed CSRec:

• Logistic regression (LR) uses L2 regularization.
• Ensemble of classifier chains (ECC) [28] enhan-

ces predictions by connecting multiple classifiers,
typically applied to multilabel classification scenarios
for performance optimization.

• RETAIN [18] implements bidirectional temporal
attention architecture designed for sequential clinical
prediction tasks like treatment recommendation.

• Learn to Prescribe (LEAP) [29] uses RNNs to extract
meaningful representations during current medical
visits and generate medication sequences.

• Dual memory neural computer (DMNC) [20] incor-
porates dual-memory neural components to model
asynchronous therapeutic pattern interactions.

• GAMENet [11] adopts graph-based memory archi-
tecture combining medication interaction knowledge
and querying longitudinal EHR data for medication
retrieval.

• MICRON [21] analyzes EHR temporal dynamics to
adaptively optimize medication combinations upon
symptom evolution.

• SafeDrug [16] evaluates molecular-level medication-
patient compatibility to suggest safer therapeutic
regimens.

• COGNet [22] implements medication copy or predict
strategy integrating historical effective prescriptions
into current recommendations.

• MoleRec [14] predicts medication mechanisms and
interactions via molecular-patient relationships for
personalized, safer recommendations.

• CausalMed [9] identifies medical entity causal
relationships via causal discovery, accounting for
dynamic health condition differences to generate
causally linked recommendations.

Performance Comparison
In this section, we conducted an extensive comparative
analysis between CSRec and the previously described
baseline medication recommendation models to evaluate its
effectiveness. Experimental results on the MIMIC-III v1.4
and MIMIC-IV 2.2 datasets are shown in Table 3 (“↑”
indicates a preference for larger values, “↓” indicates a
preference for smaller values).

Table 3. The comparison of experimental results on datasets of Anatomical Therapeutic Chemical (ATC)04 and ATC05 codes.

Model
Jaccard similarity
coefficient↑a PRAUC↑b F1-score↑ DDI↓c,d

ATC04 ATC05 ATC04 ATC05 ATC04 ATC05 ATC04 ATC05
MIMIC-IIIe

  LRf 0.5203 0.4919 0.8117 0.7726 0.6347 0.5972 0.2951 0.3569
  ECCg 0.5438 0.5056 0.8278 0.7846 0.6593 0.6127 0.3012 0.3979
  RETAINh 0.5540 0.5210 0.8143 0.7874 0.6783 0.6449 0.3921 0.5068
  LEAPi 0.5228 0.5082 0.6346 0.6162 0.6405 0.6217 0.2627 0.3648
  DMNCj 0.5342 0.5097 0.8225 0.7696 0.6463 0.6277 0.2365 0.2615
  GAMENetk 0.5497 0.5169 0.8239 0.7861 0.6710 0.6308 0.2366 0.4199
  MICRON 0.5352 0.5146 0.8285 0.7884 0.6423 0.6145 0.2357 0.2658
  SafeDrug 0.5474 0.5063 0.8252 0.7764 0.6484 0.6146 0.2329l 0.1975l

  COGNet 0.5325 0.5075 0.7972 0.7762 0.6448 0.6167 0.2902 0.3587
  MoleRec 0.5501 0.5189 0.8261 0.7825 0.6716 0.6299 0.2709 0.3491
  CausalMed 0.5626 0.5340 0.8226 0.7877 0.6741 0.6394 0.2340 0.2679
  CSRec 0.5801l 0.5534l 0.8356l 0.8123l 0.6895l 0.6602l 0.2351 0.2663
MIMIC-IV
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Model
Jaccard similarity
coefficient↑a PRAUC↑b F1-score↑ DDI↓c,d

ATC04 ATC05 ATC04 ATC05 ATC04 ATC05 ATC04 ATC05
  LR 0.4248 0.3518 0.7426 0.6873 0.5125 0.4315 0.2821 0.2734
  ECC 0.4389 0.3779 0.7498 0.6923 0.5305 0.4624 0.3064 0.3047
  RETAIN 0.5349 0.5045 0.7964 0.7641 0.6356 0.6008 0.3431 0.3197
  LEAP 0.4186 0.3884 0.5047 0.4683 0.5326 0.4932 0.0104l 0.0506l

  DMNC 0.5139 0.4787 0.7678 0.7277 0.5392 0.5094 0.2801 0.2792
  GAMENet 0.5151 0.4738 0.7781 0.7326 0.6069 0.5662 0.2884 0.3050
  MICRON 0.4297 0.3716 0.7543 0.7056 0.5151 0.4431 0.2866 0.2557
  SafeDrug 0.5173 0.4767 0.7770 0.7313 0.6109 0.5648 0.3084 0.3255
  COGNet 0.5087 0.4568 0.7448 0.7009 0.5948 0.5502 0.3261 0.3835
  MoleRec 0.5275 0.4838 0.7624 0.7267 0.6262 0.5801 0.2733 0.2993
  CausalMed 0.5440 0.5225 0.7812 0.7509 0.6412 0.6099 0.2677 0.2855
  CSRec 0.5582l 0.5307l 0.8069l 0.7655l 0.6483l 0.6195l 0.2760 0.2931

a↑ indicates a preference for larger values.
bPRAUC: area under the curve of precision-recall.
cDDI: drug-drug interaction.
d↓ indicates a preference for smaller values.
eMIMIC: Medical Information Mart for Intensive Care.
fLR: logistic regression.
gECC: ensemble of classifier chains.
hRETAIN: Reverse Time Attention model.
iLEAP: Learn to Prescribe.
jDMNC: dual memory neural computer.
kGAMENet: Graph-Augmented Memory Networks.
lOptimal data.

After detailed analysis, we observed several key findings, as
described in the following paragraphs.

The CSRec model proposed in this paper outperformed
most comparative models across multiple evaluation metrics,
fully demonstrating its significant effectiveness in hyperten-
sion medication recommendation.

LR and ECC performed poorly, primarily because these
methods only focus on the patient’s current clinical condition,
neglecting the influence of historical medical data on present
treatment decisions. In contrast, the model presented in this
paper, along with RETAIN, GAMENet, and other models
integrating longitudinal medical histories, performed better,
highlighting the importance of capturing historical medical
information in hypertension medication recommendations.

In comparison with longitudinal models such as RETAIN,
GAMENet, and COGNet, CSRec maintained superior
performance, with a particularly notable enhancement in
Jaccard scores. This superiority can be attributed to 2
core architectural advancements. The Temporal Selectiv-
ity Module enables accurate simulation of patient disease
progression by assigning enhanced weights to clinically
critical historical information, thereby ensuring that recom-
mendations adhere to consistent clinical reasoning frame-
works. Meanwhile, the Heterogeneous Collaborative Module
facilitates effective capture of synergistic relationships
among heterogeneous medical entities (diagnoses, proce-
dures, medications), enabling the identification of medica-
tion combinations that are clinically coherent and reflective

of real-world coprescription patterns. Collectively, these
innovations augment the degree of overlap between recom-
mended and actually prescribed medications, as empirically
validated by the elevated Jaccard index.

Although the CSRec model introduced in this study does
not achieve the highest score on the DDI metric, it still ranks
as suboptimal. This is mainly because the best performing
LEAP model only considers the patient’s present health
status, resulting in the recommendation of fewer medications
and consequently yielding the lowest DDI scores.

Ablation Study
To systematically assess the contribution and validity of each
module within CSRec, ablation experiments were conducted
on MIMIC-IV by comparing CSRec with its variants:

• WO_S removes the selection module based on the
cyclic mechanism.

• WO_C removes the collaborative module based on the
heterogeneous graph.

• GAT_GCN replaces the multihead GAT in the
collaborative module with a graph convolutional
network (GCN).

The results displayed in Figure 3 indicate that the perform-
ance of CSRec declined when any module is removed or
replaced, demonstrating that each component of CSRec is
indispensable. The observed performance drops in evalua-
tion metrics (Jaccard, PRAUC, F1-score, and DDI) can
be attributed to the unique functional roles of each mod-
ule: The collaborative module effectively modeled the
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correlations between different medical events during each
visit, and its removal (WO_C) led to incomplete capture of
event associations, resulting in a decrease in recommenda-
tion accuracy as medical entity representations lost contex-
tual relevance. The selective module globally modeled the
patient’s historical medical data, and its absence (WO_S)
caused the model to fail at emphasizing critical time points
in disease progression, leading to a decline in metrics

as the temporal continuity of hypertension development
was disrupted. When replacing multihead GAT with GCN
(GAT_GCN), the loss of the attention mechanism resulted
in insufficient differentiation of important medical entity
relationships, reducing recommendation precision compared
with the original model as convolutional operations cannot
dynamically weight heterogeneous graph information.

Figure 3. The ablation study of different components. DDI: drug-drug interaction; GAT_GCN: variant replacing the multihead graph attention
network in the collaborative module with a graph convolutional network; Jaccard: Jaccard similarity coefficient; PRAUC: area under the curve of
precision-recall; WO_C: variant removing the collaborative module based on the heterogeneous graph; WO_S: variant removing the selection module
based on the cyclic mechanism.

Additionally, this study further explored the impact of
different types of collaborative medical entity informa-
tion (diagnosis-medication, procedure-medication, diagno-
sis-procedure, and medication-medication) on hypertension
medication recommendations. The variants were designed as
follows:

• WO_DM removes diagnosis-medication interaction
information.

• WO_PM removes procedure-medication interaction
information.

• WO_DP removes diagnosis-procedure interaction
information.

• WO_MM removes medication co-occurrence and
interaction information.

As illustrated in Figure 4, CSRec’s performance decreased
when any single type of collaborative medical entity
information (WO_DM, WO_PM, WO_DP) was removed,
confirming the strong correlation between such informa-
tion and the medication recommendation task. The spe-
cific decline in metric degree corresponded to the clinical

relevance of each information type: Removing diagnosis-
medication interactions (WO_DM) reduced metrics, as
diagnostic information directly guides first-line hypertension
medication selection. The WO_PM group’s drop stemmed
from lost procedure-related medication adjustments (eg,
postinterventional anticoagulation needs). For WO_DP, the
decline reflects disrupted diagnosis-procedure logical chains
that inform therapeutic medication choices.

Notably, removing medication co-occurrence and
interaction information (WO_MM) caused a significant
decline in the DDI risk rate of the medication recommen-
dation performance. This substantial change is explained
by the frequent use of combination therapy in hyperten-
sion management. Without medication interaction data, the
model cannot avoid contraindicated medication pairs, while
the loss of co-occurrence patterns reduces the accuracy of
synergistic medication recommendations. This underscores
the essential role of medication co-occurrence and DDI
information for ensuring hypertension treatment efficacy
and safety.
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Figure 4. The ablation study of different medical entities. DDI: drug-drug interaction; Jaccard: Jaccard similarity coefficient; PRAUC: area under the
curve of precision-recall; WO_DM: variant removing diagnosis-medication interaction information; WO_DP: variant removing diagnosis-procedure
interaction information; WO_MM: variant removing medication co-occurrence and interaction information; WO_PM: variant removing procedure-
medication interaction information.

Parameter Sensitivity
In order to investigate how varying the number of attention
heads in the multihead graph attention mechanism within the
heterogeneous collaborative module impacted model efficacy,
multiple experiments were conducted on the MIMIC-IV
dataset. The outcomes of these experiments, comparing
different head counts, are presented in Figure 5.

A setting of 3 attention heads (head=3) achieved optimal
performance. Consequently, this configuration (head=3) was
adopted consistently throughout the remaining experiments

in this study. Moreover, the experimental results illustrated
that variations in the number of attention heads led to
minimal performance differences, highlighting the stability
and reliability of the proposed model.

Furthermore, to investigate the impact of the number of
included hypertension medications on model performance,
we conducted a sensitivity analysis by varying the minimum
occurrence threshold for medication inclusion from 500 to
3000. The number of medications ranged from 26 (≥500) to 9
(≥3000).
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Figure 5. The effect of different numbers of heads in the multihead graph attention network (GAT), as measured using (A) the Jaccard similarity
coefficient, (B) area under the curve of precision-recall (PRAUC), (C) F1-score, and (D) drug-drug interaction (DDI) rate.

As shown in Table 4, performance across all 4 metrics—
Jaccard, PRAUC, F1-score, and DDI—remained remarkably
stable, with only marginal fluctuations. Notably, the best
performance was observed at the 2000 threshold, which is
used in our paper. This finding supported our design choice
and indicated that our framework remained robust even under
different medication inclusion criteria, alleviating concerns

regarding limited sample size. In addition, setting a lower
threshold introduced lower-frequency medications that may
lack sufficient clinical representation, potentially compromis-
ing the statistical reliability of training. Thus, the current
configuration struck a reasonable trade-off between medica-
tion variety and prediction stability.

Table 4. Sensitivity analysis of the medication frequency threshold.
Minimum medication
occurrence Medications, n

Jaccard similarity
coefficient↑a PRAUC↑b F1-score↑ DDI↓c,d

≥500 26 0.5531 0.7983 0.6428 0.2847
≥1000 20 0.5554 0.8027 0.6456 0.2802
≥1500 17 0.5576 0.8049 0.6471 0.2781
≥2000 14 0.5582e 0.8069e 0.6483e 0.2760e

≥2500 12 0.5568 0.8051 0.6475 0.2766
≥3000 9 0.5560 0.8050 0.6452 0.2764

a↑ indicates a preference for larger values.
bPRAUC: area under the curve of precision-recall.
cDDI: drug-drug interaction.
d↓ indicates a preference for smaller values.
eOptimal data.
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Case Study
To visualize and validate our core innovations, which
included heterogeneous collaborative interaction modeling
and the temporal selectivity mechanism, we randomly

selected a patient from the test set of the MIMIC-IV dataset
for a case study. Taking diagnosis and medication entities as
examples, the entire learning process is shown in Figure 6.

Figure 6. Case study. DC: diagnosis code; DS: diagnosis selection coefficient; MC: medication code; MS: medication selection coefficient; Rec:
recommended medication; True: prescribed medication.

Initially, in the collaborative process (a), the model’s
collaborative interaction mechanism was showcased: In
the visit-specific level, the model dynamically enhanced
the integration of diagnostic information into medication
recommendation reasoning by assigning context-aware
interaction weights to the interplays between diagnostic
codes (DC column) and medication codes (MC column).
For the first visit of the illustrative patient, the DC column
encompasses comorbidity-related codes, including chronic
obstructive pulmonary disease (ICD-9: 496), hypothyroid-
ism (ICD-9: 2449), atrial fibrillation (ICD-9: 42731), and
a documented history of cardiovascular disease (ICD-9:
V1254), while the MC column includes hypertension-targe-
ted agents such as selective β1-receptor blockers (ATC-04:
C07A) and dihydropyridine calcium channel blockers
(ATC-04: C08C). This aligns with our innovation of
capturing disease-specific collaborative patterns, evident in
the consistently higher selection coefficients for hypertension-
related diagnostic codes in each DC column, which prioritizes
the disease context critical for hypertension treatment.

Furthermore, to demonstrate our temporal selectivity
mechanism, the case study highlights how the model
captures longitudinal EHR dependencies. Given hyperten-
sion’s chronic nature, recommended medications depend

on both current (third visit) diagnoses (DC column) and
historical data. As shown in step (b), diagnostic codes
from previous visits received higher selection coefficients,
while step (c) reveals that historical medication codes
were similarly prioritized. This reflects our model’s abil-
ity to dynamically weight temporal information, addressing
the evolving nature of hypertension and representing an
advantage over static models.

Discussion
This paper presents the CSRec model for hypertension
medication recommendation, which is based on the collabo-
ration and selection of heterogeneous medical entities. By
effectively capturing relationships among diverse medical
entities and combining the temporal evolution characteristics
of clinical entities, the model provides more precise and
effective medication guidance for hypertension treatment.
Future research will focus on 3 main areas: (1) in-depth
exploration of the multilabel imbalance problem existing in
the current method, (2) further investigation of the mod-
el’s performance in addressing the cold-start problem, and
(3) exploration of recommendations regarding medication
dosages and medication types.
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