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Abstract

Background: Pulmonary hypertension (PH) is a progressive disorder characterized by elevated pulmonary artery pressure
and increased pulmonary vascular resistance, ultimately leading to right heart failure. Early detection is critical for improving
patient outcomes.

Objective: The diagnosis of PH primarily relies on right heart catheterization, but its invasive nature significantly limits its
clinical use. Echocardiography, as the most common noninvasive screening and diagnostic tool for PH, provides valuable
patient information. This study aims to identify key PH predictors from echocardiographic parameters, laboratory tests, and
demographic data using machine learning, ultimately constructing a predictive model to support early noninvasive diagnosis of
PH.

Methods: This study compiled comprehensive datasets comprising echocardiography measurements, clinical laboratory data,
and fundamental demographic information from patients with PH and matched controls. The final analytical cohort consisted
of 895 participants with 85 evaluated variables. Recursive feature elimination was used to select the most relevant echocardio-
graphic variables, which were subsequently integrated into a composite ultrasound index using machine learning techniques,
XGBoost (Extreme Gradient Boosting). LASSO (least absolute shrinkage and selection operator) regression was applied to
select the potential predictive variable from laboratory tests. Then, the ultrasound index variables and selected laboratory tests
were combined to construct a logistic regression model for the predictive diagnosis of PH. The model’s performance was
rigorously evaluated using receiver operating characteristic curves, calibration plots, and decision curve analysis to ensure its
clinical relevance and accuracy. Both internal and external validation were used to assess the performance of the constructed
model.

Results: A total of 16 echocardiographic parameters (right atrium diameter, pulmonary artery diameter, left atrium diameter,
tricuspid valve reflux degree, right ventricular diameter, E/E’ [ratio of mitral valve early diastolic inflow velocity (E) to mitral
annulus early diastolic velocity (E’)], interventricular septal thickness, left ventricular diameter, ascending aortic diameter,
left ventricular ejection fraction, left ventricular outflow tract velocity, mitral valve reflux degree, pulmonary valve outflow
velocity, mitral valve inflow velocity, aortic valve reflux degree, and left ventricular posterior wall thickness) combined
with 2 laboratory biomarkers (prothrombin time activity and cystatin C) were identified as optimal predictors, forming a
high-performance PH prediction model. The diagnostic model demonstrated high predictive accuracy, with an area under
the receiver operating characteristic curve of 0.997 in the internal validation and 0.974 in the external validation. Both
calibration plots and decision curve analysis validated the model’s predictive accuracy and clinical applicability, with optimal
performance observed at higher risk stratification cutoffs.

https://medinform.jmir.org/2025/1/e74117 JMIR Med Inform 2025 | vol. 13 174117 I p. 1
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e74117

JMIR MEDICAL INFORMATICS

Jiang et al

Conclusions: This model enhances early PH diagnosis through a noninvasive approach and demonstrates strong predictive
accuracy. It facilitates early intervention and personalized treatment, with potential applications in broader cardiovascular

disease management.
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Keywords: pulmonary hypertension; machine learning; risk prediction; echocardiography; clinical data

Introduction

Pulmonary hypertension (PH) is a progressive and complex
vascular disorder characterized by elevated mean pulmonary
artery pressure (mPAP) and increased pulmonary vascular
resistance, ultimately leading to right heart failure [1].
According to the World Symposium on Pulmonary Hyperten-
sion classification system, PH is categorized into 5 major
groups. Delayed diagnosis and treatment impose an unac-
ceptably high mortality burden across all categories of PH
patients. However, the current gold standard for PH diag-
nosis—right heart catheterization (RHC)—is significantly
limited in clinical application due to its invasive nature,
resulting in delayed PH diagnosis. Thus, early identification
and risk assessment through noninvasive methods are critical
for improving patient outcomes [2-5].

Echocardiography, as a noninvasive imaging modality,
has become integral to the evaluation of PH. It enables
clinicians to assess right ventricular size and function
and estimate pulmonary artery pressures through tricuspid
regurgitation velocity (TRV) and pulmonary artery systolic
pressure. Several studies have highlighted the importance
of echocardiographic parameters including right ventricular
size, function, and TRV in predicting PH severity and
outcomes [6-8]. Moreover, comprehensive models such as
the Registry to Evaluate Early and Long-term Pulmonary
Arterial Hypertension Disease Echocardiographic Correlation
Hemodynamic Observational Study score, which integrate
multiple echocardiographic variables, have significantly
improved the ability to predict PH risk and have been
validated across multiple cohorts [6,9].

However, relying solely on echocardiographic data for
PH diagnosis and risk prediction has limitations. Recent
research has increasingly emphasized the need to integrate
echocardiographic findings with clinical data, including age,
sex, BMI, and comorbidities, to enhance predictive accu-
racy [10,11]. For instance, studies involving hyperthyroid
patients demonstrated that models incorporating both clinical
variables and echocardiographic parameters significantly
improved PH risk assessment [12]. Likewise, nomogram
models that integrate these data have shown efficacy in
evaluating PH risk for both postoperative patients and those
with concurrent conditions such as obstructive sleep apnea
[13,14]

Beyond variable collection, methodological rigor is
equally critical for building precise predictive models. In
recent years, the application of machine learning techniques
to PH risk prediction has gained traction. Methods such as
recursive feature elimination (RFE) and advanced algorithms
such as random forests and XGBoost (Extreme Gradient
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Boosting) have been shown to optimize feature selection,
improving model robustness and prediction accuracy [14].
These advancements, particularly when integrating echocar-
diographic and clinical data, have yielded models that
outperform traditional methods in PH risk prediction [5].

In this study, we systematically collected comprehensive
datasets including echocardiographic parameters, laboratory
test results, and baseline demographic characteristics (age
and sex) from both PH patients and matched controls. Using
multiple machine learning approaches, we developed an
early diagnostic and predictive model for PH. The mod-
el’s performance was rigorously evaluated through receiver
operating characteristic (ROC) analysis, decision curve
analysis (DCA), and calibration curves, with both internal
and external validation procedures. Comparative analyses
against existing PH diagnostic models demonstrated the
superior predictive accuracy and clinical utility of our novel
model, highlighting its significant advancements in early PH
detection through the integration of multimodal biomarkers
and optimized machine learning architecture.

Methods

Ethical Considerations

This study was approved by the research ethics commis-
sion of Wuhan Zhongnan Hospital, and the requirement
for informed consent was waived by the ethics commis-
sion (2023185). We have anonymized all patient identifiers,
including names and hospital numbers, from the original
dataset. The published information contains no data that could
be used to infer the identity of individual patients. Further-
more, all participants will benefit from this research outcome
through complimentary risk prediction for pulmonary arterial
hypertension.

Study Population and Data Collection

This retrospective study analyzed data from 294 patients with
PH and 1231 control subjects who underwent echocardio-
graphic evaluation at Zhongnan Hospital of Wuhan Univer-
sity between January 2022 and April 2024. Propensity score
matching was implemented to mitigate potential confounding
factors. This cohort served as both the training and inter-
nal validation dataset. For external validation, we prospec-
tively collected an independent dataset comprising patients
evaluated from May 2024 through May 2025. The inclusion
criteria for the PH group were (1) a discharge diagnosis of
PH; (2) confirmation of PH through RHC; and (3) partici-
pants aged >14 years, as pediatric and adult cardiac parame-
ters have distinct reference ranges. Patients were excluded
if (1) the mPAP, as measured by RHC was <20 mm Hg;
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or (2) the mPAP data from RHC were missing. The inclu-
sion criteria for the control group were (1) echocardiography
results indicating no abnormalities in cardiac morphology,
valve function, or ventricular wall motion; and (2) age >14
years. Control subjects were excluded if more than 5% of
their data were missing.

Data Collection and Variables

Data collected included demographic information (age
and gender), echocardiographic parameters, and laboratory
test results. Echocardiographic parameters assessed cardiac
structure and function, including measurements such as
ascending aortic diameter, left atrial and left ventricular
size, interventricular septal thickness, and pulmonary artery
diameter (PAD). Additionally, the degree of regurgitation,
flow velocity, and pressure gradients for the mitral, tricus-
pid, and aortic valves were recorded. All echocardiographic
measurements were double-checked to ensure consistency
and accuracy. Laboratory data included complete blood
count, coagulation profiles, liver and kidney function, and
electrolytes.

Data Preprocessing

In the data preprocessing phase, missing values were
imputed with each variable’s median using R (version
1.4.3; R Foundation) to ensure completeness. This approach
was applied uniformly across both echocardiographic and
laboratory variables, which had varying degrees of missing-
ness, thereby maintaining sample size while minimizing bias
from data exclusion. We ran stratified 10-fold cross-valida-
tion, limiting oversampling to the training folds to preserve
unbiased evaluation in the held-out folds. Finally, continuous
variables were mean-centered and scaled to unit variance, and
categorical variables were encoded as factors for downstream
analyses.

Feature Selection

We used stratified sampling to randomly split the data into
training and testing sets in a 3:1 ratio. For selecting features
from echocardiographic variables, we applied RFE using
a random forest-based approach. RFE iteratively removed
features with the least contribution to model performance,
ultimately identifying the optimal subset of features. To
ensure robustness and generalizability, we used 10-fold
cross-validation during feature selection.

Using the selected echocardiographic features, we
trained multiple machine learning models, including logistic
regression, LASSO (least absolute shrinkage and selection
operator) regression, elastic net, decision tree, random forest,
XGBoost, support vector machine, k-nearest neighbors, naive
Bayes, and gradient boosting machine. Model training and
evaluation were primarily conducted using the caret package
[15]. We used 10-fold cross-validation and grid search to
optimize the hyperparameters. The primary performance
metric was the area under the receiver operating character-
istic curve (AUC), which was computed and plotted using
the pROC package. The model with the highest AUC was
selected as the optimal model for the echocardiographic
features. For the optimal model, we further performed internal
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validation using bootstrap methods to evaluate its robust-
ness. To enhance model interpretability, we applied SHAP
(Shapley Additive Explanations) to quantify each feature’s
contribution to an individual prediction. In lay terms, a SHAP
value represents how much a given variable increases or
decreases the predicted PH risk for a patient compared to the
average risk. Finally, we developed an ultrasound index based
on the optimal model in the training and test sets.

For feature selection from routine clinical variables, we
conducted LASSO regression analysis using the glmnet
package. A 10-fold cross-validation was used to select the
optimal regularization parameter. Specifically, we calculated
a range of lambda values and chose lambda.lse, which is the
lambda value with the best performance in cross-validation,
adjusted by 1 SE.

Logistic Regression and Nomogram
Construction

After identifying the optimal echocardiographic features and
selected clinical variables, we combined them to develop
a comprehensive logistic regression model. The model was
fitted using the “lrm” function from the rms package.
To prevent overfitting, we incorporated L2 regularization
(learning 2 ridge regression) as needed. Analysis of model
coefficients provided insights into the contribution of each
feature to predicting PH.

To facilitate the clinical application of the model, we
constructed a nomogram using the ‘“nomogram” function
from the rmsv package. This nomogram visualizes the logistic
regression model in an easy-to-use format, allowing clinicians
to estimate an individual’s probability of developing PH by
summing the scores for each predictive variable. The use of a
nomogram ensures the interpretability and practicality of the
model in a clinical setting.

Model Calibration and DCA

To assess the performance of the nomogram and logistic
regression model, we used the ROC curve. To evaluate the
consistency between the predicted probabilities and observed
outcomes, calibration curves were plotted using the “cali-
brate” function from the rms package. Additionally, DCA
was conducted using the rmda package to quantify the net
benefit of the model across different threshold probabilities,
providing insight into its clinical utility. Finally, we devel-
oped a web-based tool to facilitate the prediction of the risk of
PH using R packages shiny (version 1.9.1).

External Validation

We externally validated the model using an independ-
ent cohort of patients admitted to the Respiratory Medi-
cine Department at Zhongnan Hospital, Wuhan University,
between May 2024 and May 2025. The inclusion and
exclusion criteria were identical to those of the derivation
cohort.

Statistical Analysis

The SHAP analysis was conducted using SHAP (ver-
sion 0.46.0) in Python (version 3.10.8; Python Software
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Foundation), while all other statistical analyses were
performed using R (version 4.4.1). For continuous variables
that followed a normal distribution, group comparisons were
made using 2-tailed ¢ tests. For continuous variables that did
not follow a normal distribution, nonparametric tests, such
as the Mann-Whitney U test or the Kruskal-Wallis test, were
applied. Categorical variables were presented as percentages
and compared between groups using the chi-square test. A
P<.05 was considered statistically significant.

Results

Statistical Characterization and
Intergroup Comparisons of Clinical
Variables in Patients With PH Versus
Matched Controls

This study ultimately included a cohort of 714 control
participants and 181 patients with PH. As shown in Table

1, PH patients exhibited significantly enlarged ascending
aorta, left atrium, left ventricle, right atrium, and right

Table 1. Characteristics of the analyzed cohort.

Jiang et al

ventricle dimensions (all P<.05), along with reduced left
ventricular ejection fraction (%), indicating progressive
chamber dilation and impaired systolic function. Hemato-
logic analysis revealed elevated red blood cell counts
and neutrophil percentage, coupled with reduced platelet
counts and lymphocyte percentage (all P<.05), suggesting
a proinflammatory, hypercoagulable profile. Patients with
PH had prolonged prothrombin time, reduced prothrom-
bin time activity, and increased international normalized
ratio, in addition to elevated total, direct, and indirect
bilirubin levels (all P<.05), reflecting both coagulopathy
and hepatic congestion. Serum cystatin C (CysC) is also
found to be significantly elevated in patients with PH.
Further, patients with PH experienced electrolyte imbal-
ances—lower potassium, sodium, and phosphorus levels
alongside higher chloride and calcium (all P<.05)—indicating
disrupted electrolyte homeostasis. Together, these multisys-
tem alterations underscore the complex structural, hemato-
logic, coagulation, hepatic, and electrolyte derangements
characteristic of PH.

Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Age (years) 38
Mean (SD) 52.0(13.8) 532 (16.9) 52.3 (14.5)
Median (Min®, Max©) 53.0(15.0,88.0) 54.7 (16.0,85.1) 540 (15.0,88.0)
Sex, n (%) .81
Male 310 (43.4) 81 (44.8) 391 (43.7)
Female 404 (56.6) 100 (55.2) 504 (56.3)
Ascending aortic diameter (AAD, cm) 002
Mean (SD) 3.02 (0.280) 3.15 (0.540) 3.05(0.352)
Median (Min, Max) 3.10 (2.20,3.70) 3.20 (1.80,4.90) 3.10 (1.80,4.90)
Left atrium diameter (LAD, cm) <.001
Mean (SD) 3.18 (0.362) 422 (1.18) 3.39 (0.746)
Median (Min, Max) 3.20 (1.80,4.30) 4.00 (2.10,7.70) 3.30 (1.80,7.70)
Left ventricular diameter (LVD, cm) <.001
Mean (SD) 441 (0.333) 4.98 (1.42) 4.53 (0.740)
Median (Min, Max) 440 (3.20,5.30) 4.60 (2.50,9.90) 4.40 (2.50,9.90)
Interventricular septal thickness (IVS, cm) <.001
Mean (SD) 0.933 (0.112) 0.997 (0.210) 0.946 (0.140)
Median (Min, Max) 0.900 (0, 1.30) 1.00 (0.500, 2.10) 0.900 (0, 2.10)
Missing, n (%) 0(0) 1(0.6) 1(0.1)
Left ventricular posterior wall thickness (LVPW, cm) 002
Mean (SD) 0.908 (0.0988) 0.968 (0.254) 0.920 (0.146)
Median (Min, Max) 0.900 (0.600, 1.20) 1.00 (0.500, 3.40) 0.900 (0.500, 3.40)
Missing, n (%) 0(0) 1(0.6) 1(0.1)
Right atrium diameter (RAD, cm) <.001
Mean (SD) 30.8 (3.74) 472 (13.1) 34.1 (945)
Median (Min, Max) 31.0(20.0,41.0) 46.0 (0, 107) 32.0 (0, 107)
Right ventricular diameter (RVD, cm) <.001
Mean (SD) 3.01(0.362) 4.33(1.13) 3.28 (0.799)
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Median (Min, Max) 3.00 (1.90,4.10) 4.15 (2.30,7.60) 3.10 (1.90, 7.60)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Pulmonary artery diameter (PAD, cm) <.001
Mean (SD) 20.7 (2.08) 29.8 (8.44) 22.5(5.58)
Median (Min, Max) 21.0 (14.0,31.0) 28.0 (0, 62.0) 21.0(0,62.0)

Left ventricular fractional shortening (LVFS, %) <.001
Mean (SD) 36.0 (3.86) 32.6(5.97) 354 (4.50)
Median (Min, Max) 350 (22.0,47.0) 33.0(12.0,44.0) 350 (12.0,47.0)
Missing, n (%) 0(0) 28 (15.5) 28 (3.1)

Left ventricular ejection fraction (LVEF, %) <.001
Mean (SD) 65.7 (4.54) 57.1 (14.6) 64.1 (8.34)
Median (Min, Max) 65.0 (53.0,79.0) 62.0 (12.0,75.0) 65.0(12.0,79.0)
Missing, n (%) 0(0) 8(44) 8(0.9)

Mitral valve inflow velocity (MV Vmax, m/s) <.001
Mean (SD) 0.741 (0.195) 1.01 (0.488) 0.796 (0.300)
Median (Min, Max) 0.700 (0.300, 1.40) 0.900 (0.300, 3.00) 0.700 (0.300, 3.00)
Missing, n (%) 0(0) 3(1.7) 3(0.3)

Mitral inflow A-wave peak velocity (MPAV, m/s) .86
Mean (SD) 0.778 (0.189) 0.782 (0.254) 0.779 (0.200)
Median (Min, Max) 0.800 (0.400, 1.40) 0.800 (0.300, 1.60) 0.800 (0.300, 1.60)
Missing, n (%) 0(0) 52 (28.7) 52 (5.8)

Left ventricular outflow tract velocity (LVOT, m/s) 002
Mean (SD) 0912 (0.189) 0.739 (0.269) 0.906 (0.195)
Median (Min, Max) 0.900 (0.500, 1.80) 0.800 (0.300, 1.20) 0.900 (0.300, 1.80)
Missing, n (%) 0(0) 153 (84.5) 153 (17.1)

Aortic valve outflow velocity (AV Vmax, m/s) 004
Mean (SD) 1.22 (0.216) 1.32 (0.423) 1.24 (0.274)
Median (Min, Max) 1.20 (0.700, 2.40) 1.20 (0.500, 3.10) 1.20 (0.500, 3.10)
Missing, n (%) 11(1.5) 2(1.1) 13 (1.5)

Pulmonary valve outflow velocity (PV Vmax, m/s) <.001
Mean (SD) 0.953 (0.175) 1.09 (0.458) 0.977 (0.256)
Median (Min, Max) 0.900 (0.600, 1.70) 1.00 (0.300, 4.10) 1.00 (0.300, 4.10)
Missing, n (%) 0(0) 22 (12.2) 22 (2.5)

Mitral valve reflux degree (MVRD, 0-3) <.001
Mean (SD) 0.296 (0.457) 1.08 (1.15) 0.454 (0.729)
Median (Min, Max) 0 (0, 1.00) 1.00 (0, 4.00) 0(0,4.00)

Aortic valve reflux degree (AVRD, 0-3) <.001
Mean (SD) 0.0980 (0.298) 0.459 (0.619) 0.171 (0.411)
Median (Min, Max) 0 (0, 1.00) 0(0,3.00) 0(0,3.00)

Tricuspid valve reflux degree (TVRD, 0-3) <.001
Mean (SD) 0.396 (0.489) 1.85(1.11) 0.690 (0.882)
Median (Min, Max) 0 (0, 1.00) 2.00 (0, 4.00) 0 (0,4.00)

Widening of ascending aorta, n (%) <.001
No 714 (100) 142 (78.5) 856 (95.6)
Yes 0(0) 39 (21.5) 39 (44)

Aortic valve thickening, n (%) <.001
No 696 (97.5) 147 (81.2) 843 (94.2)
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Yes 18 (2.5) 34 (18.8) 52(5.8)
Aortic valve echo intensification, n (%) <.001
No 695 (97.3) 140 (77.3) 835 (93.3)
Yes 19 (2.7) 41 (22.7) 60 (6.7)
Aortic valve calcification, n (%) <.001
No 712 (99.7) 175 (96.7) 887 (99.1)
Yes 2(0.3) 6(3.3) 8(0.9)
Poor closure of the aortic valve, n (%) <.001
No 713 (99.9) 119 (65.7) 832 (93)
Yes 1(0.1) 62 (34.3) 63 (7)
Pulmonary artery widening, n (%) <.001
No 714 (100) 88 (48.6) 802 (89.6)
Yes 0(0) 93 (51.4) 93 (10.4)
Poor closure of the pulmonary valve, n (%) <.001
No 713 (99.9) 157 (86.7) 870 (97.2)
Yes 1(0.1) 24 (13.3) 25(2.8)
Mitral valve insufficiency, n (%) <.001
No 704 (98.6) 83 (45.9) 787 (87.9)
Yes 10 (1.4) 98 (54.1) 108 (12.1)
Tricuspid insufficiency, n (%) <.001
No 677 (94.8) 33 (18.2) 710 (79.3)
Yes 37(5.2) 148 (81.8) 185 (20.7)
Ventricular septum thickened, n (%) <.001
No 711 (99.6) 147 (81.2) 858 (95.9)
Yes 304 34 (18.8) 37 (4.1)
Left ventricular posterior wall thickened, n (%) <.001
No 714 (100) 164 (90.6) 878 (98.1)
Yes 0(0) 17 (9.4) 17 (1.9)
Atrial septal defect, n (%) <.001
No 714 (100) 143 (79) 857 (95.8)
Yes 0(0) 38 (21) 38 (4.2)
Ventricular septal defect, n (%) <.001
No 714 (100) 171 (94.5) 885 (98.9)
Yes 0(0) 10 (5.5) 10 (1.1)
E/Ed <001
Mean (SD) 9.24 (1.99) 13.0 (5.43) 9.97 (3.33)
Median (Min, Max) 9.00 (4.00, 18.0) 12.0 (5.00, 33.0) 10.0 (4.00, 33.0)
Missing, n (%) 121 (16.9) 39 (21.5) 160 (17.9)
WBC® (10°/L) 97
Mean (SD) 6.16 (4.41) 6.15(2.33) 6.16 (4.08)
Median (Min, Max) 5.67 (1.05,103) 5.62(2.50,17.5) 5.65(1.05,103)
Missing, n (%) 0(0) 1(0.6) 1(0.1)
RBCf (109/L) 01
Mean (SD) 4.19 (0.660) 4.38 (0.905) 4.23 (0.720)
Median (Min, Max) 422 (1.76,7.86) 4.27(1.77,8.48) 4.23(1.76, 8.48)
Missing, n (%) 0(0) 1(0.6) 1(0.1)
Hb (g/L) .14
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Mean (SD) 127 (19.4) 131 (26.1) 128 (20.9)
Median (Min, Max) 129 (52.8,194) 130 (60.0, 252) 129 (52.8,252)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

PIt" (10°/L) <001
Mean (SD) 222 (80.4) 183 (75.3) 214 (80.8)
Median (Min, Max) 215 (16.0, 575) 174 (34.0, 545) 206 (16.0, 575)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Neutrophilic granulocyte percentage (%) 002
Mean (SD) 609 (12.4) 64.0(11.1) 61.5(12.2)
Median (Min, Max) 61.0(12.8,97.0) 63.6 (32.8,94.2) 61.5(12.8,97.0)
Missing, n (%) 0 (0) 1(0.6) 1(0.1)

Lymphocytes percentage (%) 002
Mean (SD) 28.0 (10.6) 25.3 (10.1) 274 (10.5)
Median (Min, Max) 28.0 (2.00,72.2) 26.0 (1.70,53.4) 27.5(1.70,72.2)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Monocyte percentage (%) 99
Mean (SD) 8.34 (3.94) 8.35(2.81) 8.34 (3.74)
Median (Min, Max) 7.70 (0.800, 78.9) 8.20(1.50,19.4) 7.80 (0.800, 78.9)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Eosinophils percentage (%) 13
Mean (SD) 220 (2.22) 1.83 (3.11) 2.13(243)
Median (Min, Max) 1.55(0,27.5) 1.20 (0, 37.0) 1.50 (0, 37.0)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Basophils percentage (%) 28
Mean (SD) 0.562 (0.375) 0.595 (0.368) 0.569 (0.373)
Median (Min, Max) 0.500 (0, 3.30) 0.500 (0, 2.60) 0.500 (0, 3.30)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Neutrophil absolute value (109/L) .30
Mean (SD) 3.85(2.39) 4.03 (2.03) 3.89(2.32)
Median (Min, Max) 3.40 (0.200, 28.7) 3.53(1.38,12.9) 3.40 (0.200, 28.7)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Lymphocyte absolute value (10%/L) .105
Mean (SD) 1.57 (0.660) 1.48 (0.691) 1.55 (0.667)
Median (Min, Max) 1.50 (0.200, 6.79) 1.45 (0.180, 3.86) 1.50 (0.180, 6.79)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Monocyte absolute value (109/L) A7
Mean (SD) 0.582 (3.02) 0.500 (0.248) 0.565 (2.70)
Median (Min, Max) 0.410 (0, 80.9) 0.470 (0.100, 2.00) 0.430 (0, 80.9)
Missing, n (%) 0 (0) 1(0.6) 1(0.1)

Eosinophils absolute value (109/L) 33
Mean (SD) 0.124 (0.134) 0.106 (0.242) 0.121 (0.161)
Median (Min, Max) 0.100 (0, 1.40) 0.100 (0, 3.04) 0.100 (0, 3.04)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Basophil absolute value (109/L) 03
Mean (SD) 0.0212 (0.0326) 0.0275 (0.0341) 0.0225 (0.0330)
Median (Min, Max) 0 (0,0.200) 0.0200 (0,0.110) 0 (0,0.200)
Missing, n (%) 0(0) 1(0.6) 1(0.1)
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
HCT! (%) 005
Mean (SD) 384 (5.67) 40.1 (7.77) 38.7 (6.19)
Median (Min, Max) 38.8(16.5,61.8) 40.1(17.6,76.4) 389 (16.5,76.4)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Mean RBC volume (fL) 75
Mean (SD) 91.8 (6.48) 920 (742) 91.9 (6.67)
Median (Min, Max) 920 (63.2,120) 92.8 (65.5,123) 92.1(63.2,123)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Average hemoglobin content (pg) 03
Mean (SD) 30.5(2.52) 30.0 (3.08) 304 (2.65)
Median (Min, Max) 30.7 (18.1,40.9) 30.8 (19.5,40.3) 30.7 (18.1,40.9)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Average hemoglobin concentration (g/L) <.001
Mean (SD) 332 (8.33) 325 (14.1) 331 (10.1)
Median (Min, Max) 332 (285,364) 328 (257,352) 332 (257,364)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Erythrocyte distribution width CVJ (%) <.001
Mean (SD) 14.1 (1.94) 14.9 (2.28) 14.3 (2.04)
Median (Min, Max) 13.5(11.3,28.9) 143 (11.9,26.1) 13.6 (11.3,28.9)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Mean platelet volume (fL) <.001
Mean (SD) 8.69 (1.17) 9.69 (1.49) 8.89 (1.30)
Median (Min, Max) 8.50 (5.80, 14.5) 9.50 (7.10, 13.6) 8.70 (5.80, 14.5)
Missing, n (%) 0(0) 6(3.3) 6(0.7)

PTX (s) <001
Mean (SD) 11.3 (0.992) 14.7 (7.36) 12.0 (3.68)
Median (Min, Max) 11.1 (9.50, 19.7) 12.7 (9.30,70.1) 11.3(9.30,70.1)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

INR! <001
Mean (SD) 1.04 (0.0920) 1.35 (0.662) 1.10 (0.332)
Median (Min, Max) 1.02 (0.870, 1.81) 1.16 (0.850, 6.08) 1.04 (0.850, 6.08)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

Prothrombin time activity (%) <.001
Mean (SD) 96.2 (12.9) 753 (22.4) 920 (17.4)
Median (Min, Max) 97.0 (43.0,130) 80.0 (10.0, 136) 940 (10.0, 136)
Missing, n (%) 0(0) 1(0.6) 1(0.1)

APTT™ (s) <.001
Mean (SD) 30.9 (3.93) 33.3(791) 314 (5.09)
Median (Min, Max) 30.5(17.4,74.2) 31.8(24.3,103) 30.6 (17.4,103)
Missing, n (%) 0 (0) 1(0.6) 1(0.1)

TT" (s) .14
Mean (SD) 14.5 (1.76) 16.3 (16.3) 14.9 (7.46)
Median (Min, Max) 14.5(11.0,46.7) 15.0 (12.2,231) 14.6 (11.0,231)
Missing, n (%) 0(0) 4(2.2) 4(04)

Fibrinogen content (mg/dL) <.001
Mean (SD) 328 (86.0) 297 (75.9) 322 (84.9)

Median (Min, Max)

314 (97.0,743)

286 (141, 536)

308 (97.0,743)
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Missing, n (%) 0 (0) 2 (1.1) 2(0.2)
D2° dimer (ng/mL) 02
Mean (SD) 401 (1130) 1420 (5630) 602 (2720)
Median (Min, Max) 136 (0, 15,900) 189 (1.00, 63,200) 141 (0, 63,200)
Missing, n (%) 0 (0) 528 5(0.6)
ALTP (U/L) 09
Mean (SD) 26.0 (45.1) 84.0 (394) 352 (163)
Median (Min, Max) 18.0 (3.00, 867) 19.5 (1.00, 3330) 18.0 (1.00, 3330)
Missing, n (%) 0(0) 47 (26) 47 (5.3)
ASTY (U/L) 09
Mean (SD) 24.6 (33.2) 95.0 (556) 38.7 (252)
Median (Min, Max) 19.0 (4.00, 574) 22.0 (9.00, 6160) 20.0 (4.00, 6160)
Missing, n (%) 0 (0) 2 (1.1) 2(0.2)
AST/ALT <.001
Mean (SD) 1.22 (0.611) 8.42 (16.9) 2.65 (8.06)
Median (Min, Max) 1.11 (0.270, 6.86) 1.44 (0.350, 133) 1.17 (0.270, 133)
Missing, n (%) 0(0) 4(22) 404)
TBIL' (umol/L) 003
Mean (SD) 124 (12.4) 16.4 (17.0) 132 (13.6)
Median (Min, Max) 10.6 (1.50, 275) 12.0 (0.540, 103) 10.6 (0.540, 275)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
DBILS (umol/L) <.001
Mean (SD) 4.36(12.3) 8.86 (8.70) 5.26(11.8)
Median (Min, Max) 2.70 (0.300, 231) 5.60 (0.600, 51.1) 2.90 (0.300, 231)
Missing, n (%) 0 (0) 2 (1.1) 2(0.2)
IDBIL' (umol/L) <.001
Mean (SD) 8.66 (5.09) 12.3 (11.1) 9.39 (6.90)
Median (Min, Max) 7.70 (0.800, 44.1) 9.40 (1.10,94.1) 7.90 (0.800, 94.1)
Missing, n (%) 0 (0) 2(1.1) 2(0.2)
Total protein (g/L) <.001
Mean (SD) 68.6 (9.60) 543 (254) 65.7 (15.3)
Median (Min, Max) 68.9 (3.04,105) 64.9 (3.20, 88.5) 68.2 (3.04,105)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
Alb" (g/L) <.001
Mean (SD) 409 (5.48) 459 (12.9) 419 (7.82)
Median (Min, Max) 409 (15.7,76.5) 41.5(22.1,86.5) 41.0(15.7,86.5)
Missing, n (%) 0 (0) 2 (1.1) 2(0.2)
GIbY (g/L) .70
Mean (SD) 31.0 (26.0) 30.6 (6.03) 310 (234)
Median (Min, Max) 28.3(11.7,319) 30.1(16.3,47.0) 28.7(11.7,319)
Missing, n (%) 0 (0) 2(1.1) 2(0.2)
Alb or Glb <.001
Mean (SD) 1.71 (2.31) 8.35(12.7) 3.04 (6.61)
Median (Min, Max) 1.46 (0.450, 28.6) 1.51 (0.730,48.9) 1.46 (0.450,48.9)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
YyGGTY (U/L) 27
Mean (SD) 37.8 (62.7) 449 (79.8) 39.3 (66.5)
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Median (Min, Max) 21.5(0.630,927) 23.0 (0.600, 752) 22.0 (0.600,927)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
ALP* (U/L) 17
Mean (SD) 80.3 (53.7) 73.1 (63.9) 78.9 (56.0)
Median (Min, Max) 72.0 (3.59, 612) 64.0 (11.0,768) 70.0 (3.59,768)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
TBAY (umol/L) <.001
Mean (SD) 6.84 (22.1) 26.1 (374) 10.7 (27.0)
Median (Min, Max) 3.10 (0.100, 303) 6.60 (0.400, 204) 3.50 (0.100, 303)
Missing, n (%) 0(0) 2(1.1) 2(0.2)
BUN? (umol/L) 28
Mean (SD) 6.58 (10.0) 7.44 (9.33) 6.75(991)
Median (Min, Max) 5.14 (1.20, 105) 5.82 (0400, 112) 5.25(0.400, 112)
Missing, n (%) 0(0) 31.7) 3(0.3)
Creatinine (umol/L) <.001
Mean (SD) 80.9 (104) 62.0 (43.5) 77.1 (95.6)
Median (Min, Max) 65.0 (2.23,1140) 62.6 (1.95,255) 64.2 (195, 1140)
Missing, n (%) 0(0) 4(22) 4(04)
Uric acid (umol/L) .80
Mean (SD) 327 (103) 331 (193) 328 (126)
Median (Min, Max) 317 (0.760, 839) 335 (44.8, 1000) 321 (0.760, 1000)
Missing, n (%) 0 (0) 422 404)
Carbon dioxide (mmol/L) <.001
Mean (SD) 239 (4.21) 110 (171) 41.0 (83.5)
Median (Min, Max) 23.8 (1.00,34.9) 24.8 (12.3,842) 239 (1.00, 842)
Missing, n (%) 0(0) 4(22) 4(04)
Serum cystatin C (mg/L) <.001
Mean (SD) 1.04 (0.794) 6.99 (10.5) 2.18 (5.20)
Median (Min, Max) 0.900 (0.360,7.59) 1.11 (0.510, 38.1) 0.910 (0.360, 38.1)
Missing, n (%) 0(0) 12 (6.6) 12 (1.3)
Potassium (mmol/L) <.001
Mean (SD) 3.94 (0.462) 342 (1.22) 3.84 (0.707)
Median (Min, Max) 3.94 (0.990, 6.27) 3.84 (0.720,5.72) 3.93(0.720,6.27)
Missing, n (%) 0(0) 10 (5.5) 10 (1.1)
Sodium (mmol/L) <.001
Mean (SD) 138 (13.9) 108 (57.5) 132 (30.8)
Median (Min, Max) 140 (0.940, 148) 138 (2.93, 155) 140 (0.940, 155)
Missing, n (%) 0(0) 6(3.3) 6(0.7)
Chlorine (mmol/L) <.001
Mean (SD) 103 (11.7) 113 (15.0) 105 (13.0)
Median (Min, Max) 105 (2.22,114) 106 (91.0, 146) 105 (2.22, 146)
Missing, n (%) 0(0) 6(3.3) 6(0.7)
Calcium (mmol/L) <.001
Mean (SD) 2.57(543) 26.0 (43.1) 7.19 (21.8)
Median (Min, Max) 2.30 (0.390, 105) 232 (1.78,111) 2.30(0.390, 111)
Missing, n (%) 0(0) 6(3.3) 6(0.7)
Magnesium (mmol/L) 22
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Variables Normal (n=714) PH? (n=181) Overall (n=895) P value
Mean (SD) 240 (26.1) 1.20 (0.596) 2.17 (23.5)
Median (Min, Max) 0.880 (0.380, 667) 0.890 (0.530,2.54) 0.880 (0.380, 667)
Missing, n (%) 0(0) 14 (7.7) 14 (1.6)
Phosphorus (mmol/L) 01
Mean (SD) 5.38 (45.6) 1.16 (0.281) 4.57 (41.0)

Median (Min, Max)

Missing, n (%) 0(0)

1.18 (0.310, 784)

1.17 (0.660, 2.32)
11 (6.1)

1.17 (0.310, 784)
11(12)

4PH: pulmonary hypertension.
PMin: minimum.
‘Max: maximum.

dE/E’: ratio of mitral valve early diastolic inflow velocity (E) to mitral annulus early diastolic velocity (E’).

*WBC: white blood cell.

fRBC: red blood cell.

gHb: hemoglobin.

hpit: platelet count.

%HCT: hematocrit.

JCV: coefficient of variation.

XPT: prolonged prothrombin time.
IINR: international normalized ratio.
MAPTT: activated partial thromboplastin time.
OTT: thrombin time.

°D2: D-dimer.

PALT: alanine aminotransferase.
4AST: aspartate aminotransferase.
'TBIL: total bilirubin.

SDBIL.: direct bilirubin.

UDBIL: indirect bilirubin.

UAlb: albumin.

YGIb: globulin.

YvGGT: gamma-glutamyl transferase.
*ALP: alkaline phosphatase.

YTBA: total bile acids.

“BUN: blood urea nitrogen.

Systematic Selection of Key
Echocardiographic Parameters to
Construct an Ultrasound Index for PH
Prediction

As shown in Figure 1A, RFE with a random forest model
and 10-fold cross-validation identified 16 echocardiographic
variables that maximize predictive performance, with right
atrial diameter and PAD yielding the highest importance
scores. Figure 1B plots cross-validation accuracy against the
number of features and demonstrates optimal performance
when incorporating 16 variables. Figure 1C illustrates that

https://medinform.jmir.org/2025/1/e74117

the XGBoost model outperformed others, excelling in AUC,
sensitivity, and specificity, demonstrating high robustness in
distinguishing between false positives and negatives. Figure
1D highlights SHAP analysis, which shows how each feature
shifts the risk prediction for individual patients: positive
SHAP values indicate increased risk, while negative values
indicate decreased risk. In our model, left ventricular outflow
tract velocity, right atrium diameter, and PAD produced the
largest SHAP values, reflecting their strong influence on
PH classification. In summary, we identified and incorpora-
ted 16 key echocardiographic parameters into a composite
ultrasound index as potential predictive variables for PH.
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Figure 1. Identify important potential predictive variables for PH from echocardiographic parameters to form an ultrasound index. (A) Selec-
ted features from echocardiographic parameters. (B) Model accuracy with varying numbers of input variables. (C) ROC curves, sensitivity, and
specificity of different machine learning algorithms. (D) Beeswarm plot for the feature importance of the selected echo features. AAD: ascending
aortic diameter; AVRD: aortic valve reflux degree; E/E’: ratio of mitral valve early diastolic inflow velocity (E) to mitral annulus early diastolic
velocity (E’); GBM: gradient boosting machine; IVS: interventricular septal thickness; LAD: left atrium diameter; LASSO: least absolute shrinkage
and selection operator; LVD: left ventricular diameter; LVEF: left ventricular ejection fraction; LVOT: left ventricular outflow tract velocity;
LVPW: left ventricular posterior wall thickness; MV Vmax: mitral valve inflow velocity; MVRD: mitral valve reflux degree; PAD: pulmonary
artery diameter; PH: pulmonary hypertension; PV Vmax: pulmonary valve outflow velocity; RAD: right atrium diameter; RFE: recursive feature
elimination; ROC: receiver operating characteristic; RVD: right ventricular diameter; Sens: sensitivity; SHAP: Shapley Additive Explanations; Spec:
specificity; SVM: support vector machine; TVRD: tricuspid valve reflux degree; XGBoost: Extreme Gradient Boosting.
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Figure 2A-E demonstrates the outstanding predictive
performance of the ultrasound index model for PH detec-
tion, while Figure 2F-]J presents the internal validation
results through bootstrap resampling. Figure 2A presents
the confusion matrix and ROC analysis of the ultrasound
index model for PH prediction. The confusion matrix
demonstrates excellent classification accuracy, with minimal
misclassification between normal and PH cases. The ROC
curve achieves near-perfect discrimination (AUC=0.999;
Figure 2B), supported by precision-recall curves (Figure
2C) showing high positive predictive value across all
sensitivity thresholds. Specificity-sensitivity analysis (Figure
2D) and accuracy-threshold analysis (Figure 2E) reveal

https://medinform.jmir.org/2025/1/e74117

SHAP value (impact on model output)

balanced performance at the optimal diagnostic threshold,
indicating robust clinical applicability. Figure 2F displays the
bootstrap validation outcomes of the ultrasound index model,
confirming its statistical reliability. The ROC curve maintains
exceptional performance (AUC=0.997; Figure 2G) across
1000 resampled iterations, with tight CIs indicating sta-
ble predictive ability. Precision-recall (Figure 2H), specific-
ity-sensitivity (Figure 2I), and accuracy-threshold (Figure
2J) curves show reproducible performance characteristics
within narrow variability ranges (<1% fluctuation), demon-
strating the model’s resistance to overfitting and dataset
sampling bias.
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Figure 2. Evaluation of the predictive performance of the ultrasound index for PH in the training set and internal validation set. (A) Confusion
matrix for training cohort. (B) ROC curve for training cohort (AUC=0.999). (C) Precision-recall curve for the training cohort. (D) Specificity
versus sensitivity for the training cohort. (E) Accuracy versus threshold for the training cohort. (F) Confusion matrix for the validation cohort.
(G) ROC curve for the validation cohort (AUC=0.997). (H) Precision-recall curve for the validation cohort. (I) Specificity versus sensitivity for
the validation cohort. (J) Accuracy versus threshold for the validation cohort. AUC: area under the receiver operating characteristic curve; PH:

pulmonary hypertension; ROC: receiver operating characteristic.
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Development and Presentation of the
Final PH Prediction Model

As shown in Figure 3A and B, LASSO regression identi-
fied 2 key clinical features—prothrombin time activity and
serum CysC as the most influential variables, indicating that
these variables are critical potential predictive parameters of
PH. Then, we combined prothrombin time activity, serum
CysC, and previously selected ultrasound index to form
the final PH prediction model through logistic regression.
Figure 3C demonstrates through DCA that our PH prediction
model provides superior clinical net benefit compared to
both “treat-all” and “treat-none” strategies across clinically
relevant probability thresholds. As depicted in Figure 3D, our

https://medinform.jmir.org/2025/1/e74117

nomogram translates each predictor’s regression coefficient
into a point scale and uses the sum of points to compute
an individualized PH risk probability via a linear predictor,
providing clinicians with an intuitive, quantitative tool for PH
risk assessment. The nomogram translates clinical variables—
including prothrombin time activity (10-140 s mapped to
75-0 points), serum CysC (0-40 mg/L. mapped to 0-100
points), and the ultrasound index (0-1 mapped to 0-72.5
points) —into a cumulative point total. The total score is then
read against the bottom probability scale to yield an individ-
ualized PH risk, providing a convenient tool that converts
routine laboratory and imaging data into a directly actionable
prediction of PH.
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Figure 3. Identify key laboratory biomarkers and develop the final predictive model for PH. (A) Deviance plot from LASSO regression to select
key laboratory biomarkers. (B) Coefficient path for LASSO regression to select key laboratory biomarkers. (C) Decision curve analysis of the final
predictive model of PH. (D) Nomogram of the final PH prediction model. LASSO: least absolute shrinkage and selection operator; PH: pulmonary
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Evaluation and Validation of the Final PH
Prediction Model

Data from different time periods were collected for external
validation, including 126 patients with PH and 155 controls,
with detailed information presented in Multimedia Appendix
1. Figure 4A and C present the model performance evalu-
ation results, while Figure 4B and D display the stability
analysis of internal validation (bootstrap=1000 iterations),
and Figure 4E-H systematically report the external valida-
tion data. Calibration curve analysis demonstrates that the
predictive model maintains excellent calibration in both the
training set (Figure 4A), internal validation (Figure 4B), and
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external validation cohorts (Figure 4E). ROC analysis further
reveals that the model exhibits stable discriminative ability
across the training set (AUC=0.999, Figure 4C), internal
validation (AUC=0.987, Figure 4D), and external validation
(AUC=0.974, Figure 4F). In external validation, DCA shows
significant net benefit across the 10%-90% risk threshold
range (Figure 4G), while the area under the precision-recall
curve (AUC=0.985) confirms the model’s balanced advantage
of both high precision and recall for positive cases (Figure
4H). These analytical results demonstrate that our model
exhibits not only excellent predictive performance for PH,
but also outstanding stability and significant clinical utility.
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Figure 4. Calibration curves and ROC analysis of the final PH prediction model (nomogram) in the training, internal validation, and external
validation sets. (A) Calibration curve of the nomogram in the training cohort. (B) Calibration curve of the nomogram in the internal validation
cohort. (C) ROC of the nomogram in the training cohort. (D) ROC of the nomogram in the internal validation cohort. (E) Calibration curve of the
nomogram in the external validation cohort. (F) ROC of the nomogram in the external validation cohort. (G) DCA plot of the nomogram in the
external validation cohort. (H) PR curve plot of the nomogram in the external validation cohort. AUC: area under the receiver operating characteristic

curve; DCA: decision curve analysis; PH: pulmonary hypertension; PR: precision-recall; ROC: receiver operating characteristic.
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Key Advantages and Innovations of Our
Model Versus Current PH Predictive
Models

Although predictive models for PH currently exist, these
tools face significant limitations: the REVEAL score
requires invasive data for optimal use and lacks imaging
integration, while guideline-based echocardiography suffers
from subjective interpretation variability and low sensitiv-
ity (AUC=0.70-0.82). Both systems fail to capture early
preclinical signs and the mechanistic pathways addressed by
our biomarker-enhanced approach.

Our novel PH prediction model demonstrates signifi-
cant advancements over existing approaches (Table 2) by

Table 2. Comparison of our model with existing PH? risk assessment tools.

integrating 16 echocardiographic parameters with 2 clinically
accessible biomarkers (prothrombin time activity and CysC),
achieving superior discriminative performance (AUC=0.974-
0.999 versus 0.70-0.85 in conventional models). Unlike the
REVEAL score’s reliance on invasive hemodynamics or
guideline-based echocardiography’s limited echo variables,
our model provides: (1) comprehensive pathophysiological
insight through multimodal biomarkers reflecting coagula-
tion and cardiac dysfunction; (2) granular risk quantification
via a 240-point nomogram, enabling precise stratification;
and (3) practical clinical utility through Electronic Health
Record (EHR)-compatible automation. In summary, our
model demonstrates significant advancements and innova-
tions compared to existing models.

Feature Our model REVEALP score Guideline-based echocardiography
Variables used * 16 echocardiographic and 2 clinical (prothrombin * Primarily clinical (6MWDS, ¢ Limited echo parameters
time activity and cystatin C) functional class, and (TRCl velocity and RV size)
hemodynamics)

auct * 0.974-0.999 * 0.79-0.85 e 0.70-0.82
Strengths ¢ Multimodal integration (imaging and biomarkers) ¢ Established registry data ¢ Widely available

¢ Objective scoring system ¢ Validated long-term outcomes ¢ First-line screening

* Higher discriminative ability
Key * Comprehensive echo assessment (16 parameters, * Lacks imaging details * Subjective interpretation
advantages including novel metrics such as LVOT® velocity) * Requires invasive data for the ¢ Limited accuracy

* Novel biomarkers (cystatin C adds renal or PH
pathobiology dimension)

full version
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Feature

Our model

REVEALDP score

Guideline-based echocardiography

Clinical utility

Population

* Quantitative nomogram (precise risk

stratification)

. EHRh-integratable

* Mainly for prognosis

¢ Identifies early-stage PH .
* Guides RHC' decisions

* Broad applicability (includes preclinical signs)

Less useful for initial
diagnosis
» Established patients with PH

* Screening only

* High false-positive rate

* Symptomatic suspects

4PH: pulmonary hypertension.
PREVEAL: Registry to Verify Early and Long-Term Pulmonary Arterial Hypertension Disease Management.
¢6MWD: 6-minute walk distance.
AdTR: tricuspid regurgitation.
°RV: right ventricular.

fAUC: area under the receiver operating characteristic curve.

8LVOT: left ventricular outflow tract velocity.

PEHR: electronic health record.
'RHC: right heart catheterization.

To facilitate clinical implementation of our model, we
developed a web-based calculator (Figure 5A and B),

available online [16], which enables user-friendly PH risk

assessment. This tool is expected to significantly enhance the
model’s clinical adoption.

Figure 5. Screenshots of the nomogram web calculator. (A) Screenshot of the web calculator showing the calculated PH probability based on
ultrasound index input and SHAP-based interpretation of feature importance for the ultrasound index variables. (B) Screenshot of the web calculator
displaying the total points calculated via nomogram and the corresponding PH risk probability. E/E’: ratio of mitral valve early diastolic inflow
velocity (E) to mitral annulus early diastolic velocity (E’); PH: pulmonary hypertension; SHAP: Shapley Additive Explanations.
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Discussion

Principal Findings

We present an integrated diagnostic model that combines
ultrasound-derived parameters with clinical variables to
improve early PH risk prediction. Using RFE, LASSO
regression, and various machine learning algorithms, we
optimized the model and rigorously assessed its predictive
performance. Given that PH is a rapidly progressive disease
with high mortality, early detection and intervention are
essential for improving outcomes [17,18]. Current diagnos-
tic methods for pulmonary artery pressure rely heavily on
2 approaches: RHC and echocardiography, which estimate
pressure based on TRV [19-21]. However, catheterization
is invasive, and echocardiography can be prone to sig-
nificant inaccuracies. To overcome these limitations, our
research proposes a novel noninvasive diagnostic pathway
that integrates ultrasound and clinical data, thereby providing
an effective tool for the early detection of PH.

In our model, 16 echocardiographic features (right atrium
diameter, PAD, left atrium diameter, tricuspid valve reflux
degree, right ventricular diameter, E/E’ [Ratio of Mitral Valve
Early Diastolic Inflow Velocity (E) to Mitral Annulus Early
Diastolic Velocity (E’)], interventricular septal thickness, left
ventricular diameter, ascending aortic diameter, left ventricu-
lar ejection fraction, left ventricular outflow tract velocity,
mitral valve reflux degree, pulmonary valve outflow velocity,
mitral valve inflow velocity, aortic valve reflux degree, and
left ventricular posterior wall thickness) and 2 laboratory tests
variables (prothrombin time activity and CysC) was identified
to be the critical predictive parameters of PH. These structural
cardiac measurements demonstrate strong pathophysiological
concordance with known PH mechanisms: enlargement of
the right and left atria reflects increased pulmonary circula-
tion pressure and heightened right ventricular load, both of
which are common in patients with PH [22]. Additionally,
an enlarged PAD correlates directly with elevated pulmo-
nary vascular resistance, further exacerbating right ventricular
pressure overload [23].

While the association between cardiac structural or
functional parameters and PH is well-established and
mechanistically straightforward, our selected biochemical
markers (prothrombin time activity and CysC) similarly
demonstrate previously reported—yet less widely recog-
nized—pathophysiological links to PH development. A
review summarizing the association between coagulation
abnormalities and hypertension suggests that prothrombin
time activity is closely correlated with elevated systolic and
diastolic blood pressure in both hypertensive patients and
normotensive individuals [24]. This is consistent with the
conclusion in this paper that prothrombin time activity is
associated with increased pulmonary artery pressure. CysC
is generally recognized as an indicator of renal function.
However, previous studies have found that CysC is also
elevated in patients with pulmonary arterial hypertension
and is positively correlated with right ventricular systolic
pressure, right ventricular end-diastolic volume, and right

https://medinform.jmir.org/2025/1/e74117
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ventricular end-systolic volume, suggesting its potential as a
biomarker for PH [25].

Our study advances beyond prior research by system-
atically identifying optimal ultrasound parameters through
rigorous RFE coupled with 10-fold cross-validation, ensuring
robust and reproducible feature selection. Whereas con-
ventional approaches typically analyze isolated echocar-
diographic measures, our novel methodology integrates
multidimensional cardiac imaging features with critical
clinical biomarkers to develop a high-performance yet
clinically interpretable prediction model. This integrative
approach demonstrates superior predictive accuracy for
PH, representing a paradigm shift from single-parameter
assessment to comprehensive risk stratification. The clinical
implementation of this model enables: (1) earlier detection
of subclinical PH through sensitive ultrasound biomarkers,
(2) improved risk discrimination via combined imaging
and laboratory data, and (3) actionable outputs for timely
therapeutic decision-making.

It is also worth mentioning that in our study, we used
multiple machine learning algorithms, such as XGBoost,
random forest, and logistic regression. Among these models,
XGBoost demonstrated the best predictive performance,
achieving an AUC of 0.997, highlighting its strength in
handling high-dimensional data and modeling complex
nonlinear relationships. As a gradient-boosting algorithm,
XGBoost incrementally reduces the model error to enhance
predictive accuracy, rendering it particularly effective for
clinical data with intricate interactions [26,27]. To enhance
the interpretability of the XGBoost model, we constructed an
analysis using SHAP. SHAP values quantified the contribu-
tion of each feature to the model’s predictions, emphasizing
the importance of variables such as the right atrium and
PAD in predicting PH. Compared to traditional “black-box”
models, incorporating SHAP analysis significantly enhanced
the model’s interpretability, providing more clinical insights.
SHAP not only increases transparency but also enables
clinicians to better understand the predictive mechanisms
of the model, thus supporting more informed and reasoned
clinical decision-making.

To enable seamless adoption in clinical workflows, we
deployed the nomogram and risk calculator [16] as a web-
based Shiny application with an Application Programming
Interface compatible with major EHR systems. Compli-
ant with Health Level Seven Fast Healthcare Interoperabil-
ity Resources standards, the tool automatically retrieves
echocardiographic measurements and laboratory values,
computes the PH risk score in real time, and presents
results in clinician-facing dashboards during outpatient visits.
Moreover, the application can be embedded within ultra-
sound reporting software, allowing sonographers to gen-
erate risk estimates immediately at the point of image
acquisition. Concrete examples of our predictive model’s
clinical application are: a 58-year-old woman presenting
with unexplained dyspnea underwent noninvasive PH risk
stratification using our proposed nomogram or web-based
tool to defer immediate RHC. The clinician input key
echocardiographic parameters (right atrium diameter=4.5 cm,
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PAD=2.8 cm, left atrium diameter=4.0 cm, and other selected
parameters in our model) along with laboratory values
(prothrombin time activity=78%, serum CysC=1.5 mg/L)
extracted from recent reports. Application of the nomogram
yielded a total score of 50 points, corresponding to an
85% predicted PH risk, automatically flagging the patient as
high-risk. This prompted clinical actions, including prioriti-
zation of confirmatory RHC, initiation of enhanced moni-
toring (repeat echocardiography and N-terminal pro-B-type
Natriuretic Peptide testing, and consideration of early PH
specialty referral. For seamless clinical implementation, the
tool could integrate with electronic health record systems (eg,
Cerner, formerly known as Cerner Corporation, now part of
Oracle Health) as a plug-in module, enabling automated data
population from EHR fields (laboratory results or echocardio-
graphic reports) and generation of standardized risk assess-
ment documents for longitudinal patient tracking within the
medical record.

Although several machine learning models have been
developed for PH, they exhibit certain limitations. Many
models rely on a single data source, which restricts pre-
dictive accuracy and reliability. For instance, the study by
Athénais Boucly identified cytokines as prognostic biomark-
ers in pulmonary arterial hypertension but failed to account
for potential confounding factors, such as clinical variables
or imaging data, which may influence the results [28].
Similarly, the research by Hirata et al [29] demonstrated
improved accuracy of a machine learning model compared
to traditional methods in the derivation cohort; however, its
performance in the validation cohort was only comparable to
guideline-based echocardiographic assessments, underscoring
the need for further optimization and validation. Additionally,
previous studies frequently used univariable and multivari-
able models to evaluate the relationship between clinical
and echocardiographic parameters in precapillary PH [30].

Jiang et al

However, they lacked advanced feature selection methods
such as LASSO and RFE, which could have enhanced model
performance by identifying key predictive variables, reducing
overfitting, and providing deeper insights into prognostic
factors. In contrast, our research proposes an innovative
approach by integrating ultrasound parameters with clinical
variables, thereby enhancing the model’s predictive perform-
ance through multidimensional integration [31,32]. Unlike
prior work, we optimized feature selection using both RFE
and LASSO regression and ensured model robustness through
comparison and tuning across multiple machine-learning
models [33]. We also significantly enhanced model inter-
pretability using SHAP, which makes this high-perform-
ing “black-box” model more transparent and trustworthy
for clinical use, ultimately enhancing its applicability and
credibility in a health care context.

Despite the strong performance of our model in predicting
PH, it exhibits certain limitations. First, the study sample size
was relatively small, which limits the generalizability of the
findings. Future work should involve validation using larger,
multicenter datasets to ensure the model’s external valid-
ity. Second, as new ultrasound technologies and biomark-
ers emerge, future research should incorporate additional
multidimensional biological data to enhance the predictive
accuracy and applicability of the model.

Conclusions

We developed a high-performance PH prediction model using
machine learning analysis of echocardiographic, laboratory,
and demographic data from 895 participants. The model
incorporates 16 key ultrasound parameters and 2 biomarkers,
with validation showing excellent accuracy. We also created
a web-based calculator to facilitate clinical use, providing a
practical tool for early, noninvasive PH detection.
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