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Abstract

Background: Data scarcity and dispersion pose significant obstaclesin biomedical research, particularly when addressing rare
diseases. In such scenarios, synthetic data generation (SDG) has emerged as a promising path to mitigate the first issue.
Concurrently, federated learning is a machine learning paradigm where multiple nodes collaborate to create a centralized model
with knowledge that is distilled from the data in different nodes, but without the need for sharing it. This research explores the
combination of SDG and federated |earning technol ogiesin the context of acute myeloid leukemia, arare hematological disorder,
evaluating their combined impact and the quality of the generated artificial datasets.

Objective: Thisstudy aimsto evaluate the privacy- and fidelity-related impact of horizontally federating SDG modelsin different
data distribution scenarios and with different numbers of nodes, comparing them with centralized baseline SDG models.

Methods: Two state-of-the-art generative models, conditional tabular generative adversarial network and FedTabDiff, were
trained considering four different scenarios: (1) anonfederated baseline with all the data available, (2) afederated scenario where
the data were evenly distributed among different nodes, (3) a federated scenario where the data were unevenly and randomly
distributed (imbalanced data), and (4) a federated scenario with nonindependent and identically distributed data distributions.
For each of the federated scenarios, afixed set of node quantities (3, 5, 7, 10) was considered to assessitsimpact, and the generated
data were evaluated, attending to a fidelity-privacy trade-off.

Results. The computed fidelity metrics exhibited statistically significant deteriorations (P<.001) up to 21% in the conditional
tabular generative adversarial network and up to 62% in the FedTabDiff model due to the federation process. When comparing
federated experiments trained with diverse numbers of nodes, no strong tendencies were observed, even if specific comparisons
resulted in significative differences. Privacy metrics were mainly maintained while obtaining maximum improvements of 55%
and maximum deteriorations of 26% between both models, although they were not statistically significant.

Conclusions: Within the scope of the use case scenario in this paper, the act of horizontally federating SDG algorithms results
in aloss of data fidelity compared to the nonfederated baseline while maintaining privacy levels. However, this deterioration
does not significantly increase as the number of nodes used to train the models grows, even though significative differences were
found in specific comparisons. The different data partition distribution configurations had no significant effect on the metrics, as
similar tendencies were found for all scenarios.
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https://medinform.jmir.org/2025/1/€74116 JMIR Med Inform 2025 | vol. 13| €74116 | p. 1
(page number not for citation purposes)


mailto:iisasa@vicomtech.org
http://dx.doi.org/10.2196/74116
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

KEYWORDS

Isasaet al

rare diseases; privacy; machine learning; federated learning; synthetic data generation; leukemia; data fidelity; trade-off

Introduction

Overview

Acute myeloid leukemia (AML) is a group of bone marrow
stem cell cancersthat causes an extreme proliferation of clonal
hematopoietic cells. Thisabnormal growth is caused by multiple
cytogenetic and genetic malformations, resulting in a poorly
differentiated myeloid cell accumulation in the bone marrow
and the consequent spread to the blood [1].

Despite the latest scientific advances and at least 10 recently
approved therapies, it is still causing 250,000 deaths yearly
worldwide[2]. Moreover, evenif AML accountsfor about 80%
of all diagnosed leukemiasin adults, therearejust 4.2 new cases
per 100,000 people in the United States yearly, which makesiit
classifiable as arare hematological disease [3]. On top of that,
the proportion of AML casesamong all the diagnosed leukemias
worldwide increased from 18% in 1990 to 23.1% in 2017,
augmenting their incidence and suggesting apotential upcoming
major global public health concern [4].

According to the World Health Organization (WHO), AML can
be classified into several categories. thosethat are derived from
(2) genetic abnormalities, (2) myelodysplasia-related changes,
those that are related to (3) previous chemotherapy or radiation
therapies, (4) myeloid sarcomas, (5) myeloid proliferations
related to Down syndrome, (6) undifferentiated and biphenotypic
leukemias, and those that (7) are not otherwise specified [5,6].
In them, symptoms include bleeding, bruising, infections,
fatigue, and bone pain.

Therarity of AML asaprevalent form of leukemiabringswith
it inherent limitations with regard to the data exploitation and
consequent improvement in terms of artificial intelligence (Al)
models and their application in real-world environments. First,
the necessity of data is leading to the emergence of various
repositories that encompass information of the disease [7], but
it is important to highlight that these are often limited in size
[8,9], revealing an underlying problem of datascarcity. Besides,
the data protection legisation, such as the Genera Data
Protection Regulation in Europe or the Health Insurance
Portability and Accountability Act in the United States, adds a
layer of complexity to the process of data sharing due to the
sensitive nature of hedth data, as it typically consists of
electronic health records (EHRs) that may contain extensive
clinical or even genomic data. Asaconsequence, evenif AML
datarecords exist, they are unevenly distributed across different
institutions, hindering any intention to make use of large
amounts of data. This uneven distribution not only refersto the
amount of data points available in each data silo but aso to
biases in them, such as racia and ethnic disparities in AML
prevalence statistics [10], especially in pediatric patients [11].
Thismakesit even more difficult to access quality datathat can
be used to infer knowledge using Al.

Synthetic data (SD) is defined as artificia information that is
generated from original data and a model that is trained to
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reproduce its characteristics and structure [12]. Thus, SD
generation (SDG) is a widely used tool for creating data that
mimicsreal-world datasets, which has been found to be helpful
for augmentation tasks, as a class balancing tool, and as a
privacy-enhancing technology [13]. Therefore, SD is often
evaluated in terms of its fidelity with respect to the rea data,
its utility for downstream applications, and the privacy that it
offers, the last one being one of the main topics of research in
literature. In light of the current situation regarding the AML
use case, SD can be considered a suitable approach for
improving the current paradigm by increasing the quantity of
data ingtitution-wise. However, while SD aims to replicate
real-world distributions by capturing the same range and
structure as the input data, its primary focus is on addressing
data scarcity rather than mitigating the problem of scattering.
In this regard, SDG would be able to learn based on the local
distributions and attending to the data variability found within
an institution, possibly limiting the learning process and not
being able to sufficiently represent a global population [14].

To mitigate the challenges related to data fragmentation and
governancein distributed environments, federated learning (FL)
offers a decentralized machine learning (ML) framework that
enables collaborative model training across multipleinstitutions,
ensuring that raw patient data remains local and is never
transferred or shared externally. [15]. In a canonical FL
environment, a model is trained in a central server using the
weights each client shares after training local models on local
real data [16]. Even if that local real data does not leave the
node, the learned information is shared, and a global model is
created, covering al thelocal distributionsamong the federated
nodes and better adapting to a theoretical global distribution.
That said, thetype of datadistributionsfound within afederated
network directly impacts models behaviors, affecting
communication efficiency, model convergence, and FL
accuracy. Nonindependent and identically distributed (non-11D)
data are currently being widely explored, as they may pose
performance and privacy-related difficulties in FL contexts
[17,18]. When data are distributed such that clients share the
same feature space but contain distinct sets of records, the FL
setting is referred to as horizontal federated learning (HFL).
Conversely, when clients hold different feature subsets
corresponding to the same set of records, the setting is known
asvertical FL. Theresults presented in thiswork belong to HFL
and may not generalize to other FL settings, like vertical FL.
Hereafter, the term FL will be used analogously to HFL for the
sake of clarity.

However, the adoption of technologies that combine both
elements and the posterior validation of those should go hand
in hand with thorough prior analyses. To do that, the
contributions of this paper are:

An evaluation of the impact of federating SDG algorithms
with respect to having amodel trained on all data available
on the same site (centralized).
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- An evaluation of the impact of the number of federated
nodes on the performance of SDG models.

« Anevaluation of the impact of having arandomly sampled
imbalanced quantity of data in each federated node.

« An evaluation of the impact of having an imbalanced
guantity of data that constitutes non-11D distributions in
each federated node.

Theremainder of this paper isorganized asfollows: the Methods
section provides information about the materials used and the
methodology, describing the dataset that was used, the
generative model, the eval uation metricsthat wereimplemented,
and the FL setup. The next section presents the Results, while
the Discussion section showsthe principal results, the limitations
of this work, a comparison with prior existing work, and final
conclusions.

Background

Over the last few years, the use of SD has gained momentum
in several contexts. In health care, smulations and prediction
research, educational and training content creation, and
investigation, including the rel ease of data, have benefited from
SD use [19]. In this sense, SDG must be understood as a
spectrum of possibilities regarding model selection, parameter
tuning, and use case-specific contextualization. However,
generating data inevitably involves sophisticated techniques,
which may include generative adversarial networks (GANS),
variational autoencoders (VAES), or diffusion models, among
other Al approaches.

One of the most promising uses of SD, as was mentioned
previously, is the generation of artificial information that does
not compromise patient privacy while maintaining its fidelity
to the origina counterpart. Therefore, the assessment and
analyses of SD are expanding to such an extent that the
expectations are surpassing those of traditional anonymization
techniques, which area gorithmsthat typically reducethe quality
of the data in terms of fidelity and utility, even attempting to
combine them. In this sense, it is important to mention
differential privacy (DP), which is atechnique that ensures the
privacy of individuals by adding random noise to the data,
making it nearly impossible to determine whether any
individual’s datais included in adataset or not. DP is the most
widely used privacy-enhancing technology that is being
implemented in generative model s to enhance data privacy, and
itsimplementation in them depends on the intended use for the
resulting SD [20-22], aligning it with the fidelity of the data.
Privacy preservation of real data trades directly off with the
fidelity and the utility of the generated SD, which must be
maintai ned to ensureits suitability for downstream applications.

Regarding Al models, a GAN is composed of two networks, a
generator and adiscriminator, working in an adversarial manner.
Whilethe former oneis supposed to minimizethelossfunction
by generating samples that are as similar as possible to the
training set, the latter is tasked with differentiating original
samplesfrom synthetic ones, trying to maximizetheloss. GANs
werefirst presented by Goodfellow et a [23] in 2014, and since
then, several modifications have been proposed in order to cover
awide range of use cases. The work developed by Zhao et al
[24], for example, represents the latest generation of GAN
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architectures, named CTAB-GAN+, which includes
state-of-the-art features such as conditional generation of
samples, improved lossfunctions, the possibility to handle both
categorical and continuous data simultaneously, and DP.
Narrowing down to tabular data generation for health
care—related use cases, GANs were identified to be the most
widely used architectures [25]. Additionally, several recent
publications have addressed various unresolved questionswithin
thefield. For instance, Ramachandranpillai et al [26] introduced
the bias-transforming GAN, which addresses the challenge of
biased data generation in the health care doman by
incorporating several information constraints inside the
generation process. Moreover, various GANsare currently being
experimentally tested for several use cases, as demonstrated by
Akiyaet al [27] inoncological clinical trials, Khan et al [28] in
cardiovascular disease mortality predictions, or Dhawan and
Nijhawan [29] in brain magnetic resonance imaging and chest
X-ray data.

Asfor VAEsin the context of SDG, they are also composed of
two fundamental components: the encoder and the decoder. In
this context, the encoder is responsible for mapping the input
training data into a latent space with a lower dimensionality,
while the decoder samples new values from this latent space to
reconstruct data that imitates the original inputs. Starting from
the original architecture, VAES have also undergone severa
modifications that help cover diverse use cases[30]. Asfor the
latest research, Biswas and Talukdar [31] researched the
enhancement of clinical documentation using both GAN and
VAE-generated SD with the aim of improving patient care. Li
et al [32] implemented the causal recurrent VAE, aiming to
generate medical time series data. Other applications that are
being investigated and include VAEs are drug dosing
determinants, such asin Titar and Ramanathan [33].

Finally, diffusion models create SD by gradually transforming
simple, noise-like data into complex data structures that were
used during the training process. Even if thistype of generative
model has mostly been focused on image generation, currently,
they are able to support different data types, too [34,35]. For
example, Naseer et a [36] presented ScoEHR, acontinuous-time
diffuson model able to generate artificial EHRs. Digital
pathology data was also generated with diffusion models by
Pozzi et d [37].

As for generative modeling applied to rare hematological
diseases, recently, D’Amico et a [38] trained a conditional
tabular generative adversarial network (CTGAN) with the aim
of generating myelodysplastic syndromes and AML data.
Additionally, Eckardt et a [39] made their synthetic AML
dataset publicly available after having considered both utility
and privacy thresholds. The published synthetic dataset
comprises 1606 patients generated using a CTAB-GAN+ [24].
Licandro et a [40] used a Wasserstein GAN for two distinct
scenarios where differently sized datasets were used. In their
research, the primary objective was to discern the embeddings
of the data, enabling subsequent differentiation between blast
and nonblast cells. The results show that using the generator
model to learn embeddings outperforms the results obtained
with baseline models, improving the areaunder the curve (AUC)
for both dataset sizes. The study carried out by Rupapara et a
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[41] made use of the ADASY N [42] SD generator to balance
the dataset and enhance prediction outcomes. The dataset
encompassed datafrom various blood-rel ated cancers, including
AML. By using the ADASYN resampler, the classification
models demonstrated improved accuracy.

Regarding FL-related studies, several experiments have been
conducted to overcome the data scattering issue. For example,
the study carried out by Linardoset al [43] simulatesafederated
environment consisting of four nodes. The study aimed to help
diagnose hypertrophic cardiomyopathy diseases, the results
supporting the effectiveness of FL by achieving better AUC
results than with a collaborative data-sharing framework. The
work presented by Liu et al [44] focused on using FL to achieve
adeep learning model that makes use of EHRsto predict patient
mortality, which they called FADL. The work presented by
Azizi et al [45] also used EHR information scattered among 50
nodes, each of which contained 560 patients, to predict
mortality. However, in this case, they used a clustering method
and used community-based FL, surpassing the performance of
the canonical FL environment across various scenarios.

Both techniques, SDG and FL, have demonstrated their
effectivenessin various sectors and use cases. The combination
of both is being investigated to such an extent that inherently
federated generative modelsare being published in theliterature,
such as the private FL-GAN model [46]. Focusing on health
care—related topics, in Azizi et a [45], a framework for
cardiovascular data based on an FL architecture of two nodes
and a generative model using sequentia trees is shown. The
study presented by Behera et a [47] demonstrates the
implementation of a GAN within a federated environment,
called FedSyn. In addition to applying DP, thereby enhancing
data protection, the researchers used the CIFAR10 and Modified
National Ingtitute of Standards and Technology datasets for
their analyses. The research outlined by Xin et a [48] uses a
federated GAN augmented with DP, trained on both Modified
National Ingtitute of Standards and Technology and CelebA
datasets. The authors analyzed the privacy of the generated data
offered against the original one, concluding an improved privacy
against membership inference attacks (M1A). However, despite
the combination of both SDG and FL explored in different
studies, many aspects of this mixture still require evaluation.

Methods

AML Dataset

The AML dataset used to perform the research of this paper
was accessed from the work developed by Tazi et a [49] and
its associated GitHub repository [50].

Among the avalable datasets in the repository, the
paper_full_data validation dataset was chosen for thisresearch.
All the genetic mutation-related variables were discarded,
preserving clinical, demographic, and diseaserelated
information. Multimedia Appendix 1 includes a description of
the variables used in the experiments. The variable selection
was carried out to maintain acceptable sample-to-feature ratios
across various federated configurations regarding node
quantities, asthe original dataset comprised 130 festures. Having
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alow number of samples and too many variables would have
limited the experiments in this regard, as highly overfitted
models would appear. The resulting dataset consisted of 1540
samples and 12 features, from which the categorical oneswere
label encoded in the preprocessing stage. All these preprocessing
stepswere applied before the datawere split into different client
nodes for the sake of simplicity. Applying these specific
preprocessing steps to our federated experiments would entail
just an additional preliminary step in thetraining process, which
was omitted by manually preprocessing the data.

Ethical Consider ations

That study was conducted following the compl etion of informed
consent forms by all the included participants. In addition, all
the relevant ethical guidelines were followed, and necessary
Ingtitutional Review Board and ethics committee approvals
were obtained. The trial was conducted in accordance with the
tenets of the Helsinki Declaration, and it was sponsored by
Cardiff University and approved by the Wales research ethics
committee (protocol 08/MREQ9/29). The analysis of the data
in the original study was approved by the Memoria Sloan
Kettering Cancer Center Institutional Review Board (protocol
x20-064). All the raw data were deposited in the European
Genome Phenome Archive (reference EGA S00001000570). In
this paper, al the information that allows the identification of
any of the participants was omitted in accordance with privacy
and confidentiality standards. The authorsin Tazi et al [49] and
Tazi [50], who performed the original analysis on the data, do
not bear any responsibility for the further research reported in
thiswork.

Generative Models

Thefirst generative model that was selected for this experiment
isthe CTGAN [51], as it was recently reported to have one of
the most appropriate generators among different GAN and VAE
architectures[52]. Additionally, it isimplemented in away that
models the relationships between imbalanced variable
distributions [53]. The Synthetic Data Vault [54] CTGAN
implementation was used in this work, even if some
modifications had to be implemented for the correct use of the
model in afederated environment.

Regarding the model parameters used on the CTGAN, the
default parameters presented in the Synthetic Data Vault
(v0.18.0) implementation were used. The same architecture was
set for both the discriminator and the generator with atwo-layer
hidden structure, both containing 256 units each. The learning

rates of both objects were set to 2x107, with the decay fixed

to 1x1075. A batch size of 500 samples was defined along with
an embedding dimension of 128 samples. The discriminator
was updated al ong with the generator at every training step, and
a 10-sample group (pac parameter) was introduced into the
discriminator each time it was applied.

On the other hand, a diffusion model was also included.
Diffusion models [55] are a newer class of generative models
that have demonstrated superior performance compared to other
tabular generative models[56,57]. Theimplementation used in
thiswork isthe one presented by Sattarov et a [58], where the
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authors claim high fidelity and privacy metrics were obtained
in their experiments.

As for the FedTabDiff model parameters, default values were
also chosen. Specifically, the number of diffusion stepswas set
to 500, and the multilayer perceptron layers were configured as
{512,512} . To ensure comparahility across models, a consistent
batch size of 500 was used, and the learning rate for the deep

learning models was fixed to 1x107*, with a linear scheduler.

Additionally, the diffusion beta start was set to 1x10™, and the
beta end was set to 0.02. It is worth mentioning that the model
was dlightly modified in order for it to interact multiple times
with similar data, with the idea of the results being comparable
among experiments.

As mentioned previoudly, in order for each participant node to
transform the data in the same manner and to avoid averaging
mismatches, one-hot encoding for discrete columns and
Gaussian mixture transformationsfor continuous variableswere
fit using the whole dataset, also being able to avoid unseen
classes in federated nodes. The objects were then included in
each client with the aim of transforming each data partition in
situ and using the same mapping.

Regarding the number of epochs to be performed during the
training process of the models, different experiments were
empirically conducted on the baseline model with 500, 1000,
1500, 2000, and 3000 epochs. The optimal configuration was
proven to be 500 epochs, as increasing the iterations did not
show any significant improvement in the generated synthetic
sample quality. All the federated models were trained for 500
epochs for the experiments to be comparable. In addition, the
number of federation rounds was set to 500.

Evaluation Metrics

The generated SD was analyzed to gaugeitsfidelity and privacy
with respect to the real data. In the scope of this work, fidelity
is defined as the degree to which the generated SD replicates
the characteristics, patterns, correlations, and distributions of
thereal data. While ahigh fidelity meansthe SD resemblesthe
real data well, alow fidelity would indicate poor learning by
the model generators. On the other hand, privacy is defined as
the extent to which the generated data protects sensitive
information from being disclosed in the original dataset. In this
section, the methods and metrics to evaluate the SD are
described.

Considering a simulated FL scenario, the comparison was
performed against the whole real data, thus being able to
compare the performance of each setup against the nonfederated
scenario as a baseline. Inspired by usual ML cross-validation,
10 different synthetic datasets were generated with each model,
allowing a separate evaluation for each of them. The results
were then averaged to provide a more robust perspective on
their generalizability. The set of metrics calculated in each fold
also enabled the execution of statistical tests for significance.

In order to assess intervariable correlations, the ¢, coefficient

[59] and the Vendi Score (V'S) [60] metrics wereimplemented.
On the one hand, the ¢, coefficient is based on the refinement

of Pearson hypothesis tests. However, unlike Pearson
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hypothesis, ¢, can calculate correlations with both numerical
and categorical variables, the higher the values, suggesting better
intervariable relations. Moreover, ¢, can capture nonlinear
relationships. Correlation matriceswere generated for both real
and synthetic versions of the datasets using the ¢, coefficient,
and the cosine similarity (CS) metric was used to obtain a
guantitative measure that compares them, which is defined as
1dos

Eﬂ: X!

Dl XDl X

dCOS (xl x,) =

Where x; isareal sample and X' is a synthetic counterpart. A
low CS metric suggeststhe two matrices do not look alike, while
higher values imply higher similarities between them.

On the other hand, the VS is a novel metric that computes the
diversity of a given dataset without the need to compare it
against another set of data. This score requires defining a
positive semidefinite similarity function, which was set to be
the CS in this case [61]. Accordingly, the VS of just the
numerical attributes was computed due to the CS only being
applicable to numerical features. In the following equation, the
mathematical expression for the V'S can be observed.

VSk(xll B xn) = exp (_ Z?:l }‘i ' logﬂ't) (2)

Wherekisagiven similarity function and A, are the eilgenvalues
of K/n, and K isthe kernel matrix.

Furthermore, adatalabeling analysis (DLA) was performed. In
thisprocedure, an ML classifier istrained to ascertainits ability
to differentiate between synthetic and real samples, mimicking
the functionality of a GAN discriminator. Due to the
characteristics of the analysis, the classification process was
evaluated using the F;-score metric since it is sensitive to the
class distributions, making it a reliable metric when labels are
imbalanced, and the recall score, as it returns the number of
correctly identified synthetic samples. On top of that, the AUC
curve was calculated. Regarding the trained ML modelsfor the
DLA, the LazyPredict classifier [62] object was used to train
various models per iteration. The best classifier was chosen for
each fold to account for the most restrictive case, whilethe mean
and standard deviation were calculated in the process.

On top of those, the Hellinger distance was chosen to quantify
the similarity between two probability distributions, offering a
bounded metric that isinterpretable and less sensitive to outliers
than other distance calculations, such as the Wasserstein one
[63]. Finaly, the depth versus depth plot (DD-plot) was used,
which is a nonparametric method that can evaluate the
multivariate distributional similarity between two distributions
(rea and synthetic, in this case). While the DD-plot aims to
represent the depth of a rea distribution with respect to the
associated synthetic depth in a graphical way, the coefficient
of determination (R?) is proposed in the literature to obtain an
analytical value from it. Both the real and SD depths are more

similar when R? is higher, meaning that the DD-plot better fits
atheoretical optimal function x=y.
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With respect to privacy metrics, four types of attacks were
conducted: MIAs, attribute inference attacks (Al As), linkability
attacks, and singling out attacks. MIA and AIA assessments
were conducted using the Anonymeter tool [64]. In MIAS, an
adversary is simulated to assess whether a specific data point
was part of thetraining dataset used to train agenerative model,
thereby posing potential privacy risks. The attack methodol ogy
involves computing distance measures between pairs of records
and applying a threshold to distinguish between high-risk
matches and those considered safe. In the context of this
experiment and following the work of Hernandez et al [63], a
Gower distance of 0.05 was defined, which is a similarity
measure that may be used to handle multitype data within the
same dataset.

In contrast, AlAs occur when an adversary attempts to infer
sensitive information that was not originally disclosed with the
dataset. AlAs seek to extract additional private information
about individuals, even if their membership is already known
or assumed. In this case, risks are calculated variable-wise as
each one may pose differently ranked sengitivities. For numerical
variables, an AlA isconsidered successful if the predicted value
falls within a predefined confidence interval of the true value,
which is defined to 0.05 in the scope of this work. For
categorical variables, a correct prediction requires an exact
match. This evaluation is conducted across all variables
individually, and the average success rate is used to compute
the overall attribute inference risk.

Regarding linkahility attacks, their goal isto associate attributes
from two or more records with the same individua or group,
either using a single dataset or multiple ones. If the known
attributes and a synthetic dataset allow the linkage to the real
dataset, revealing sensitive information, the attack is considered
successful. Singling out attacks, on the other hand, occurswhen
unique data records can be identified based on a distinct
combination of attributes within the real data. In the scope of
this work, the most stringent approach was adopted, using the
conjunction of all attributesto perform the attacks (multivariate
singling out).

Experimental Setup

In this experiment, a comparison between nonfederated and
federated generative models was performed for three different
federated scenarios. In the first one, the data quantity was
assumed to be evenly distributed across the participant nodes
(from now on, B scenario, for balanced), while for the second,
the data points were randomly split, creating partitions with
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uneven sample quantities (from now on, IB scenario). In the
third federated scenario, non-11D distributions (Figure 1) were
built depending on the age variable (from now on, 1Bgn.iiq

scenario).

For the three scenarios, the data were partitioned prior to the
model training phase, allowing for traceability and higher result
reproducibility. The partitions for the B scenario were created
by randomly selecting n/N samplesfor each of the nodes, being
the total number of samples in the original dataset and being
the number of nodes that participate in a specific federated
experiment. On the other hand, the IB scenario partitions were
created so that for aspecific N, N—1 nodes were trained on 5%
of the data that was chosen randomly, and the th node was
trained on the remaining samples. The 1B, qn.iiq Scenario was
created by sampling age-dependent data points from Dirichlet
(a=10) distributions[65]. The distribution of categoricd variable
labels across the partitions, as well as the exact number of
samples per scenario, can be consulted in Multimedia Appendix
2, showing biasamong scenarios. Inthisanalysis, the federation
was evaluated for aset of N[J{ 3,5,7,10}.

Regarding the aggregation method selection, apreliminary study
was performed using the federated average (FedAvg), the
adaptive federation optimization (FedOpt), and the federated
optimization for heterogeneous networks (FedProx) algorithms.
The most challenging experiment scenarios (10 nodes and
non-11D scenarios) were tested with the three algorithms,
evaluating the models using the metrics that were presented in
the previous section. The results either demonstrated that
FedAvg was the best-performing agorithm or showed no
statistically significant improvement when comparing to FedOpt
or FedProx algorithms. Therefore, the experiments intended to
evauate the contributions defined in the introduction section
of this paper were trained by averaging the model weights
coming from each node and attending to the number of samples
each one contained (FedAvg). The results of the preliminary
analysis can be found in Multimedia Appendix 3.

The Flower 1.7.0 Framework [66] was used in order to federate
the models using the simulation module. The experimentswere
performed in a high-performance computing cluster, and they
were allocated for 10 central processing unit and 2 graphics
processing unit jobs, having initiated a Ray actor cluster prior
to executing federation rounds. Figure 2 represents the workflow
that was carried out during the experiment execution, where
datapartition, model training, and eval uation phases are shown.
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Figure 1. Generated non-11D age-dependent distribution plots. The top left shows the scenario with 3 nodes, the top right shows the 7-node scenario,
the bottom left shows the 10-node scenario, and the bottom right shows the 5-node one. KDE: kernel density estimate; non-11D: nonindependent and

identically distributed.
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Figure 2. Experiment execution framework, including data partitioning, model training, and synthetic data evaluation processes.
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Results

Overview

Theresults of the study are presented in this section, comparing
thethree presented federated scenari os with the baseline model,
both for the CTGAN and the FedTabDiff. All statistical tests
were performed for asignificancelevel of .05 using the averaged
results, while some variable-specific metrics can be checked in
Multimedia Appendices 4 and 5.

CTGAN

Starting with the baseline nonfederated CTGAN model fidelity
evaluation, the coefficient results showed a mean CS of 0.930
(standard deviation 0.002). Regarding the DLA execution, the
obtained AUC was 0.796 (standard deviation 0.026), the
F,-score was 0.872 (standard deviation 0.015), and the recall

https://medinform.jmir.org/2025/1/€74116

RenderX

metric was 0.958 (standard deviation 0.009). The V'S resulted
in amean value of 1.405 (standard deviation 0.004) in the SD,
compared to the VS obtained in the real dataset of 1.406. To
finish, the average Hellinger distance was 0.223 (standard
deviation 0.002). Regarding the privacy evaluation, the MIA
demonstrated no significant membership inference risk, while
theaveraged AlA resulted in a5% risk for attributeinformation
to beinferred.

Regarding the federated model sthat were trained with balanced
datasets (the B scenario), most of the performed experiments
showed statistically significant differences in fidelity metrics
with respect to the baseline scenario (P<.001), even with
variations in the number of nodes (Table 1). Statistical
significance wasfound in singling out attack metrics, while the
rest of the privacy measures did not significantly vary from the
baseline.
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Table 1. Fidelity and privacy metric results of the CTGAN? for the B scenario®.

Depth ver sus depth-plot R?

Metric Baseline 3N 5N 7N 10N
Fidelity
CSy
U 0.930 0.842 0.846 0.845 0.849
o) 0.002 0.005 0.003 0.003 0.003
t test (df) _d 45525 (18) 67.770 (18) 74.556 (18) 78.915 (18)
P value — <.001 <.001 <.001 <.001
DLA®AUC
u 0.796 0.965 0.962 0.946 0.965
o 0.026 0.008 0.008 0.008 0.009
t test (df) — 19.818 (18) 19.333 (18) 17.391 (18) 19.402 (18)
P vaue — <.001 <.001 <.001 <.001
DLA Fq-score
u 0.872 0.965 0.961 0.945 0.964
o 0.015 0.007 0.008 0.008 0.009
t test (df) — 17.940 (18) 16.931 (18) 13.853 (18) 16.935 (18)
P value — <.001 <.001 <.001 <.001
DLA recall
u 0.958 0.969 0.948 0.940 0.968
o) 0.009 0.012 0.009 0.012 0.010
t test (df) — 2.402 (18) 2.644 (18) 3.791 (18) 2.316 (18)
P vaue — .02 .02 .001 .03
vs?
H 1.405 1.437 1.442 1.337 1.251
o 0.004 0.002 0.001 0.004 0.006
t test (df) — 24.969 (18) 31.451 (18) 30.839 (18) 66.590 (18)
P value — <.001 <.001 <.001 <.001
u 0.223 0.229 0.223 0.220 0.221
o) 0.002 0.010 0.002 0.002 0.002
t test (df) — 1.767 (18) 0.165 (18) 2.930 (18) 2.517 (18)
P vaue — .09 .87 .009 .02

u 0.948 0.950 0.668 0.828 0.619
o 0.011 0.007 0.006 0.007 0.005
t test (df) — 0.525 (18) 71.176 (18) 29.506 (18) 86.088 (18)
P value — .61 <.001 <.001 <.001
Privacy
MIAN
u 0 o o o o
c 0 0 0 0 0
t test (df) — — — — —
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Metric Baseline 3N 5N 7N 10N
P vaue — — — — —
AIA
u 0.045 0.038 0.055 0.038 0.039
o) 0.025 0.018 0.031 0.019 0.009
t test (df) — 1.496 (18) 1.000 (18) 1.414 (18) 1.667 (18)
P vaue — .15 .33 A7 A1
Linkability
W 0.001 0.001 0.001 0.001 0
o 0.003 0.003 0.003 0.003 0
t test (df) — — — — —
P value — — — — —
Singling out
u 0.123 0.048 0.018 0.048 0.046
) 0.045 0.016 0.018 0.025 0.025
t test (df) — 4.954 (18) 6.785 (18) 4,548 (18) 4.645 (18)
P value — <.001 <.001 <.001 <.001

8CTGAN: conditional tabular generative adversarial network.

bt tests were performed between the baseline and each federated experiment. Significance level is .05 for all statistical tests.

°CS: cosine similarity.

INot applicable.

®DLA: datalabeling analysis.

fAUC: areaunder the curve.

9S: Vendi Score.

PMIA: membershi p inference attack.

It tests were not performed for these due to the standard deviation being zero.

IAIA: attribute inference attack.

Kt tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

Specifically, intervariable correlations were shown to be more
distorted than the ones presented by the baseline model, and
the DLA suggested that the synthetic samples that were
generated by federated models are prone to being detected more
easily than the ones generated by the baseline model, although
variable-wise metrics such as the Hellinger distance did not
demonstrate too different results.

In the IB scenario, most of the performed experiments showed
high statistical significances (P<.001) with respect to the
baseline, too (Table 2). Intervariable correlations, DLA metrics,
and VS values were shown to be quite different from the
basdline model, attending the statistical tests, whilethe Hellinger
distances did not show too big a difference. In this case, the

https://medinform.jmir.org/2025/1/€74116

10N experiment showed statistically significant differenceswith
the AIA metric obtained in the baseline, suggesting an
improvement in privacy while deteriorating the fidelity values.
All the experiments in this scenario supported the privacy
improvement suggestion, as all the multivariate singling out
attacks proved to perform better in federated setups. However,
no specific tendency can be observed while increasing the
number of nodesin this sense.

The 1B, n.iig Scenario followed the same overall patterns found
in the previous two scenarios, showing statistically significant
differences in fidelity metrics but with no difference in the
performed privacy metrics other than those found for
multivariate singling out attacks (Table 3).
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Table 2. Fidelity and privacy metric results of the CTGAN®for the IB scenarioP.

Depth ver sus depth-plot R?

Metric Baseline 3N 5N 7N 10N
Fidelity

CS %y

U 0.930 0.848 0.841 0.839 0.847

o) 0.002 0.002 0.003 0.005 0.001

t test (df) _d 87.050 84.898 56.581 110.235

P value — <.001 <.001 <.001 <.001
DLA®AUC'

u 0.796 0.983 0.993 0.968 0.938

o 0.026 0.004 0.004 0.005 0.009

t test (df) — 23.187 (18) 23.700 (18) 20.550 (18) 16.342 (18)

P vaue — <.001 <.001 <.001 <.001
DLA Fq-score

u 0.872 0.988 0.993 0.968 0.938

o 0.015 0.004 0.004 0.005 0.008

t test (df) — 24.086 (18) 25.109 (18) 19.405 (18) 12.136 (18)

P value — <.001 <.001 <.001 <.001
DLA recall

U 0.958 0.979 0.986 0.964 0.928

o) 0.009 0.007 0.008 0.008 0.014

t test (df) — 5.749 (18) 7.472 (18) 1.581 (18) 5.666 (18)

P value — <.001 <.001 A3 <.001
vs?

u 1.405 1.360 1.424 1.436 1.360

o 0.004 0.011 0.003 0.003 0.011

t test (df) — 27.714 (18) 11.833(18) 21.772 (18) 12.155 (18)

P value — <.001 <.001 <.001 <.001

u 0.223 0.222 0.216 0.223 0.217

o 0.002 0.001 0.002 0.002 0.002

t test (df) 0.976 (18) 7.892 (18) 0.119 (18) 5.931 (18)

P value .34 <.001 .90 <.001

m 0.948 oh o 0.737 o
o 0.011 0 0 0 0
t test (df) — — — 56.069 (18) —
P vaue — — — <.001 —
Privacy
MIA
M 0 oh o o o
o 0 0 0 0 0
t test (cff) — — — — —
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Metric Baseline 3N 5N 7N 10N
P vaue — — — — —
AIA]
u 0.045 0.052 0.061 0.041 0.029
o 0.025 0.019 0.029 0.016 0.017
t test (df) — 0.076 (18) 0.768 (18) 1.400 (18) 2.437 (18)
P value — .94 45 .27 .03
Linkability
u 0.001 0.001¥ on 0.002 0.002
o 0.003 0.003 0 0.004 0.004
t test (df) — — — 0.600 (18) 0.600 (18)
P value — — — .56 .56
Singling out
u 0.123 0.024 0.025 0.030 0.060
) 0.045 0.022 0.015 0.014 0.025
t test (df) — 6.181 (18) 6.457 (18) 6.189 (18) 3.798 (18)
P vaue — <.001 <.001 <.001 .001

8CTGAN: conditional tabular generative adversarial network.

bt tests were performed between the baseline and each federated experiment. Significance level is .05 for all statistical tests.
°CS: cosine similarity.

INot applicable.

®DLA: datalabeling analysis.

fAUC: areaunder the curve.

9vS: Vendi Score.

At tests were not performed for these due to the standard deviation being zero.

'MIA: membershi p inference attack.

IAIA: attribute inference attack.

Kt tests were not performed for these due to the results being the same as the ones found in the baseline metrics.
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Table 3. Fidelity and privacy metric results of the CTGAN?for the IBnon-iid scenarioP.

Depth ver sus depth-plot R?

Metric Baseline 3N 5N 7N 10N
Fidelity
CS%oy
U 0.930 0.848 0.842 0.841 0.842
9 0.002 0.003 0.001 0.004 0.003
t test (df) _d 82.533 (18) 111.330 (18) 69.045 (18) 83.862 (18)
P value — <.001 <.001 <.001 <.001
DLA®AUC
U 0.796 0.977 0.948 0.983 0.950
o 0.026 0.006 0.010 0.005 0.006
t test (df) — 21572 (18) 17.233 (18) 22.408 (18) 18.339 (18)
P value — <.001 <.001 <.001 <.001
DLA Fq-score
U 0.872 0.976 0.947 0.982 0.950
) 0.015 0.005 0.010 0.005 0.006
t test (dff) — 21.033 (18) 13.353 (18) 22.724 (18) 15.602 (18)
P vaue — <.001 <.001 <.001 <.001
DLA recall
U 0.958 0.960 0.938 0.985 0.952
o 0.009 0.010 0.019 0.009 0.013
t test (df) — 0.383 (18) 3.039 (18) 6.891 (18) 1.195 (18)
P value — 71 .007 <.001 25
vs?
u 1.405 1.440 1.445 1.198 1.367
o 0.004 0.001 0.001 0.010 0.004
t test (df) — 28.834 (18) 33.888 (18) 62.753 (18) 21.978 (18)
P value — <.001 <.001 <.001 <.001
u 0.223 0.214 0.214 0.215 0.213
o 0.002 0.002 0.003 0.002 0.002
t test (df) — 8.801 (18) 8.147 (18) 8.333(18) 11.928 (18)
P value — <.001 <.001 <.001 <.001

u 0.948 0.708 0.809 o 0.847
) 0.011 0.021 0.006 0 0.004
t test (df) — 32.423 (18) 35.585 (18) — 27.404 (18)
P value — <.001 <.001 — <.001
Privacy
MIAl
u 0 oh o o o
o) 0 0 0 0 0
t test (df) — — — — —
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Metric Baseline 3N 5N 7N 10N
P vaue — — — — —
AIA
u 0.045 0.048 0.044 0.049 0.057
o 0.025 0.022 0.023 0.024 0.032
t test (df) — 0.366 (18) 0.799 (18) 0.325 (18) 0.362 (18)
P vaue — 72 44 .75 .72
Linkability
W 0.001 0.002 0.001 0.001 o
o 0.003 0.006 0.003 0.003 0
t test (df) — 0.447 (18) — — —
P value — .66 — — —
Singling out
u 0.123 0.030 0.029 0.033 0.021
) 0.045 0.020 0.021 0.019 0.021
t test (df) — 5.877 (18) 5.900 (18) 5.768 (18) 6.136 (18)
P value — <.001 <.001 <.001 <.001

8CTGAN: conditional tabular generative adversarial network.

bt tests were performed between the baseline and each federated experiment. Significance level is .05 for all statistical tests.

°CS: cosine similarity.

INot applicable.

®DLA: datalabeling analysis.
fAUC: areaunder the curve.
9VS: Vendi Score.

At tests were not performed for these due to the standard deviation being zero.

'MIA: membershi p inference attack.
JAIA: attribute inference attack.

Kt tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

Gathering all the results in a single figure, similar tendencies
can be observed in the three scenarios, where lower correlation
values and higher DL A-related metrics can be found among the
federated models with respect to the baseline model. The VS
metric fluctuated most among the scenarios along with the
DD-plot R?, offering insight regarding the variability of each
generated SD. Hellinger distances were found not to fluctuate
even when comparing centralized and federated models, while
a difference in privacy protection measures is observable in
singling out attacks (Figure 3).

Now, considering federated experiment pairs (ie, comparing
3N experiments with 5N, 5N with 7N, and 7N with 10N) to
evauate if additional federated nodes impact the SD qudlity in

https://medinform.jmir.org/2025/1/€74116

terms of fidelity and privacy, no clear tendencies can be
observed in either scenario (Table 4). Privacy metrics did not
show statistical significance; therefore, assuming no
improvement was achieved in terms of privacy, even though
the baseline centralized model offered good results already.
Among the fidelity metrics, the CS of the was found to differ
between pairs of experiments in some cases, but no specific
trend was detected. The same occurred for the DLA-related
metrics, where some pairs pointed out significant differences.
All the VS metrics were found to be different, even if no
improvement or deterioration trend wasfound, and the Hellinger
distance metric varied depending on the scenario, just as the

DD-plot R2.
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Figure 3. Graphical comparison of federated scenarios regarding fidelity and privacy metrics using the CTGAN model. AlA: attribute inference attack;
AUC: area under the curve; CTGAN: conditional tabular generative adversarial network; DD: depth versus depth; DLA: datalabeling analysis, MIA:
membership inference attack; non-11D: nonindependent and identically distributed; VS: Vendi Score.
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Table 4. t test results for CTGAN? experiment pai 1.

Metric 3N-5N 5N-7N 7N-10N
t test (df) P value t test (dff) P value t test (dff) P value
B scenario
Fidelity
C, 1.858 (18) .08 0.522 (18) 61 2.939 (18) .008
DLAY AUCE 0.895 (18) 38 4522 (18) <.001 4.944 (18) <.001
DLA F3-score 0.875 (18) 39 4.495 (18) <.001 4.951 (18) <.001
DLA Recall 4,612 (18) <.001 1.621 (18) 12 5.553 (18) <.001
ve 7.949 (18) <.001 82.267 (18) <.001 36.200 (18) <.001
d hellinger 1.704 (18) 11 2.815 (18) 01 0.714 (18) 48
DD-plotR? 98.714 (18) <.001 55.822 (18) <.001 77.093 (18) <.001
Privacy
MIAN j — — — - —
AlAK 1.000 (18) 33 1.000 (18) 33 0.045 (18) 96
Linkability"' - — - — - -
Singling out 3.702 (18) .002 2.898 (18) 01 0.120 (18) 91
IB scenario
Fidelity
CS ¢y 6.296 (18) <.001 1.447 (18) .16 5.676 (18) <.001
DLA AUC 2.165 (18) .04 11.306 (18) <.001 9.083(18) <.001
DLA F;-score 2.192 (18) 04 11.485 (18) <.001 9.026 (18) <.001
DLA Recall 2.088 (18) 051 6.129 (18) <.001 6.967 (18) <.001
VS 14.629 (18) <.001 9.680 (18) <.001 21.062 (18) <.001
d hellinger 8.239 (18) <.001 7.517 (18) <.001 5.708 (18) <.001
DD-plot RZ — — — — — —
Privacy
MIA! - — - — - -
AlA 0.743 (18) A7 1.796 (18) .09 1.592 (18) 13
Linkability"! - — — — — _
Singling out 0.192 (18) 85 0.719 (18) 48 3.074 (18) .007

I Bnon-iig Scenario

Fidelity
CS by 7.211 (18) <.001 0.985 (18) 34 0.476 (18) 64
DLA AUC 7.895 (18) <.001 9.805 (18) <.001 14.043 (18) <.001
DLA Fj-score 7.705 (18) <.001 9.718 (18) <.001 14.039 (18) <.001
DLA Recall 3.192 (18) .005 7.086 (18) <.001 6.784 (18) <.001
VS 15.145 (18) <.001 79.749 (18) <.001 50.058 (18) <.001
d hellinger 0.120 (18) 91 0.585 (18) 57 2.085 (18) .054
DD-plot R? 14.916 (18) <.001 — — — —
Privacy
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Metric 3N-5N 5N-7N 7N-10N
t test (df) P value t test (df) P value t test (df) P vaue
MIA! — — — — — —
AlA 0.435 (18) 67 0.441 (18) 66 0.615 (18) 54
Linkability'! 0.447 (18) 66 — — — —
Singling out 0.131 (18) .90 0.457 (18) .65 1.577 (18) 13

8CTGAN: conditional tabular generative adversarial network.
bSignificancelevel is.05 for al statistical tests.

°Cs: cosine similarity.

dDLA: datalabeling analysis.

€AUC: area under the curve.

fV's: Vendi Score.

9DD-plot: depth versus depth plot.

PMIA: membershi p inference attack.

It tests were not performed for these due to the standard deviation being zero.

INot applicable.
KAIA: attribute inference attack.

It tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

FedTabDiff

Regarding the baseline FedTabDiff model, a CS ¢, value of

0.866 was obtained, while results above 0.990 were obtained
for al DLA-related metrics. The VS was 1.417, while the

Hellinger distance was 0.339, and the DD-plot R? was 0.971.
The privacy analyses demonstrated there was no membership
inference risk, while the linkability risk was minimal. Values

https://medinform.jmir.org/2025/1/€74116
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of 0.031 for the AIA and 0.156 for the singling out were
obtained.

The FedTabDiff model sthat were trained with balanced datasets
(the B scenario) showed statistical significance in most of the
fidelity metrics when compared to the baseline scenario
(P<.001), while the tests carried out with the privacy metrics
were found to be nonsignificant. Therefore, fidelity metrics
worsened while the number of nodes augmented, but privacy
seemed not to be affected (Table 5).
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Table 5. Fidelity and privacy metric results of FedTabDiff for the B scenario®

Isasaet al

Metric Baseline 3N 5N 7N 10N
Fidelity
Loy
U 0.866 0.854 0.674 0.873 0.645
o) 0.010 0.011 0.185 0.008 0.168
t test (dff) _c 2.489 (18) 3.121(18) 1.588 (18) 3.931(18)
P value — .02 .006 13 <.001
pLAY AUC®
u 0.992 0.981 0.989 0.994 0.997
) 0.001 0.001 0.001 0.001 0.003
t test (df) — 19.152 (18) 5.504 (18) 5.965 (18) 14.631 (18)
P value — <.001 <.001 <.001 <.001
DLA Fq-score
u 0.997 0.994 0.999 1 0.999
o 0.003 0.002 0.001 0 0.001
t test (df) — 2.642 (18) 1.886 (18) 2.899 (18) 2.612 (18)
P value — .02 .08 .009 .02
DLA recall
U 0.999 0.997 0.999 1 1
o) 0.002 0.003 0.002 0 0
t test (df) — 1.470 (18) 0.306 (18) 1.409 (18) 1.409 (18)
P vaue — .16 .76 .18 .18
vs
U 1417 1.407 1.387 1.395 1.372
o 0.002 0.003 0.003 0.003 0.003
t test (df) — 9.729 (18) 24.385 (18) 19.278 (18) 34.668 (18)
P value — <.001 <.001 <.001 <.001
d hellinger
u 0.339 0.363 0.380 0.381 0.360
o) 0.009 0.008 0.018 0.011 0.018
t test (df) — 6.589 (18) 6.375 (18) 9.481 (18) 3.217 (18)
P vaue — <.001 <.001 <.001 .005
DD-plot 9R?
u 0971 0.980 0.955 0.956 0.983
o 0.005 0.003 0.004 0.003 0.002
t test (df) — 4.767 (18) 7.413 (18) 7.505 (18) 7.101 (18)
P value — <.001 <.001 <.001 <.001
Privacy
MIAD
m 0 0 0 0 0
o 0 0 0 0 0
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Metric Baseline 3N 5N 7N 10N
t test (cff) — — — — —
P value — — — — —
AlA)
U 0.031 0.031 0.028 0.031 0.027
o) 0.015 0.013 0.009 0.016 0.018
t test (df) 0.063 (18) 0.422 (18) 0.024 (18) 0.559 (18)
P vaue .95 .68 .98 .58
Linkability
m 0.002 0.004 0.001 0.002¢ 0.003
) 0.004 0.005 0.003 0.004 0.006
t test (df) — 0.949 (18) 0.600 (18) — 0.397 (18)
P vaue — .35 .55 — .70
Singling out
u 0.156 0.149 0.132 0.134 0.138
o 0.040 0.031 0.040 0.031 0.044
t test (df) — 0.425 (18) 1.287 (18) 1.344 (18) 0.922 (18)
P value — .68 21 .20 37

& tests were performed between the baseline and each federated experiment. Significance level is .05 for all statistical tests.

bCS: cosine s milarity.

®Not applicable.

dDLA: datalabeling analysis.
€AUC: area under the curve.

fV's: Vendi Score.

9DD-plot: depth versus depth plat.
PMIA: membershi p inference attack.

It tests were not performed for these due to the standard deviation being zero.

IAIA: attribute inference attack.

Kt tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

Inthisscenario, theintervariable correlation metric, ¢,, wasthe
measure that most varied among the fidelity metrics, while the
DLA metrics showed asimilar tendency to the onefound within
the CTGAN results. The DD-plot R? value, the VS, and the
Hellinger distance, although statistically significant, did not
show any relevant tendency linked to the number of nodes.

Regarding privacy measures, no membership inferencerisk was
found among the generated SD in scenario B, while calculated
linkability riskswere minimal. Privacy risksdid not significantly
vary linked to the number of nodes.

https://medinform.jmir.org/2025/1/€74116

In the IB scenario, the results were found to be similar to the
ones found in scenario B, most of the fidelity metrics showing
statistically significant differences between experiments with
different numbers of nodes (P<.001), and no significance in
privacy-related metrics (Table 6). In this scenario, the DLA
metrics varied dlightly more, even if no clear tendency is
observable. In addition, the intervariable correlations seemed
to be better maintained within this experiment, even if no
tendency was found either.
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Table 6. Fidelity and privacy metric results of FedTabDiff for the IB scenario®

Metric Baseline 3N 5N 7N 10N
Fidelity
Loy
U 0.866 0.632 0.838 0.857 0.531
o) 0.010 0.014 0.008 0.007 0.088
t test (df) _c 41539 (18) 6.657 (18) 2.318(18) 11.294 (18)
P value — <.001 <.001 .03 <.001
pLAY AUC®
u 0.992 0.994 0.986 0.977 0.997
) 0.001 0.001 0.001 0.001 0.002
t test (df) — 6.063 (18) 10.205 (18) 35.140 (18) 15.540 (18)
P value — <.001 <.001 <.001 <.001
DLA Fq-score
u 0.997 0.999 0.995 0.992 0.999
o 0.003 0.001 0.002 0.003 0.001
t test (df) — 2.612 (18) 1.787 (18) 3.765 (18) 2.612 (18)
P value — .02 .09 .001 .02
DLA recall
U 0.999 0.999 0.996 0.995 1f
o 0.002 0.001 0.004 0.004 0
t test (df) — 0.833 (18) 1.686 (18) 2.241 (18) —
P value — 42 A1 .04 —
vs?
u 1417 1.422 1.408 1.404 1.394
o 0.002 0.002 0.002 0.002 0.002
t test (df) — 4.744 (18) 9.942 (18) 12.669 (18) 22.485 (18)
P value — <.001 <.001 <.001 <.001
d hellinger
u 0.339 0.374 0.319 0.370 0.361
o 0.009 0.029 0.003 0.003 0.013
t test (dff) — 3.525 (18) 6.849 (18) 10.258 (18) 4.280 (18)
P value — .002 <.001 <.001 <.001
DD-plot "' R 2
u 0971 0.973 0.936 0.988 0.931
) 0.005 0.005 0.007 0.001 0.005
t test (df) — 0.739 (18) 11.702 (18) 9.648 (18) 17.166 (18)
P vaue — A7 <.001 <.001 <.001
Privacy
MIAl
u 0 o of of of
o 0 0 0 0 0
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Metric Baseline 3N 5N 7N 10N
t test (cff) — — — — —
P value — — — — —
AlA)
U 0.031 0.021 0.019 0.020 0.024
o) 0.015 0.008 0.013 0.006 0.012
t test (df) — 1.668 (18) 1.750 (18) 1.605 (18) 1.140 (18)
P vaue — A1 .10 A3 .27
Linkability
u 0.002 0.004 0.001 0 of
) 0.004 0.010 0.003 0 0
t test (df) 0.638 (18) 0.600 (18) 0.939 (18) —
P vaue .53 .56 .36 —
Singling out
u 0.156 0.156 0.133 0.134 0.142
o 0.040 0.038 0.056 0.041 0.033
t test (df) — 0.032 (18) 0.988 (18) 1.122 (18) 0.830 (18)
P value — .97 .34 .28 42

& tests were performed between the baseline and each federated experiment. Significance level is.05 for all instances.
bCS: cosine s milarity.

®Not applicable.

dDLA: datalabeling analysis.
€AUC: area under the curve.

ft tests were not performed for these due to the standard deviation being zero.

9VS: Vendi Score.

hDD-pI ot: depth versus depth plot.
'MIA: membership inference attack.
JAIA: attribute inference attack.

Regarding the privacy metrics, no statistical significance was
detected among the results. No membership inference risk was
found in any of the experiments, while the linkability risk was
minimal, as it wasin scenario B.

https://medinform.jmir.org/2025/1/€74116
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The 1B, on.iiq Scenario followed the same pattern as those of the
B and IB scenarios, with the difference of some singling out
risk differences were statistically significant in this case. No
membership inference risk was found in this scenario, and the
linkability risks were also found to be minimal (Table 7).
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Table 7. Fidelity and privacy metric results of FedTabDiff for the IBnon-iid scenario®

Isasaet al

Metric Baseline 3N 5N 7N 10N
Fidelity
Loy
U 0.866 0.613 0.529 0.570 0.545
o 0.010 0.009 0.084 0.084 0.026
t test (df) _c 56.766 (18) 12.014 (18) 10.579 (18) 34.233(18)
P vaue — <.001 <.001 <.001 <.001
pLAY AUC®
u 0.992 0.995 0.998 0.997 0.998
) 0.001 0.001 0.001 0.001 0.001
t test (df) — 8.232 (18) 16.336 (18) 15.255 (18) 19.792 (18)
P value — <.001 <.001 <.001 <.001
DLA Fq-score
U 0.997 0.999 1f 0.999 1f
o 0.003 0.001 0 0.001 0
t test (df) — 2.612 (18) — 2.612 (18) —
P vaue — .02 — .02 —
DLA recall
M 0.999 f if if o
o 0.002 0 0 0 0
t test (df) — — — — —
P value — — — — —
vs?
U 1417 1.426 1432 1.422 1.398
o) 0.002 0.002 0.001 0.001 0.002
t test (df) — 9.581 (18) 18.524 (18) 5.557 (18) 19.534 (18)
P vaue — <.001 <.001 <.001 <.001
d hellinger
u 0.339 0.363 0.385 0.384 0.381
o 0.009 0.006 0.018 0.014 0.003
t test (df) — 6.171 (18) 7.107 (18) 8.471 (18) 15.022 (18)
P value — <.001 <.001 <.001 <.001
DD-plot "R?
u 0.971 0.947 0.578 0.931 0.913
o 0.005 0.005 0.041 0.008 0.002
t test (dff) — 9.549 (18) 28.846 (18) 12.677 (18) 32.593 (18)
P vaue — <.001 <.001 <.001 <.001
Privacy
MIA!
m 0 of of o of
o 0 0 0 0 0
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Metric Baseline 3N 5N 7N 10N
t test (cff) — — — — —
P value — — — — —
AlA)
u 0.031 0.028 0.020 0.027 0.038
o) 0.015 0.010 0.008 0.009 0.016
t test (df) — 0.443 (18) 1.988 (18) 0.721 (18) 0.953 (18)
P vaue — .66 .06 48 .35
Linkability
u 0.002 of 0.002% 0.001 0.005
) 0.004 0 0.004 0.003 0.009
t test (df) — — — 0.532 (18) 0.898 (18)
P vaue — — — .60 .38
Singling out
u 0.156 0.099 0.101 0.087 0.091
o 0.040 0.034 0.037 0.030 0.026
t test (df) — 3.332(18) 3.099 (18) 4.229 (18) 4.194 (18)
P value — .003 .006 <.001 <.001

& tests were performed between the baseline and each federated experiment. Significance level is .05 for all statistical tests.

bCS: cosine s milarity.

®Not applicable.

dDLA: datalabeling analysis.
€AUC: area under the curve.

ft tests were not performed for these due to the standard deviation being zero.

9vS: Vendi Score.

hDD-pI ot: depth versus depth plot.
MIA: membership inference attack.
IAIA: attribute inference attack.

Kt tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

Fidelity metrics specifically showed a kind of worsening
tendency in terms of the CS ¢, metric along with the increase

in the number of nodes. In addition, the Hellinger distance
seemed to increase accordingly. The DLA did not show any

significant change, nor did the DD-plot R?.

Now, gathering al the results in a single figure (Figure 4) to
find all theinformation in agraphical manner, it can be observed

https://medinform.jmir.org/2025/1/€74116
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that the singling out and attribute inference risks prevail over
the membership and the linkability ones. Saying that, either a
neutral tendency to maintain the privacy levels on the federated
experiments, or an improvement of it (mostly in scenario
IBron-iia)s 1S Observable with respect to the centralized baseline

metrics.
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Figure 4. Graphical comparison of federated scenarios regarding fidelity and privacy metrics using the FedTabDiff model. AlA: attribute inference
attack; AUC: areaunder the curve; DD: depth versus depth; DLA: datalabeling analysis, MIA: membership inference attack; non-11D: nonindependent
and identically distributed; VS: Vendi Score.
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Asit was pointed out in the CTGAN results, the fidelity metric
tendency can be found to kind of worsen once the FedTabDiff
model isfederated, but the effect seemsto be mostly maintained
across experimentation with different numbers of nodes.

Now, to finish with the result explanation and considering
federated experiment pairs as previously (ie, comparing 3N

https://medinform.jmir.org/2025/1/€74116
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experiments with 5N, 5N with 7N, and 7N with 10N), no
statistically significant differences were observed in terms of
the privacy metrics in any of the scenarios. Statistical
significance was found in some of the comparisons across
fidelity metrics and different scenarios (Table 8).
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Table 8. t test results for FedTabDiff experiment pairs®.

Metric 3N-5N 5N-7N 7N-10N
t test (df) P value t test (dff) P value t test (dff) P value
B scenario
Fidelity
Cde)k 2917 (18) .009 3.230(18) .005 4.051 (18) <.001
DLAC Aucd 14.827 (18) <.001 13.258 (18) <.001 13.524 (18) <.001
DLA Fy-score® 5.701 (18) <.001 _f — — —
DLA recall® 1.849 (18) .08 — — — —
ve 14.140 (18) <.001 5.787 (18) <.001 16.078 (18) <.001
d hllinger 2.780 (18) 01 0.202 (18) 84 3.176 (18) .005
DD-plot R? 15.341 (18) <.001 0.469 (18) 64 21.397 (18) <.001
Privacy
MIAY - - - - - -
AlAK 0.560 (18) 58 0.356 (18) 73 0.508 (18) 62
Linkability 1.567 (18) 13 0.600 (18) .56 0.397 (18) .70
Singling out 0.985 (18) .34 0.094 (18) .93 0.234 (18) .82
IB scenario
Fidelity
CS i 39.051 (18) <.001 5.080 (18) <.001 11.001 (18) <.001
DLA AUC 16.701 (18) <.001 18.768 (18) <.001 80.136 (18) <.001
DLA F-score 6.293 (18) <.001 2.528 (18) .02 7.400 (18) <.001
DLA recall? 2.472(18) 02 0.617 (18) 54 — —
VS 14.454 (18) <.001 3.620 (18) .002 8.573(18) <.001
d hellinger 5.667 (18) <.001 32.574 (18) <.001 2.082 (18) .05
DD-plot R2 11.921 (18) <.001 20.719 (18) <.001 34.050 (18) <.001
Privacy
MIAZ - - - - - -
AIA 0.400 (18) 69 0.072 (18) 94 0.873 (18) 39
Linkability? 0.946 (18) .36 — — — —
Singling out 1.016 (18) .32 0.153 (18) .88 0.686 (18) .50

I Bpon-iig Scenario

Fidelity

CSdy 3.011 (18) .007 1.036 (18) 31 0.834 (18) 42

DLA AUC 10.399 (18) <.001 2.494 (18) .02 7.239 (18) <.001

DLA F;-score? - — - - - -

DLA recall - - - - - -

VS 8510 (18) <.001 16.032 (18) <.001 27.498 (18) <.001

d hellinger 3.310(18) .004 0.221 (18) 83 0.446 (18) 66

DD-plot R 27.073 (18) <.001 25.599 (18) <.001 7.204 (18) <.001
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Metric 3N-5N 5N-7N 7N-10N
t test (df) P value t test (df) P value t test (df) P vaue
Privacy
MIAY - - - - - -
AlA 2.029 (18) .06 1.702 (18) 11 1.788 (18) .09
Linkability®9 — — 0532 (18) .60 0.898 (18) 38
Singling out 0.082 (18) 94 1.224 (18) 24 0.736 (18) A7

gignificance level is .05 for all statistical tests.
bCS: cosine s milarity.

’DLA: datalabeling analysis.

4AUC: area under the curve.

& tests were not performed for these due to the results being the same as the ones found in the baseline metrics.

"Not applicable.

% tests were not performed for these due to the standard deviation being zero.

Pvs: Vendi Score.

iDD-pI ot: depth versus depth plot.
IMIA: membershi p inference attack.
KAIA: attribute inference attack.

Discussion

Principal Results

In these experiments, a comparison between centralized SDG
models and federated implementations of them was performed
using AML datawith the aim of evaluating the SD fidelity and
privacy in each of the scenarios, assessing the SD generation
techniques over an FL approach to address the data scattering
issue while addressing data scarcity. Three different scenarios
were considered for the federated models: the one in which the
number of samplesin each node was evenly distributed (B), the
one where the node-wise data quantity was randomly and
unevenly distributed (1B), and the one where non-11D data
distributions were created (IBpgn.iiq)-

In the case of the CTGAN model, in the B scenario, the ¢,
metric deteriorated to a maximum of 9% with respect to the
baseline, while the DLA showed an average difference of 17%
inthe AUC, adifference of 9% for the F;-score, and adifference
of 0.21% for the recall metric. The VS showed a difference
between 2% and 12% showing that the diversity of the generated
samples varied among experiments. For this scenario, the
Hellinger distance varied to amaximum of 3%, and the DD-plot

R’ to a maximum of 35%. The most privacy-preserving
experiments in terms of the AIA were 3N and 7N, with arisk
reduction of 18% with respect to the baseline, while the worst
one (5N) performed 18% below, athough not statistically
significant. Privacy against singling out attacks improved
between 46% and 61%, while no differencewasfound for MIAs
and linkability attacks.

In the IB scenario, the maximum deterioration of the ¢, metric
was 11%, and the DLA showed average values of 17% in the
case of the AUC, 10% for the F;-score, and 1% for the recall

metric. The VS showed that numerical variables are diversely
generated, achieving differences between 1% and 3%, while

https://medinform.jmir.org/2025/1/€74116

the Hellinger distances varied to a maximum of 3%. DD-plot

R® values varied by about 22%. AIA analyses showed a
maximum improvement of 55% on data privacy, while the
maximum deterioration was 26%, athough not statistically
significant. Singling out attacks showed differences between
51% and 80%, while the linkability ones varied minimally.

Finally, the IB,on.iiq SCenario showed a maximum deterioration
of 11% in the ¢, metric, while DLA AUC scores showed
average differences of 21%, the F,-score varied 10%, and the
recall varied minimally. The VS showed maximum variations
of 17%, and the Hellinger distance varied to 5%. Regarding
privacy metrics, the AIA showed a maximum improvement of
2% and amaximum deterioration of 21%, although neither was
statistically significant in this case either. In this case, singling
out attack risk differences varied between 73% and 83% with
respect to the baseline, and the linkability measure differences
were again minimal.

Now talking about the principal results of the FedTabDiff model
in scenario B, the metric varied between 26% and 81%, the VS
between 1% and 3%, and the Hellinger distance between 6%
and 12%. In the DLA, the AUC value varied to a maximum of
1% while both the recall and the F;-score matched the baseline

results. To finish with the fidelity metrics, the DD-plot R? results
varied between 1% and 2% with respect to the baseline. Interms
of privacy, no membership inference risk was detected, while
the linkability risk difference was minimal. The AIA results
varied between 10% and 13%, whilethe singling out ones varied
between 4% and 15%.

Talking about scenario 1B, the ¢, metric varied between 1%

and 27%, and the DLA-related AUC metric varied by 2% at
most, matching the baseline results for both the recall and the
F,-score, just asinthe B scenario. TheV Svariation was neither

high, reaching 2% differences at most. While the Hellinger
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distance oscillated between 6% and 10%, the DD-plot R? varied
to a maximum of 4%. Regarding the privacy metrics, no
membership inference risk wasfound, and thelinkability varied
minimally with respect to the baseline results. Whilethe attribute
inference risk difference oscillated between 23% and 39%, the
singling out risk difference varied to a maximum of 15%.

To finish, the 1B, .iiq Scenario showed an oscillation between
29% and 39% for the ¢, metric, whileall the DLA AUC changes
were minimal and the recall- and F;-score-related results

matched those of the baseline. For the V'S, the variation reached
22% at maximum, and the Hellinger distance varied between

7% and 62%. The DD-plot R varied between 2% and 40%. To
finish, the privacy metricsin this scenario followed the previous
tendencies by showing no membership inference risk and
minimal linkability risks. Attribute inference risk differences
oscillated between 10% and 35%, while the singling out ones
varied between 35% and 44%.

Limitations

Asit was pointed out in the beginning, thiswork aimsto provide
insight into a specific use case of federated SDG for an AML
dataset, both with a GAN-type model and a diffusion-type
model. However, extending the analysis by using upcoming
SDG models and more extensive aggregation functions for the
FL framework may result in more generalizable conclusions,
which will be prioritized in future work. Linked with that,
models incorporating more novel tools like DP and the
implementation of advanced FL security frameworks should be
covered in future extensions of this research. Parameter tuning
for model optimization remains a considerable path for
analyzing the combination of both SDG and FL.

Furthermore, the three scenarios resulted in similar overall
tendencies for al the calculated metrics and both models,
suggesting the scenario proposals in this work may not have
that much of an impact on the results. Further research may
uncover differences for various data dispersion schemas and
non-11D distribution types, which may have a much greater
impact on the calculated metrics and the methodology to be
followed. In addition, extremely imbalanced approaches may
show different tendenciesin the analyses.

Finally, the generative aspect of this research should be taken
into account for future research, as expanding the calculations
to a higher number of datasets may result in more robust and
scalable optimizations on federated SDG. Related to the issue,
amore extensive set of metrics could aso be considered in the
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future, asliterature israpidly evolving and novel metrics could
be introduced in upcoming publications. Our metric selection,
however, isintended to be comparable to other state-of-the-art
works.

Comparison With Prior Work

While there are a few studies that analyze the combination of
both FL and SDG, thisis, to the best of the authors' knowledge,
the first research work that tries to quantify the impact of
generative model federation over fidelity and privacy metrics,
using different numbers of nodes, and considering different
real-world data distribution scenariosin AML.

Expanding the literature search, incorporating DP to federated
SDG models has been widely investigated, as well as
successfully integrated into several use cases, improving privacy
metrics under those conditions [46-48]. Our research, however,
has shown reasonable privacy guarantees both for centralized
and federated scopes without the need for using DP, suggesting
the incorporation of it may depend on the final use case, as it
deteriorates SD fidelity, even though more extensive eval uations
should be performed. In addition, the latest research shows DP
may not have statistically significant differences in terms of
privacy, suggesting that applicationswith no need to implement
it exist [63].

Furthermore, in the scope of FL, previous works on
classification and regression models have hardly shown any
deterioration due to the federation process with regard to a
centralized model [67]. Instead, when SDG models were
compared to centralized results in this AML use case,
statistically significant differences appeared, suggesting that
SDG models may be more sensible to the federation step than
usual ML cases, such as classification or regression.

To finish, the data distribution scenarios considered for this
research demonstrated robustness against non-11D distributions,
which is in line with other experiments performed in the
literature [68].

Conclusions

The results for both models and the three scenarios showed
considerable data fidelity losses after the model federation
process, while no significant deterioration or improvement
tendency was found in the respective privacy metrics. The
number of federated nodes did not show any significant trend,
even though specific comparisons resulted in statistically
relevant differences in some cases.
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