
Viewpoint

AI-Driven Integration of Deep Learning With Lung Imaging,
Functional Analysis, and Blood Gas Metrics for Perioperative
Hypoxemia Prediction

Kecheng Huang1*, MD; Chujun Wu2*, MD; Rongpeng Pi3, MD; Jieyu Fang3, MD, PhD
1Department of Anesthesiology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
2Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Guangzhou, China
3Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
*these authors contributed equally

Corresponding Author:
Jieyu Fang, MD, PhD
Department of Anesthesiology
The First Affiliated Hospital, Sun Yat-sen University
No 58, Zhongshan Road 2
Guangzhou, 510080
China
Phone: 86 13660121136
Email: fangjy@mail.sysu.edu.cn

Abstract

This viewpoint article explores the transformative role of artificial intelligence (AI) in predicting perioperative hypoxemia through
the integration of deep learning with multimodal clinical data, including lung imaging, pulmonary function tests, and arterial
blood gas (ABG) analysis. Perioperative hypoxemia, defined as arterial oxygen partial pressure <60 mmHg or oxygen saturation
<90%, poses significant risks of delayed recovery and organ dysfunction. Traditional diagnostic methods such as radiological
imaging and ABG analysis often lack integrated predictive accuracy. AI frameworks, particularly convolutional neural networks
and hybrid models like TD-CNNLSTM-LungNet, demonstrate exceptional performance in detecting pulmonary inflammation
and stratifying hypoxemia risk, achieving up to 96.57% accuracy in pneumonia subtype differentiation and an area under the
curve of 0.96 for postoperative hypoxemia prediction. Multimodal AI systems, such as DeepLung-Predict, unify computed
tomography scans, pulmonary function tests, and ABG parameters to enhance predictive precision, surpassing conventional
methods by 22%. However, challenges persist, including dataset heterogeneity, model interpretability, and clinical workflow
integration. Future directions emphasize multicenter validation, explainable AI frameworks, and pragmatic trials to ensure equitable
and reliable deployment. This AI-driven approach not only optimizes resource allocation but also mitigates financial burdens on
health care systems by enabling early interventions and reducing intensive care unit admission risks.

(JMIR Med Inform 2025;13:e73995) doi: 10.2196/73995
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Introduction

Pulmonary inflammation, encompassing pneumonia, COVID-19
sequelae, and chronic obstructive pulmonary disease, continues
to be a predominant cause of perioperative complications,
particularly hypoxemia [1-4]. Hypoxemia, defined as arterial
oxygen partial pressure (PaO2) <60 mmHg or oxygen saturation
(SpO2) <90%, poses considerable risks during the perioperative
period, including delayed recovery and organ dysfunction [5].
Traditional diagnostic approaches, such as radiological imaging,

pulmonary function tests (PFTs), and arterial blood gas (ABG)
analysis, are mutually independent and frequently lack integrated
predictive accuracy [6,7]. Artificial intelligence (AI), particularly
deep learning, has emerged as a revolutionary tool for the early
detection of pulmonary inflammation and proactive risk
stratification [8]. This article examines the recent progress in
AI-driven analysis of radiological imaging, preoperative PFTs,
and ABG parameters for predicting perioperative hypoxemia,
while addressing challenges and future directions.
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Emerging evidence suggests that preoperative PFTs and ABG
parameters serve as independent predictors of postoperative
hypoxemia, yet clinical decision-making in this context
fundamentally incorporates clinician expertise derived from
longitudinal patient management experience. Physicians may
demonstrate substantial interclinician variability in prognostic
estimations when relying on experiential clinical judgment,
potentially leading to significant discrepancies in risk
stratification outcomes.

With AI evolution in the medical field, it is highly necessary in
clinical practice to integrate the results of these preoperative
examinations to predict postoperative hypoxemia. Current
clinical practice necessitates the integration of PFTs and ABG,
computed tomography (CT) images, body surface area, and
other factors to enhance predictive accuracy. This highlights
the need for AI-driven, multivariate, predictive modeling that
synergistically combines multifactorial determinants of
postoperative respiratory function. Such an advanced
computational approach promises to optimize risk stratification
while conserving critical health care resources through precision
medicine implementation.

AI in Pulmonary Inflammation
Recognition: Technological Foundations

Deep Learning for Lung Imaging Analysis
Modern AI frameworks have revolutionized the detection and
classification of pulmonary inflammation through advanced
analysis of radiographs, CT scans, and dynamic ultrasound
imaging. State-of-the-art convolutional neural networks (CNNs),
such as Mask R-CNN, leverage hierarchical feature extraction
to achieve unprecedented diagnostic precision. By integrating
ResNet50/101 backbones with feature pyramid networks, Mask
R-CNN attains 88.3% classification accuracy (95% CI
86.4-89.8) and 83.13% regression precision (intersection over
union ≥0.5) in localizing pneumonia lesions on chest X-rays.
This architecture uses region proposal networks to enhance
sensitivity for subcentimeter ground-glass opacities,
outperforming traditional computer-aided diagnosis systems in
multicenter trials [9].

Hybrid models have further bridged the gap between spatial
and temporal diagnostics. The TD-CNNLSTM-LungNet
framework synergizes 3D CNNs for volumetric pattern
recognition and bidirectional long short-term memory networks
to decode temporal variations in lung ultrasound videos [10].
Evaluated on 1243 cases, this model achieved 96.57% accuracy
in differentiating pneumonia subtypes (eg, viral versus bacterial)
by analyzing dynamic features such as air bronchograms and
consolidations. Its superior performance is evidenced by an area
under the curve (AUC) of 0.983 (95% CI 0.972-0.991) in
distinguishing COVID-19–related interstitial patterns from
bacterial lobar infiltrates, significantly surpassing radiologist
consensus (AUC=0.872, P=.003) [10].

AI systems now decode pathognomonic imaging biomarkers
with submillimeter precision. For instance, VGG-Pneumonia
v2.0 [11], a transfer learning–enhanced model, enables granular
preoperative risk stratification. Attention mechanisms in

DenseNet-121/Inception-v3 ensembles [12] have improved
early detection of interstitial pneumonia to 91.4% sensitivity
(κ=0.86) by mapping septal thickening patterns. Crossmodal
fusion techniques also correlate CT-derived honeycombing
scores with spirometry data to predict disease progression
(r=0.79, P<.001) [13].

Integration of Pulmonary Function Metrics
Preoperative PFTs serve as critical tools for evaluating
respiratory reserve and predicting postoperative outcomes in
surgical patients. Key parameters such as forced expiratory
volume in 1 second (FEV1), forced vital capacity (FVC), and
diffusion capacity for carbon monoxide (DLCO) collectively
offer multidimensional insights into pulmonary mechanics and
gas exchange efficiency [14,15]. FEV1 quantifies the maximum
air volume forcibly exhaled within the first second, reflecting
airway patency and obstructive patterns. FVC measures total
expiratory volume after maximal inspiration, indicating
restrictive lung disease when reduced [16,17]. The FEV1/FVC
ratio further differentiates between obstructive and restrictive
pathologies, with values below 0.7 typically suggesting airflow
limitation [15]. DLCO evaluates alveolar-capillary membrane
integrity through carbon monoxide diffusion capacity, directly
correlating with postoperative oxygenation capacity [14,18].

Clinical evidence demonstrates these metrics’ prognostic
significance. In cardiac surgery populations, reduced FEV1

(<70% predicted) and FVC (<80% predicted) independently
associate with prolonged mechanical ventilation and increased
pulmonary complications [14]. For patients with thoracic
oncology, a DLCO <60% predicted is associated with 3.2-fold
higher risk of postoperative respiratory failure compared to
normal values [18]. The combined assessment proves
particularly valuable in high-risk cohorts such as severe scoliosis
patients, where 36.7% exhibited mild pulmonary dysfunction
detectable through PFT abnormalities [15].

Emerging methodologies enhance predictive accuracy through
computational models. Adaptive neuro-fuzzy inference systems
now achieve 89% correlation between spirometric measurements
and actual postoperative lung function [16]. Nevertheless,
standardized protocols remain debated, particularly regarding
universal testing versus selective application based on surgical
type and patient comorbidities [14,15]. Current practice
guidelines recommend preoperative PFTs for patients with
unexplained dyspnea, smokers, and those undergoing thoracic
or major abdominal procedures to stratify perioperative risks
and optimize respiratory management [14,17].

Blood Gas Analysis and Hypoxemia Prediction
ABG parameters—including PaO2, partial pressure of carbon
dioxide, bicarbonate, and the PaO2/fraction of inspired oxygen
ratio—serve as fundamental diagnostic biomarkers for
hypoxemia and respiratory insufficiency [19]. Contemporary
AI models use machine learning frameworks to analyze these
biomarkers for perioperative oxygen demand forecasting [20].
As demonstrated by a multicenter, prospective cohort study,
preoperative ABG trends in pH, partial pressure of carbon
dioxide, and alveolar-arterial gradients can predict severe
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hypoxemia (PaO2 <50 mmHg) with high accuracy. Specifically,
XGBoost algorithms trained on serial ABG measurements
achieved 89% sensitivity and 92% specificity in identifying
patients at risk of critical oxygen desaturation within the first
postoperative hour [20].

The integration of real-time biosensor data further optimizes
predictive performance. Adaptive AI systems now synchronize
intraoperative pulse oximetry (SpO2) waveforms with ventilator
controls, reducing hypoxemic events through dynamic
intervention [21]. A 2022 study demonstrated that the results
of a deep neural network using photoplethysmography signals
to predict the severity of hypoxemia in hospitalized patients
showed an accuracy rate of 96.5% in determining 3 severity
categories, with a Cohen κ score of 0.79. This approach has the
potential to help patients benefit from automatic and faster
clinical decision support systems, thereby addressing the severity
of hypoxemia [22].

Multimodal AI Systems for Perioperative
Risk Stratification

Fusion of Imaging, Functional, and Biochemical Data
Emerging platforms such as DeepLung-Predict integrate CT
scans, PFTs, and ABG parameters into a unified predictive
framework. For instance, deep lung parenchyma enhancement,
a multimodal AI tool, filters out nonparenchymal CT features
to accentuate inflammation-induced fibrosis while concurrently
analyzing DLCO and PaO2 to assess oxygenation capacity. In
a 2024 trial, DeepLung-Predict attained an AUC of 0.96 for
predicting postoperative hypoxemia in patients with lung
resection, surpassing conventional methods by 22% [23].

Dynamic Risk Monitoring
The capacity of AI to process real-time data facilitates dynamic
risk assessment. For example, recurrent neural networks

undertake the analysis of intraoperative SpO2, end-tidal carbon
dioxide, and ventilator waveforms to predict hypoxemic crises
several minutes prior to clinical manifestation [24]. Frequent
assessment of the severity of illness for hospitalized patients is
essential in clinical settings to prevent outcomes such as
in-hospital mortality and unplanned admission to the intensive
care unit. Classical severity scores have typically been developed
using relatively few patient features. Recently, deep
learning–based models demonstrated better individualized risk
assessments compared to classic risk scores, thanks to the use
of aggregated and more heterogeneous data sources for dynamic
risk prediction [25]. 

Case Study: COVID-19 Recovery and
Surgical Planning

Patients who have recovered from COVID-19 often exhibit
residual lung fibrosis, increasing hypoxemia risk. AI systems
like AI-ADS integrate postinfection CT scans (quantifying
fibrosis volume) with preoperative PFTs to guide surgical timing
[26]. An AI-driven radiographic analysis system demonstrated
enhanced predictive accuracy in stratifying patients hospitalized
with COVID-19 requiring mechanical ventilation support during
critical disease progression. Following rigorous prospective
evaluation and external validation, this computational framework
may provide clinical decision support for respiratory failure
risk stratification and facilitate timely therapeutic interventions
during acute phases of COVID-19 infection [27].

The accuracy of different AI models in predicting hypoxemia
is shown in Table 1. A comparative analysis evaluating the
predictive efficacy of conventional clinical assessment tools
(including pulse oximetry trends and risk stratification scores)
versus machine learning algorithms (specifically logistic
regression and neural network models) in anticipating
perioperative hypoxemia events is systematically detailed in
Table 2.
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Table 1. Performance comparison of artificial intelligence models in hypoxemia prediction.

Key strengthAUCaAccuracy (%)Data typeModel

High lesion localization precision (IoUb ≥0.5) in
multicenter trials with standardized imaging pro-
tocols.

0.9188.3Chest X-raysMask R-CNN

Superior spatiotemporal feature analysis validated
on 1243 cases across 5 hospital systems.

0.98396.57Lung ultrasound videosTD-CNNLSTM-
LungNet

Multimodal fusion, 22% improvement versus
conventional methods in patients with lung resec-
tion (n=412) [23].

0.96—fCTc, PFTsd, and ABGeDeepLung-Predict

Early desaturation prediction (PaO2
g <50 mmHg)

within 1 h postoperative in cardiac surgery cohort.

0.8989 (sensitivity)Serial ABG metricsXGBoost (ABG trends)

Real-time severity categorization (κ=0.79) using

ICUh biosensors at 125 Hz sampling rate.

—96.5PhotoplethysmographyRes-SE-ConvNet

aAUC: area under the receiver operating characteristic curve.
bIoU: intersection over union for lesion localization.
cCT: computed tomography.
dPFT: pulmonary function test.
eABG: arterial blood gas.
fData not available.
gPaO2: partial pressure of oxygen.
hICU: intensive care unit.

Table 2. Comparative performance of traditional versus artificial intelligence (AI)–driven methods for predicting perioperative hypoxemia.

AI-driven modelsTraditional methodsParameter

Integrated CT + PFTs + ABG + BSAdCTa, PFTsb, ABGc (isolated)Diagnostic modalities

89-9468-75Sensitivity (%)

91-9672-78Specificity (%)

0.89-0.930.70-0.76AUCe

Real-time (<5 minutes)24-48 hoursTime to diagnosis

Requires large, annotated datasets and computational resourcesSubjective interpretation and fragmented dataKey limitations

aCT: computed tomography.
bPFT: pulmonary function test.
cABG: arterial blood gas.
dBSA: body surface area.
eAUC: area under the receiver operating characteristic curve.

Methodological and Translational
Challenges

Dataset Variability and Generalization
While AI models demonstrate high accuracy in controlled
settings, their real-world applicability is hindered by dataset
heterogeneity. Variations in imaging protocols (eg, CT slice
thickness and X-ray exposure parameters), population
demographics (eg, underrepresented ethnicities in training
cohorts), and annotation inconsistencies (eg, inter-radiologist
variability in labeling pneumonia lesions) limit model
generalizability. For instance, a 2023 study found that models
trained on single-center data experienced a 15%-20%

performance drop when validated on external datasets [28].
Federated learning and standardized imaging protocols (eg,
Radiological Society of North America guidelines for
COVID-19 CTs) are emerging solutions to mitigate these biases
[29].

Validation Methods and Generalizability
A 2023 meta-analysis highlighted that AI models trained on
narrow datasets experience a median performance drop of 18%
(95% CI 14%-22%) when applied to external cohorts,
underscoring the risk of overestimating real-world efficacy [28].

Interpretability of AI Systems
The “black box” nature of deep learning models remains a
barrier to clinical adoption. While attention maps in CNNs (eg,
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Grad-CAM visualizations [30]) partially elucidate
decision-making processes, they lack granular
pathophysiological correlations. Hybrid approaches integrating
explainable AI frameworks, such as Shapley addictive
explanations values or local interpretable model-agnostic
explanations, could bridge this gap [31].

Integration into Clinical Workflows
Operationalizing AI tools requires addressing infrastructural
and human factors. Technical hurdles include interoperability
with electronic health records and real-time data latency.
Clinician acceptance further depends on workflow integration
(eg, embedding AI alerts into perioperative dashboards rather
than standalone systems). A 2024 survey revealed that 68% of
anesthesiologists prioritize AI tools offering actionable
recommendations (eg, ventilator adjustments) over raw risk
scores [32]. Pilot studies deploying AI algorithm development
for COVID-19 recovery planning achieved 92% adherence
when coupled with clinician training modules [33].

Limitations

AI-based models require large-scale validation in real-world
clinical scenarios, and further validation in globally
representative countries is needed.

Hospital administrators grapple with AI’s infrastructural
demands. Legacy systems hinder data integration. Cost barriers
also limit adoption, as implementing AI-driven predictive
analytics in a mid-sized hospital requires investment in
AI-related infrastructure. Strategic partnerships between health
care providers and AI developers, coupled with government
subsidies, could mitigate these barriers [34].

Ethical dilemmas remain one of the critical issues warranting
attention. AI systems trained on biased datasets may perpetuate
disparities in treatment recommendations. Moreover, data

anonymization failures and crossinstitutional data sharing raise
privacy risks, as seen in cases where deidentified patient records
were reidentified through AI-driven linkage [35]. Addressing
these issues requires robust anonymization techniques,
bias-correction algorithms, and legally defined responsibility
matrices.

AI models in perioperative care face unique challenges due to
high patient heterogeneity and clinical workflow variability.
Overfitting—driven by small, homogenous training
datasets—remains a critical concern.

Future efforts must prioritize multicenter, diverse datasets to
enhance generalizability, develop hybrid interpretable models,
and conduct pragmatic trials evaluating workflow integration.
Collaborative frameworks involving clinicians, data scientists,
and policymakers will be pivotal in realizing AI’s full potential.

Conclusion

AI has revolutionized the diagnostics of pulmonary
inflammation, providing rapid, precise, and scalable solutions.
From DeepLung-Predict to self-supervised X-ray systems, these
technologies enhance clinical decision-making without
supplanting human expertise. Future progress hinges on
addressing data deficiencies, improving interpretability, and
guaranteeing equitable access. As AI keeps evolving, its role
in the management of respiratory diseases and prediction of
perioperative hypoxemia will broaden, ultimately improving
global health outcomes.

By leveraging the developed large-scale predictive model to
predict perioperative hypoxemia, this framework enables the
stratification of postoperative intensive care unit admission
risks, thereby facilitating early clinical interventions. Such an
approach holds significant potential for optimizing the allocation
of health care resources and mitigating financial burdens on
health care insurance systems.
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