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Abstract

Background: Emergency department (ED) overcrowding remains a critical challenge, leading to delays in patient care and
increased operational strain. Current hospital management strategies often rely on reactive decision-making, addressing congestion
only after it occurs. However, effective patient flow management requires early identification of overcrowding risks to allow
timely interventions. Machine learning (ML)–based predictive modeling offers a solution by forecasting key patient flow measures,
such as waiting count, enabling proactive resource allocation and improved hospital efficiency.

Objective: The aim of this study is to develop ML models that predict ED waiting room occupancy (waiting count) at 2 temporal
resolutions. The first approach is the hourly prediction model, which estimates the waiting count exactly 6 hours ahead at each
prediction time (eg, a 1 PM prediction forecasts 7 PM). The second approach is the daily prediction model, which forecasts the
average waiting count for the next 24-hour period (eg, a 5 PM prediction estimates the following day’s average). These predictive
tools support resource allocation and help mitigate overcrowding by enabling proactive interventions before congestion occurs.

Methods: Data from a partner hospital’s ED in the southeastern United States were used, integrating internal and external
sources. Eleven different ML algorithms, ranging from traditional approaches to deep learning architectures, were systematically
trained and evaluated on both hourly and daily predictions to determine the models that achieved the lowest prediction error.
Experiments optimized feature combinations, and the best models were tested under high patient volume and across different
hours to assess temporal accuracy.

Results: The best hourly prediction performance was achieved by time series vision transformer plus (TSiTPlus) with a mean
absolute error (MAE) of 4.19 and a mean squared error (MSE) of 29.36. The overall hourly waiting count had a mean of 18.11
and a SD (σ) of 9.77. Prediction accuracy varied by time of day, with the lowest MAE at 11 PM (2.45) and the highest at 8 PM
(5.45). Extreme case analysis at (mean + 1σ), (mean + 2σ), and (mean + 3σ) resulted in MAEs of 6.16, 10.16, and 15.59,
respectively. For daily predictions, an explainable convolutional neural network plus (XCMPlus) achieved the best results with
an MAE of 2.00 and a MSE of 6.64. The daily waiting count had a mean of 18.11 and a SD of 4.51. Both models outperformed
traditional forecasting approaches across multiple evaluation metrics.
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Conclusions: The proposed prediction models effectively forecast ED waiting count at both hourly and daily intervals. The
results demonstrate the value of integrating diverse data sources and applying advanced modeling techniques to support proactive
resource allocation decisions. The implementation of these forecasting tools within hospital management systems has the potential
to improve patient flow and reduce overcrowding in emergency care settings. The code is available in our GitHub repository.

(JMIR Med Inform 2025;13:e73960) doi: 10.2196/73960
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Introduction

Background
Emergency departments (EDs) are the primary source of hospital
admissions, even though most individuals seen in the ED are
ultimately discharged [1]. In 2021, there were more than 140
million visits to American EDs [2], of which 14.5 million
(10.4%) led to hospital inpatient admissions, and 2 million
(1.4%) led to admission to critical care units [3]. Several factors
lead to ED overcrowding, including complexity of complaints
and injuries [4,5], resource limitations [6], large patient volumes
[7], and inefficient flow of patients [8]. ED overcrowding is
associated with poor health care outcomes. It can lead to delays
in diagnosis and treatment, which can result in poorer patient
outcomes, higher comorbidities, and increased patient illness
[9,10]. For instance, it was found that patients with acute
coronary syndrome who presented to overcrowded EDs had a
significantly higher rate of serious complications compared
with those who presented to noncrowded EDs (6% vs 3%). The
complications include death, late myocardial infarction, cardiac
arrest, arrhythmias, heart failure, stroke, and hypotension [11].
Treatment delays also lead to serious complications, including
death [12]. Sprivulis et al [13] observed a significant linear
relationship between ED overcrowding and patient mortality
based on 3 years of data from 3 large hospital systems.

The Emergency Medicine Practice Committee of the American
College of Emergency Physicians reported that ED
overcrowding is a hospital-wide patient flow problem rather
than an isolated ED problem [1,2]. The full capacity protocol
(FCP), a key approach recommended by the American College
of Emergency Physicians to improve patient flow across the
entire hospital, is an internationally recognized communication
tool between the ED and inpatient units [8]. It contains a set of
interventions that can be tailored to the severity levels of ED
overcrowding [14]. A set of criteria triggers each intervention
level. The criteria are based on different patient flow measures
(PFMs), such as the number of patients waiting to be admitted
to an inpatient unit (boarded patients) [14,15].

In the current FCP practice, the unit responsible for managing
patient flow relies on near real-time PFM values to activate
different FCP levels, which is a reactive approach. Specifically,
at our partner hospital—an urban, university-affiliated academic
medical center in the southeastern United States—this unit is
referred to as the patient flow coordination team (PFCT).
Implementing FCP interventions (eg, creating hallway treatment
spaces or activating on-call personnel) requires preparation
time, forcing PFCT to prepare and act simultaneously when the

ED is already overcrowded, significantly increasing their stress.
Therefore, accessing the predicted PFM values before
overcrowding can provide the PFCT enough time to prepare
before they implement FCP interventions. Given the critical
role of timely and accurate information in driving FCP
interventions, it is essential to develop prediction models to
forecast PFMs used by the FCP criteria, transforming FCP from
reactive to proactive. Proactive FCP can help in planning and
implementing interventions at different crowding severity levels
proactively before the ED is already overcrowded. Predicted
PFMs built into a proactive FCP can help the PFCT anticipate
future FCP level escalation and prepare for interventions, such
as coordinating staffing needs and creating additional hallway
treatment spaces.

There are many PFMs that can be used to determine the FCP
level, such as ED hourly waiting count, ED boarding count, ED
arrival count, and the number of patients by Emergency Severity
Index (ESI), among others. For this study, the advisory board
of the project recommended that we start with building a
prediction model for the ED waiting count, as it is one of the
most important PFMs. The ED waiting count represents the
number of patients who have arrived at the ED but have not yet
been moved to a treatment room or started their clinical care.
The advisory board members represent different ED units at the
partner hospital. The members include the chair of Emergency
Medicine, the chief medical information officer, the associate
principals of the Office of Clinical Practice Transformation, the
associate vice president of clinical operations at the center of
patient flow, the senior director of Emergency Services, and the
nurse director for Emergency Services. Based on the feedback
from the advisory board, the goal of this paper is to build deep
learning models to predict the ED waiting count at two time
points: (1) In the hourly basis, in which the prediction models
forecast the waiting count in the next 6 hours; (2) In daily basis
where the models predict the average waiting count for next
working day. The prediction information allows PFCT to prepare
ED resources to improve patient flow and consequently mitigate
ED overcrowding. This study is part of a larger funded ED
improvement project, and the models presented in this study
will be integrated into a decision support system to be used by
our partner hospital.

As part of a broader effort to build a data-driven decision support
system for ED operations, this paper focuses on the critical
metric of ED waiting room count. This predictive model
represents a foundational component of the broader effort to
operationalize proactive FCP. Using real-world operational and
contextual data, we assess the utility of multiple time-series
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algorithms and dataset variations to inform timely, data-driven
predictions in ED management. The contributions of this study
are as follows:

• We proposed an improvement for the current reactive FCP
to make it proactive based on prediction models.

• This study was based on a real-world dataset and was
conducted in collaboration with key decision makers from
the ED.

• We developed predictive models that integrate multiple
predictors from various sources to provide a comprehensive
understanding of patient flow dynamics and improve
forecasting performance.

• We introduced 2 complementary prediction
approaches—hourly and daily—that provide actionable
insights at different time scales.

Prior Work
Numerous studies in the literature have focused on predicting
different ED PFMs or outcomes. Traditional models have been
developed to predict hospital admissions at ED triage, often
relying on a limited set of demographic, administrative, and
clinical variables [16-18]. For example, Parker et al [17] used
variables such as age group, race, postal code, day of the week,
time of day, triage category, mode of arrival, and fever status
in a logistic regression model to predict hospital admissions
with an area under the curve of 0.825. Similarly, Sun et al [18]
developed a model to predict immediate hospital admission at
the time of ED triage using routine administrative data, including
age, patient acuity category, arrival mode, and coexisting chronic
diseases like diabetes, hypertension, and dyslipidemia, achieving
an area under the curve of 0.849. However, because these
models focus on only individual patient-level triage outcome
predictions, they offer limited utility for administrative
management in addressing ED crowding, as they do not provide
a comprehensive view of overall patient flow or resource
utilization.

In one of the earlier studies that focused on predicting ED PFMs
at the aggregate patient level, Schweigler et al [19] developed
a baseline model to predict ED overcrowding using historical
averages and compared its performance to more advanced time
series models, including seasonal autoregressive integrated
moving average (ARIMA) and a sinusoidal model with an
autoregressive error term. However, these models relied solely
on historical averages to predict ED crowding based on bed
occupancy, without considering any other predictors, limiting
their utility for comprehensive ED crowding management. A
subsequent time series modeling study by Kadri et al [20] also
developed an ARIMA model to predict daily pediatric ED
attendances using only historical attendance data, without
external predictors.

Recent studies have leveraged advanced machine learning (ML)
models to predict ED PFMs, which are generally the number
of patients arriving [21-23] or waiting time [24,25], across
different prediction horizons. Our study targets waiting count
prediction, which measures the number of patients present in
the ED waiting room during each time interval by cumulatively
adding patients for every hour they remain. Arrival count and
waiting count are fundamentally different PFMs: arrival count

records each patient once, at the moment they enter the ED,
whereas waiting count tracks each patient for every hour they
remain in the waiting area. For example, if a patient arrives at
1:05 PM and leaves at 3:35 PM, they are counted for 1-2 PM
in the arrival count but are included in the waiting count for 1-2
PM, 2-3 PM, and 3-4 PM. To the best of our knowledge, no
published studies have focused on predicting waiting count in
US EDs using deep learning models. Since the literature on
waiting count prediction is lacking, we summarize key studies
on arrival count prediction, which most closely align with our
research objective. For example, Harrou et al [6] developed
deep learning models to predict hourly and daily ED arrival
counts, comparing the performance of a variational autoencoder
with 7 others: recurrent neural networks (RNNs), long short-term
memory (LSTM), bidirectional long short-term memory
(BiLSTM), convolutional LSTM, restricted Boltzmann machine,
gated recurrent units, and convolutional neural networks (CNN).
Tuominen et al [26] used advanced ML models, including
probabilistic forecasting with autoregressive recurrent networks
(DeepAR) [27], neural basis expansion analysis for interpretable
time series forecasting (N-BEATS) [28], temporal fusion
transformer, and light gradient boosting machine (LightGBM)
[29], with multivariable inputs such as bed availability in
catchment area hospitals, traffic data, and weather variables to
predict daily ED occupancy. Similarly, Giunta et al [30]
developed a multivariable predictive model based on the
National Emergency Department Overcrowding Study score to
predict sustained critical ED overcrowding lasting 8 or more
hours, incorporating weather, patient flow, and bed occupancy
variables. However, despite their advanced methodologies and
multivariable approaches, none of these studies examined their
predictions within the context of a proactive FCP.

Although these studies advance ED overcrowding prediction,
each has limitations that reduce practical use in high-volume
EDs. Many models have relied on a narrow set of inputs, such
as patient arrivals or historical bed occupancy, without
incorporating a broader range of operational, staffing, or
environmental variables. In our study, we focus on forecasting
the ED waiting count rather than the arrival count, as the arrival
count only captures new patient entries and does not reflect
ongoing congestion in the waiting area. In contrast, waiting
count directly measures the number of patients present at any
given time, providing a more accurate assessment of real-time
crowding. Additionally, most studies have focused exclusively
on daily metrics, failing to capture both hourly and daily
fluctuations needed for real-time resource planning. To address
these gaps, this study integrates hourly and daily predictions
for more granular, actionable forecasting.

Methods

Ethical Considerations
This study was reviewed and approved by the Institutional
Review Board (IRB) at the University of Alabama at
Birmingham, with IRB# IRB-300011584.

Research Framework
Figure 1 shows our proposed framework, which has 3 main
phases: data preparation, training, and evaluation. The
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framework includes 2 prediction approaches. The first provides
hourly predictions, estimating the number of patients in the
waiting room 6 hours ahead to support intraday resource
management. The second provides daily predictions, estimating

the average waiting count for the next 24 hours to help anticipate
ED conditions for the following day. In this paper, patient counts
in the waiting room are referred to as “waiting counts,” and
their 24-hour average as “average waiting count.”

Figure 1. Proposed research framework. ED: emergency department.

The data preparation phase involves processing data from 4
sources: the ED tracking system, inpatient records, weather
information, and significant dates. After obtaining data from
different sources, feature engineering and data preprocessing
are applied separately to each source before creating the
integrated final data. Following this, data preprocessing focuses
on cleaning, scaling, and recategorizing certain categorical
variables to prepare datasets for use in predictive modeling.
After completing feature engineering and data preprocessing

for each data source, all sources are integrated on an hourly
basis into a single comprehensive dataset. The mathematical
calculation of all features, including the target variable waiting
count, along with all preprocessing and feature engineering
steps, is described in detail in Multimedia Appendix 1 [31-56].
Table 1 includes descriptive statistics: numerical features show
mean (SD), min, and max; categorical features indicate dataset
percentages; and temporal features specify the time range used.
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Table 1. Summary of the overcrowding dataset.

DailyHourlyFeatures

Date rangea

44Number of years

1212Number of months

1-311-31Days of a month

77Days of a week

2424Time (hours)

Waiting count (target variable)

18.11 (4.51)18.11 (9.77)Average (SD)

7-350-59Range

Waiting count by ESIb levels (%)

26.3826.38ESI levels 1 and 2

58.3458.34ESI level 3

14.6914.69ESI levels 4 and 5

Average waiting time (minutes)

90.98 (32.24)90.98 (62.85)Average (SD)

9-1700-425Range

Average waiting time by ESI levels (minutes)

ESI levels 1 and 2

62.81 (31.69)62.81 (69.98)Average (SD)

5-1620-538Range

ESI level 3

106.9 (38.92)106.9 (76.13)Average (SD)

8-1930-526Range

ESI levels 4 and 5

56.03 (28.53)56.03 (66.79)Average (SD)

8-1660-536Range

Treatment count

68.29 (22.64)68.29 (23.69)Average (SD)

31-1239-139Range

Average treatment time (minutes)

52.93 (2.07)52.93 (3.11)Average (SD)

46-5728-60Range

Boarding count

46.78 (29.30)46.78 (29.60)Average (SD)

8-1153-121Range

Average boarding time (minutes)

54.06 (3.15)54.06 (4.45)Average (SD)

42-5812-60Range

28.77c3.1Extreme case indicator (%)

Hospital census

794.23 (61.50)794.23 (71.88)Average (SD)
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DailyHourlyFeatures

610-931584-1017Range

Temperature (°F)

64.06 (13.60)64.06 (15.36)Average (SD)

15-879-100Range

Wind speed (m/s)

2.26 (1.22)2.26 (1.97)Average (SD)

0-70-15Range

Humidity (%)

73.38 (11.97)73.38 (19.08)Average (SD)

40-9715-100Range

Weather status (%)

57.6757.67Clouds

22.8922.89Clear

15.1215.12Rain

2.552.55Mist

1.271.27Thunderstorm

0.160.16Drizzle

0.130.13Fog

0.120.12Haze

0.060.06Snow

0.030.03Smoke

4040Number of football games

3434Number of federal holidays

aData from January 1, 2020, to May 1, 2021, was excluded due to COVID-19.
bESI: Emergency Severity Index.
c28.77% of rows have nonzero values, indicating days that experienced extreme patient volumes during at least some portion of the day.

During the training phase, the integrated data from the data
preparation stage is used to generate 2 refined datasets: one for
the hourly prediction approach and another for the daily
prediction approach. Subsequently, 16 different dataset
variations are created to be used by both approaches, each with
distinct feature combinations, as detailed in Table S2 in
Multimedia Appendix 2. A total of 11 ML algorithms, in Table
S1 in Multimedia Appendix 1 [31-56], are used to train and
evaluate models on both hourly and daily datasets to identify
the best-performing models. These algorithms are categorized
into four groups: (1) traditional machine learning (random forest
[RF] [31] and extreme gradient boosting [XGBoost] [32]); (2)
RNN-based models (LSTM) [33], BiLSTM [34], and sequence
to sequence learning with neural networks [Seq2Seq] [35]; (3)
CNN-based architectures (fully convolutional network plus
[FCNPlus] [36], residual network plus [ResNetPlus] [37],
XceptionTimePlus [38], and explainable convolutional neural
network plus [XCMPlus] [39]); and (4) transformer-based
models (time series transformer plus [TSTPlus] [40] and time
series vision transformer plus [TSiTPlus] [41]). The

architectures of all algorithms are explained in detail in
Multimedia Appendix 1 [31-56]. Each combination of an
algorithm and a dataset is considered a separate model in this
study. To improve performance, different hyperparameter
configurations are tested across the 16 dataset variations.

In the evaluation phase, performances of the trained models are
evaluated. The best-performing models, selected for both hourly
and daily prediction tasks, are tested using evaluation metrics
detailed in the Model Evaluation section of Multimedia
Appendix 1 [31-56]. The evaluation is primarily based on 4
different metrics: mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), and the
coefficient of determination (R²). To further assess model
effectiveness, the best-performing hourly prediction model is
evaluated under extreme case scenarios, representing periods
of exceptionally high patient volumes, with the results presented
in Table 2. Additionally, the performance of the best hourly
model is analyzed across the hour-of-day, capturing variations
and trends in predictive accuracy at different times, as illustrated
in Figure S3 in Multimedia Appendix 3.

JMIR Med Inform 2025 | vol. 13 | e73960 | p. 6https://medinform.jmir.org/2025/1/e73960
(page number not for citation purposes)

Vural et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Performance of the time series vision transformer plus (TSiTPlus) in predicting extreme cases across different datasets.

MAEaDataset

Highly extreme (≥48) (mean + 3σ)Very extreme (≥38) (mean + 2σ)Extreme (≥28) (mean + 1σb)

17.9011.616.86DS0

19.3012.137.07DS1

19.2112.067.08DS2

18.1011.616.98DS3

17.7711.366.85DS4

18.7511.786.88DS5

18.4111.616.84DS6

17.5411.216.63DS7

17.1411.076.59DS8

17.3511.136.57DS9

17.1511.116.58DS10

16.7610.696.31DS11

16.8210.706.31DS12

16.7810.446.18DS13

15.59c10.16c6.16cDS14

16.1610.456.31DS15

aMAE: mean absolute error.
bσ: SD.
cLowest MAE.

Data Sources
The data sources in this study cover the period from January
2019 to July 2023 and are categorized into hospital data,
including ED tracking system and inpatient records, and external
data, consisting of weather information and significant dates
for football games and federal holidays.

The ED tracking data provides detailed records of patient
arrivals and departures within the ED waiting and treatment
rooms of our partner hospital. This data also includes ESI levels
indicating acuity, patient classifications, room types, event status
(eg, complete, request, and cancel), and other ED-related
information. Both waiting room and treatment room identifiers
are recorded, enabling comprehensive tracking of patient
movements from arrival to discharge or inpatient admission
through unique patient and visit identifiers. The data contains
161,477 unique patients and 308,196 unique visits.

The inpatient data contains time-stamped records of patient
admissions to and discharges from inpatient units. These records
enable the hourly calculation of the hospital-wide patient census
feature, as shown in Table 1. The dataset comprises 293,716
unique inpatient visits for 180,589 unique patients, representing
hospital-wide admissions encompassing the study period.

The external data includes weather data and significant events,
which are federal holidays and local football game event data.
The weather data provides hourly weather information collected
from a nearby weather station located close to the partner

hospital. This data is sourced from the historical data archive
of the OpenWeatherMap History Bulk [57] and includes
numerical variables such as temperature, humidity, and wind
speed, as well as a categorical variable indicating categories of
clear skies, clouds, rain, mist, thunderstorm, snow, drizzle, haze,
fog, and smoke. The significant dates consist of 2 external
datasets: federal holidays and football game dates for a major
team near the hospital. On average, there are 13 football games
and 10 federal holidays each year. Federal holidays were
obtained from the United States Office of Personnel
Management Government website [58], and football game dates
were sourced from the team’s official website [59].

Problem Modeling
To predict waiting counts in the ED waiting room at a time
point h steps into the future (eg, predicting 6 hours from now,
or any other chosen future time point), we model this problem
as a time series ML problem. We set up the problem as a direct
single-step forecast targeting yt+h from the current time t. Let:

• yt represent the waiting count at the current time t.
• h be the prediction horizon (ie, the number of time steps

ahead for the forecast (eg, h=6 for 6 hours ahead).
• k denote the number of past observations (lags) included

in the model.
• (l1, l2,…, lN) represent variables that do not require lagging

(eg, weather conditions, holidays).
• xt, xt–1,…, xt–k+1 represent any feature other than the waiting

count that has a lag.
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• g(.) be the function learned by the ML model, trained using
historical data.

The model can be expressed as follows:

Where:

• yt+h is the predicted waiting count at time t+h.
• yt, yt–1,…, yt–k+1are waiting count lag features to capture

temporal dependencies.
• M is the total number of observations and the training

dataset size is M–k–h+1.

Model Design
Model design involves selecting the relevant feature
combinations for prediction. With a total of 34 main features,
excluding lag and rolling mean features, determining the optimal
feature set is an essential step in improving model performance.
Therefore, numerous experiments were conducted initially to
refine feature combinations, scaling methods, COVID-19 date
exclusion ranges, weather categorizations, and hyperparameter
ranges. Based on the outcomes of these experiments, a total of
16 datasets were generated, as shown in Table S2 in Multimedia
Appendix 2, each containing different combinations of features.
These combinations were selected through a manual but
systematic approach guided by domain knowledge and
performance feedback. Specifically, we varied key dimensions
such as lag lengths, rolling window sizes, weather encodings,
temporal coverage, and the inclusion of engineered variables
like the extreme case indicator. Each dataset was crafted to test
how individual or grouped feature categories (eg, ED tracking,
inpatient census, weather, significant dates) influence model
generalization and forecasting accuracy. To evaluate these
combinations, 11 different algorithms, as detailed in Table S1
in Multimedia Appendix 1 [31-56], were applied to train models
on each dataset. The primary objective was to identify the most
effective combination of features and algorithms for achieving
optimal performance. For both hourly and daily prediction
models, a total of 8800 experiments (11 algorithms × 16 datasets
× 50 trials) were conducted separately to evaluate these
combinations and determine the best-performing model and
feature set.

Hourly and Daily Time Horizons
To address the varying forecasting needs in ED, this study uses
2 types of predictive models: hourly and daily, as illustrated in
Figure S4 in Multimedia Appendix 3. These models were
developed to handle different prediction horizons, allowing for
more comprehensive management of patient flow in the ED.

The hourly model predicts the waiting count 6 hours ahead. As
shown by the red arcs in Figure S4 in Multimedia Appendix 3,
this model provides flexibility by not being restricted to specific
times of the day. Instead, it generates forecasts for 6 hours into
the future whenever it runs, enabling it to be applied at any time
when updated predictions are needed.

The daily model predicts the average waiting count for the next
24-hour period, running each day at 5 PM and using data from
the previous 24 hours (5 PM the previous day to 5 PM today).
At each run, it provides a single estimate for the upcoming
24-hour window (5 PM today to 5 PM tomorrow), offering
insights that aid in planning for the next day. Figure S4 in
Multimedia Appendix 3 shows the daily model’s prediction
timeline, represented by the orange elements, where forecasts
are generated once per day to estimate the average waiting count
in the waiting room for the next 24-hour period.

The selection of the 2 prediction horizons—6 hours ahead and
daily—was informed by consultations with hospital operational
leadership and the clinical advisory board to align with
real-world decision-making workflows. The 6-hour-ahead
forecast supports intrashift planning by enabling proactive
resource allocation for anticipated short-term crowding. The
daily forecast facilitates long-range planning, including staffing,
bed coordination, and potential FCP activation based on
projected 24-hour patient volumes. Together, these models
address both immediate and next-day operational needs.

Results

Overview
We present and analyze the evaluation results of 11 ML
algorithms (listed in Table S1 in Multimedia Appendix 1
[31-56]) applied to 16 different datasets (described in Table S2
in Multimedia Appendix 2). The results cover 2 separate
prediction approaches: one focuses on forecasting the waiting
count 6 hours ahead, and the other estimates the average waiting
count over the next 24-hour period.

Performances of Hourly Prediction Models
The target variable waiting count, which represents the number
of patients in the waiting room during a given hourly interval,
has a mean value of 18.11 and a SD of 9.77, as shown in Table
1. Figure 2 presents the performance analysis of ML models in
predicting waiting counts 6 hours ahead across 16 different
datasets (DS0 to DS15). In Figure 2, the x-axis in all subplots
represents the datasets, while the y-axis corresponds to each
evaluation metric. Among the evaluated models, the TSiTPlus
algorithm demonstrated the best overall performance, achieving
an MAE of 4.19, an MSE of 29.36, an RMSE of 5.42, and an
R² of 0.56 on dataset DS15.
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Figure 2. Comparison of hourly model performances across 16 datasets and 11 algorithms based on different evaluation metrics. BiLSTM: bidirectional
long short-term memory; FCNPlus: fully convolutional network plus; LSTM: long short-term memory; MAE: mean absolute error; MSE: mean squared
error; ResNetPlus: residual network plus; RF: random forest; RMSE: root mean squared error; Seq2Seq: sequence to sequence learning with neural
networks; TSiTPlus: time series vision transformer plus; TSTPlus: time series transformer plus; XCMPlus: explainable convolutional neural network
plus.

As shown in Figure 2, traditional ML algorithms, RF and XGB,
displayed similar performance patterns, with RF achieving its
best results on dataset DS15 and XGB on dataset DS14.
Specifically, RF’s performance on DS15 yielded an MAE of
4.65, an MSE of 34.56, an RMSE of 5.87, and an R² of 0.48,
using 100 estimators, a maximum depth of 30, and 4 samples
per leaf, with bootstrapping enabled. Across all datasets, RF’s
MAE varied between 4.65, its best performance, and 4.78, its
worst performance. On the other hand, XGB achieved slightly
better values on dataset DS14, with an MAE of 4.62, an MSE
of 33.40, an RMSE of 5.78, and an R² of 0.50, with a maximum
depth of 15, a learning rate of 0.02, a subsample ratio of 0.8,
and a column sampling rate of 0.3. These results highlight the
limitations of traditional algorithms, which treat each
observation independently and lack the ability to capture the
long-term dependencies and complex sequential patterns
inherent in time-series data.

RNN-based models, including Seq2Seq, LSTM, and BiLSTM,
delivered better results than traditional ML algorithms for
predicting waiting counts 6 hours ahead. Among these, Seq2Seq
achieved its best performance on dataset DS12, with an MAE
of 4.52, an MSE of 34.06, an RMSE of 5.83, and an R² of 0.49.
This result was obtained using a batch size of 32, a learning rate
of 0.01, a weight decay of 0.2, a dropout rate of 0.1, and Adam
as the optimization function. The Seq2Seq model’s performance,
based on MAE, ranged from its worst result of 5.28 on dataset

DS0 to its best result of 4.52 on dataset DS12. LSTM
demonstrated consistent results across datasets, delivering its
best performance on dataset DS11, with an MAE of 4.52, an
MSE of 33.26, an RMSE of 5.76, and an R² score of 0.505. This
result was achieved using a batch size of 32, a learning rate of
0.01, a dropout rate of 0.2, a weight decay of 0.1, and stochastic
gradient descent as the optimization algorithm [60]. The LSTM
model’s performance, based on MAE, ranged from its worst
result of 5.03 on dataset DS0 to its best result of 4.52 on dataset
DS11. BiLSTM, which leverages its bidirectional architecture,
achieved its best results on dataset DS15, with an MAE of 4.54,
an MSE of 34.67, an RMSE of 5.89, and an R² score of 0.48.
However, it encountered higher errors on datasets such as DS2,
where the MAE was 4.91.

The CNN-based algorithms, including ResNetPlus,
XceptionTimePlus, FCNPlus, and XCMPlus, demonstrated
better performance than both traditional ML and RNN-based
algorithms across multiple datasets in this study. Among these,
ResNetPlus achieved the best overall performance, particularly
on dataset DS15, with an MAE of 4.23, an MSE of 29.93, an
RMSE of 5.47, and an R² of 0.555. XceptionTimePlus achieved
its best results on dataset DS15 as well, with an MAE of 4.274,
an MSE of 30.279, an RMSE of 5.503, and an R² of 0.55.
FCNPlus performed best on dataset DS7, with an MAE of
4.3081, an MSE of 30.3208, an RMSE of 5.5064, and an R² of
0.5491. Finally, XCMPlus delivered its best results on dataset
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DS7, with an MAE of 4.285, an MSE of 30.254, an RMSE of
5.5, and an R² of 0.55. These results suggest that CNN-based
models generally provided more accurate predictions than
traditional and RNN-based algorithms.

The transformer-based models, TSiTPlus and TSTPlus,
delivered better results compared with other algorithm categories
in this study, with TSiTPlus being the best-performing model
based on MAE. TSiTPlus achieved its best performance on
dataset DS15, with an MAE of 4.19, an MSE of 29.36, an RMSE
of 5.41, and an R² of 0.56. In comparison, TSTPlus showed
good performance but had slightly higher errors. Its best results
were on dataset DS15, with an MAE of 4.24, an MSE of 29.52,
an RMSE of 5.43, and an R² of 0.561. DS15 incorporated a
range of features, including waiting count lags, rolling averages,
patient flow indicators, weather conditions, hospital census data,
and significant event markers. Across other datasets, TSTPlus
achieved MAE values such as 4.27 on DS7 and 4.27 on DS8.
The performance of TSiTPlus indicates that it was the most
accurate model in this study for predicting waiting counts. To
examine the impact of including the COVID-19 period,
TSiTPlus was evaluated on DS15, the best-performing model
and dataset combination. The results indicated noticeably higher
prediction errors (MAE: 4.82 vs 4.19; MSE: 40.22 vs 29.32),
suggesting that patient flow anomalies during the pandemic
adversely affected model performance.

TSiTPlus demonstrated superior performance over all other
models in hourly predictions. Specifically, it achieved a 9.8%
reduction in mean MAE compared with RF (MAE=4.65), a
7.3% reduction compared with the best-performing RNN-based
model, Seq2Seq (MAE=4.52), and a 0.9% improvement over

the best CNN-based model, ResNetPlus (MAE=4.23). Although
the performance gap between TSiTPlus (MAE=4.19) and the
best traditional ML model, XGBoost (MAE=4.62), may initially
appear modest, its operational significance becomes clear when
scaled to the continuous nature of ED operations. Given that
predictions are generated hourly—24 times each day—this 0.43
improvement in MAE results in approximately 10.3 (0.43 × 24
hours), more accurate waiting count forecasts per day. When
extended over an entire year, this translates to 3767 waiting
counts (10.3 × 365 days), more accurate predictions, each
representing a more informed decision point for hospital staff.

To estimate uncertainty around our model’s point estimates, we
applied a bootstrap resampling approach [61], which repeatedly
samples from the original test data to approximate the sampling
distribution of evaluation metrics. Specifically, we used block
bootstrapping with our best-performing model, TSiTPlus, on
DS15. A block size of 24 was chosen to match the 24-hour lag
window, preserving local temporal dependencies inherent in
hourly hospital data. For each iteration, blocks of 24 consecutive
hours were resampled with replacement from the test dataset to
form a new evaluation set, and performance metrics were
computed. This method yielded robust IQRs for each metric.
As shown in Table 3, MAE reaches 4.19 with an IQR of
4.16-4.25, varying by only 0.09 across samples—indicating
highly consistent model performance. MSE reaches 29.36 (IQR
28.65-30.20), RMSE reaches 5.42 (IQR 5.35-5.49), and R²
reaches 0.56 (IQR 0.55-0.57); all similarly demonstrate narrow
IQRs, further supporting the stability and reliability of the
model’s predictions. These narrow IQRs suggest that the model
is not only accurate but also reliable under different test-time
conditions.

Table 3. Bootstrap-based uncertainty estimates for model performance metrics using Time Series Vision Transformer Plus (TSiTPlus) on dataset DS15.

Median (IQR)Model and metric

TSiTPlus

4.19 (4.16-4.25)MAEa

29.36 (28.65-30.20)MSEb

5.42 (5.35-5.49)RMSEc

0.56 (0.55-0.57)R 2

aMAE: mean absolute error.
bMSE: mean squared error.
cRMSE: root mean squared error.

The strong performance of TSiTPlus in this study can be
attributed to its ability to capture complex patterns in
multivariate time series data. As a transformer-based model, it
is well-suited for recognizing relationships and trends over time.
TSiTPlus divides the time series into smaller segments, treating
them as input tokens—similar to words in a sentence—which
allows the model to capture both short- and long-term patterns.
This design enables it to learn from multiple timeframes, making
it particularly effective for datasets with complex temporal
dynamics.

Analysis of Extreme Case and Hour-of-Day
Table 2 presents the performance of TSiTPlus, the
best-performing algorithm, in predicting extreme cases across
various datasets. For “Extreme Cases” (mean + 1σ), MAE
ranged from 6.16 on DS14 to 7.08 on DS2. In “Very Extreme
Cases” (mean + 2σ), MAE ranged from 10.16 on DS14 to 12.13
on DS1. For “Highly Extreme Cases” (mean + 3σ), TSiTPlus
achieved its best result on DS14 with an MAE of 15.59. When
averaging errors across all 3 categories, DS14 performed best,
followed by DS15, demonstrating strong predictive capabilities
under high patient volume. DS14’s superior performance is
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likely due to its 48-hour lag features, which incorporate data
from the past 2 days (Table S2 in Multimedia Appendix 2).

Our best-performing model not only predicts typical waiting
counts accurately but also performs well under extreme
crowding. Compared with traditional models, such as RF (MAE:
14.0 for Very Extreme, 20.0 for Highly Extreme) and XGBoost
(MAE: 13.9 for Very Extreme, 19.6 for Highly Extreme),
TSiTPlus consistently shows lower error rates during critical
situations. This reduction in prediction error during peak periods
allows for earlier, more accurate interventions, improving ED
responsiveness and resource coordination. When evaluating the
cumulative effect of prediction performance over time, the
difference becomes even more meaningful. For example, in
very extreme scenarios, TSiTPlus achieves an MAE of 10.16
compared with XGBoost’s 13.9—an improvement of 3.74. This
translates to approximately 90 (3.74 × 24 hours) more accurate
waiting count predictions per day. When applied year-round,
this provides a clear operational advantage for anticipating and
managing ED overcrowding.

Figure S3 in Multimedia Appendix 3 shows the TSiTPlus
model’s performance by hour of day. It performs best between
10 PM and 6 AM, with MAE under 4 and RMSE between 3
and 5.25, reflecting more stable patient volumes. Error metrics
increase between 6 PM and 8 PM, where MAE nears 5 and
RMSE exceeds 6, likely due to higher variability in waiting
counts during this time.

Performance of Daily Prediction Models
As shown in Figure S4 in Multimedia Appendix 3, daily
prediction is conducted at 5 PM each day to estimate the next
day’s average waiting count. The target variable has a mean of
18.11 and an SD of 4.51 (Table 1). Daily prediction errors are
lower than hourly due to smoother target values and a smaller
dataset. Using the same 11 ML algorithms (Table S1 in
Multimedia Appendix 1 [31-56]) across 16 datasets (Multimedia
Appendix 2), the best performance was achieved by XCMPlus
with an MAE of 2.00, MSE of 6.64, RMSE of 2.57, and R² of
0.44, as shown in Figure 3.

Figure 3. Comparison of daily model performance across 16 datasets based on different evaluation metrics. BiLSTM: bidirectional long short-term
memory; FCNPlus: fully convolutional network plus; LSTM: long short-term memory; MAE: mean absolute error; MSE: mean squared error; ResNetPlus:
residual network plus; RF: random forest; RMSE: root mean squared error; Seq2Seq: sequence to sequence learning with neural networks; TSiTPlus:
time series vision transformer plus; TSTPlus: time series transformer plus; XCMPlus: explainable convolutional neural network plus.

Traditional ML algorithms, RF and XGBoost, demonstrated
similar performance across all 16 dataset configurations for
daily predictions, as illustrated in Figure 3. Both algorithms
achieved their best results on dataset DS14, with RF slightly
outperforming XGBoost. Specifically, RF recorded the lowest
MAE of 2.13, MSE of 7.10, RMSE of 2.66, and an R² of 0.217,
while XGBoost followed closely with an MAE of 2.16, MSE

of 7.31, RMSE of 2.70, and an R² of 0.195. The performance
gap between the best and worst configurations for both
algorithms, with RF ranging from 2.13 to 2.41 MAE and
XGBoost from 2.16 to 2.49 MAE, indicates consistent behavior
across different feature combinations. RF achieved its optimal
performance with 200 estimators, a maximum depth of 40, a
minimum sample split of 10, and 8 samples per leaf with
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bootstrapping enabled. Similarly, XGBoost’s best configuration
used a dart booster with a maximum depth of 12, learning rate
of 0.02, subsample ratio of 0.8, column sampling rate of 0.4,
and weighted sampling with a rate drop of 0.2.

The analysis of the RNN-based models, including LSTM,
BiLSTM, and Seq2Seq, shows varying performance across
datasets. The LSTM model performs consistently, with MAE
values between 2.06 and 2.60 and RMSE between 2.65 and
3.24, achieving the lowest MAE on dataset DS2 and the highest
on dataset DS13. BiLSTM performs slightly better, with MAE
ranging from 2.06 to 2.42 and RMSE from 2.65 to 3.07, showing
the best performance on dataset DS6 and the highest error on
dataset DS12. Seq2Seq provides competitive results, with MAE
between 2.08 and 2.48 and RMSE from 2.63 to 3.10, performing
best on dataset DS5 and worst on dataset DS13. The R² values
indicate that all models exhibit moderate predictive power, with
the highest values around 0.41 and the lowest around 0.11.
Among the 3 models, BiLSTM offers the best balance between
low MAE and stable R² values, while Seq2Seq shows more
consistent performance across datasets.

The analysis of CNN-based models, including FCNPlus,
ResNetPlus, XceptionTimePlus, and XCMPlus, shows varying
performance across datasets. FCNPlus has MAE values from
2.03 to 2.44 and RMSE between 2.58 and 3.01, performing best
on dataset DS14 and worst on dataset DS11, with R² values
ranging from 0.26 to 0.23. ResNetPlus shows slightly better
performance, with MAE values between 2.05 and 2.40, RMSE
from 2.59 to 3.02, and R² values between 0.25 and 0.22.
XceptionTimePlus provides competitive performance, with
MAE between 2.10 and 2.33 and RMSE from 2.71 to 2.88,
achieving its best results on dataset DS8 and the highest error
on dataset DS11. XCMPlus outperforms the other models, with
the lowest MAE (2.00 to 2.28) and RMSE (2.57 to 2.92),
showing the best performance on dataset DS12 and the highest
error on dataset DS0. DS12 incorporated waiting count by ESI
levels, treatment and boarding counts, and weather conditions,
with rolling means and lag features enhancing trend detection.
These features contributed to its strong predictive performance,
especially for XCMPlus. It also has the highest R² values,
ranging from 0.44 to 0.28, indicating better predictive accuracy.
Overall, XCMPlus demonstrates the best performance among
all algorithms, not just CNN-based models, achieving the lowest
MAE and highest R² values, making it the most effective model
for predicting daily waiting counts across datasets.

The analysis of the transformer-based models, TSiTPlus and
TSTPlus, highlights differences in their performance across
datasets. TSiTPlus demonstrates MAE values ranging from 2.08
to 2.17 and RMSE values between 2.63 and 2.80, with the best
performance observed on dataset DS5 and the highest error on
dataset DS14. The R² values for TSiTPlus vary from 0.41 to
0.20, indicating moderate predictive accuracy. TSTPlus achieves
slightly lower MAE values compared with TSiTPlus, ranging
from 2.04 to 2.18, and RMSE values between 2.57 and 2.70.
The best results

are observed for dataset DS4, while the highest error occurs on
dataset DS11. The R² values range from 0.42 to 0.27, showing
slightly better predictive power compared with TSiTPlus.

Overall, TSTPlus shows slightly better performance than
TSiTPlus in terms of lower MAE and higher R² values across
datasets, making it the more effective transformer-based model
for predicting waiting counts.

Discussion

Principal Findings
This study developed time series ML models to forecast ED
waiting room counts using real-world operational and contextual
data. TSiTPlus achieved the best 6-hour-ahead prediction
performance (MAE: 4.19, RMSE: 5.42, R²: 0.56 on DS15),
while XCMPlus performed best for daily forecasts (MAE: 2.00,
RMSE: 2.57, R²: 0.44 on DS12). MAE differences across
datasets for TSiTPlus and XCMPlus were minimal in hourly
predictions; however, the extreme case analysis revealed greater
variation, underscoring the importance of feature engineering.
For the hourly prediction models, comparing datasets highlights
the incremental impact of added features. For example, the MAE
for TSiTPlus decreased from 4.29 in DS2 to 4.26 in DS5 with
the inclusion of weather status and ESI-based waiting counts.
Incorporating significant dates such as football games and
federal holidays further improved performance, reducing the
MAE to 4.24 in DS6. Additional operational features—like
treatment count, boarding count, and related time
metrics—lowered the MAE to 4.21 in DS8. Further adjustments,
such as different lagged features and rolling means, resulted in
only minor MAE changes across DS8 to DS14. Ultimately, the
best performance was achieved with DS15, where TSiTPlus
reached an MAE of 4.19 after integrating all available features.
For the daily prediction models, the best accuracy was achieved
using DS14, which shares the same feature combination as the
best hourly dataset, DS15, except that DS14 does not include
temperature, humidity, wind speed, or football match variables.
This suggests these variables do not significantly impact
long-term average waiting count predictions. These results
demonstrate the potential of deep learning–based time series
models to support proactive FCP implementation through
accurate, time-sensitive predictions. Additionally, we evaluated
the impact of including COVID-19 period data for TSiTPlus
on DS15. Contrary to some findings in the literature [62], which
reported improved results for arrival count prediction when
COVID-19 data was included, our results showed that adding
the pandemic period to our training data negatively affected
model performance for waiting count prediction (MAE increased
from 4.19 to 4.82; MSE increased from 29.32 to 40.22). This
suggests that the atypical patient flow patterns during the
COVID-19 pandemic introduced additional variability, making
it harder for the model to accurately capture or reflect standard
ED operations.

Managerial Impact
EDs often face overcrowding due to challenges such as limited
resources [6], high patient volumes [7], and inefficient patient
flow management [8]. This represents an initiative to transform
reactive FCP to be proactive by developing predictive models
that forecast a key PFM, which is ED waiting counts. The
prediction is done at two distinct time scales—6 hours ahead
and 24 hours in advance—allowing for both hourly operational
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adjustments and daily planning. The selection of these prediction
horizons was based on input from the hospital’s PFCT and the
project advisory board. The 6-hour window was identified as a
critical lead time for initiating immediate operational responses
such as surge staffing, bed reassignments, and overflow room
activation. In contrast, the 24-hour forecast was designed to
inform daily planning activities, including staff scheduling,
diversion decisions, and intensive care unit (ICU) bed
coordination. Predictions with longer windows can provide a
greater margin for operational adjustments, making it easier for
hospitals to mobilize resources and take proactive action when
surges are anticipated. However, evidence is still lacking as to
which prediction window offers the most sustainable and
actionable foundation for managing real-world ED surges, since
practical constraints and response capabilities can vary
significantly between institutions.

The hourly prediction model, which predicts the total waiting
count in the next 6 hours, enables real-time resource allocation
by giving hospital managers enough time (eg, 6 hours) to
proactively implement FCP interventions and resources that
help mitigate ED crowding, such as adjusting staffing,
mobilizing overflow spaces, and ensuring the availability of
critical equipment before surges occur. For example, if the
model predicts a peak in patient volume during the evening
shift, managers can activate a surge plan, offering voluntary
short-term shifts to nurses or physicians who opt in to alleviate
crowding. Additionally, they can offer overtime to extend staff
hours, call in additional clinical staff, or reassign staff to the
ED ahead of anticipated crowding. These proactive measures
help prevent bottlenecks, ensuring adequate coverage during
peak times while minimizing unnecessary overtime costs. This
capability minimizes understaffing during peak times while
reducing unnecessary overtime costs. Additionally, FCP
interventions—such as coordinating with inpatient units to
expedite bed turnover or opening additional inpatient surge
capacity, such as unstaffed beds or hallways, to absorb some of
the ED boarding patients and relieve crowding—can be activated
before crowding worsens, improving compliance with key
performance indicators such as Centers for Medicare &
Medicaid Services door-to-provider times and reducing “left
without being seen” rates, which impact hospital revenue and
reputation. These FCP interventions are not reserved for rare
or exceptional circumstances but are routinely needed in
everyday ED operations due to the persistent and dynamic nature
of crowding.

The daily prediction model, which estimates the average patient
waiting count over the next 24 hours (ie, from 5 PM on the
current day to 5 PM the following day), supports broader
decision-making processes. By forecasting average daily patient
volumes, managers can optimize next-day staffing schedules
and implement strategic interventions such as placing the
hospital on diversion to temporarily halt nonessential incoming
transfers, thereby preserving ED and inpatient capacity for
critical cases. These predictions also enhance cross-departmental
collaboration by facilitating proactive ICU bed reservations for
anticipated ED admissions or diverting nonurgent cases to
alternative care settings, such as urgent care clinics, to alleviate
ED congestion. Over time, insights from daily predictions

inform long-term capacity planning, such as adjusting seasonal
budgets for flu surges or expanding ED infrastructure to
accommodate growth trends.

The ability to act in advance is supported by the model’s
predictive accuracy, particularly under extreme crowding
scenarios. This is critical because the most impactful
decisions—such as activating surge capacity, reallocating staff,
or adjusting admissions—are typically required when the ED
is under the most pressure. Having reliable forecasts during
these peak periods ensures that hospital managers can make
timely, confident decisions that reduce overcrowding and
maintain the quality of patient care.

The practical implications of this study go beyond forecasting
accuracy, offering direct support for real-world hospital
operations. By leveraging both internal operational
features—such as patient flow metrics, boarding counts,
treatment activity, and hospital census—and external contextual
features—including weather conditions, federal holidays, and
major local events—the models provide actionable insights
tailored to each facility’s environment. For example, if the
6-hour-ahead model forecasts a surge in ED waiting counts
during an upcoming evening shift, hospital managers can
proactively deploy surge nurses, call in backup physicians,
prepare overflow treatment areas, or expedite inpatient bed
turnover hours in advance. In parallel, daily forecasts indicating
above-average volumes can be used during morning planning
meetings to revise staffing levels, reserve ICU beds, or activate
diversion protocols for nonurgent cases. In cases of anticipated
extreme crowding, hospitals may also delay elective admissions,
accelerate discharge rounds, or mobilize unstaffed bed capacity.
Embedding these forecasts into hospital dashboards or
integrating them with electronic health record systems enables
timely alerts and streamlined workflows. By incorporating both
operational and external drivers of demand, the system supports
proactive, risk-informed decision-making that improves patient
throughput, reduces waiting times, and enhances overall ED
efficiency.

Limitations and Future Work
A key limitation of this study is that we did not evaluate how
the predictions directly support proactive FCP implementation.
While our models can anticipate patient surges, their real-world
impact on operational decision-making remains untested. In a
future study, we will address this by using discrete event
simulation to compare reactive versus proactive FCP strategies,
assessing how prediction-driven interventions influence resource
allocation, patient flow, and ED performance metrics.

Short-notice staffing adjustments can be challenging in ED
settings, and a 6-hour notice may be insufficient for several
reasons. Many clinical staff may be unable to respond to requests
for additional coverage with such limited advance notice,
particularly during nights or weekends. Longer-term forecasting
horizons—such as 24-hour, weekly, or monthly
predictions—may provide a more practical foundation for surge
planning. While many studies have adopted daily or multiday
horizons [21,22,26,63,64], the literature does not provide clear
evidence about which prediction window is most effective in
real-world practice. Given these constraints, future work will
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include a systematic evaluation of prediction windows across
both short and long horizons to identify the most practical and
operationally relevant timeframes for ED staffing.

Refinement of model adaptability and incorporation of more
external data sources could further enhance predictive
performance and real-world applicability. Another important
consideration is the potential for data drift, including both
covariate drift [65] and concept drift [66] over time. As clinical
workflows, hospital policies, and external conditions evolve,
model performance may degrade. To mitigate this risk, future
deployments should incorporate drift detection mechanisms and
model monitoring systems to ensure consistent forecast accuracy
and trigger retraining when necessary.

The proposed system is designed for real-time operation, and
a key direction for future work is its pilot deployment in a live
clinical environment. This will be accompanied by a
simulation-based evaluation to assess how the system integrates
into operational workflows and influences decision-making.
This study represents one component of a larger project,
specifically focusing on the development of a predictive model
for one of the PFMs—the waiting count. The broader project
includes additional modules to predict other PFMs, such as
boarding count and average waiting time, which will collectively
support a comprehensive decision-support system for ED
operations. Building on this, our future work will extend beyond
standard ML workflows by implementing a real-time
deployment architecture tailored for hospital operations. The
planned deployment pipeline will run within the partner
hospital’s internal supercomputing infrastructure, ingesting
hourly data streams from the ED tracking system, inpatient
units, weather application programming interfaces, and event
calendars. We will consider technologies such as columnar
storage formats (eg, Apache Parquet [67]) and embedded
analytical engines (eg, DuckDB [68]) to enable low-latency
access to recent data. A containerized preprocessing pipeline
using Docker [69] is envisioned to ensure consistent and
reproducible real-time data cleaning and feature engineering.
Model lifecycle management, including data versioning and
experiment tracking, will be managed by tools such as MLflow
[70], enabling continuous preprocessing, inference, and updates
as new data arrives. Predictions will ultimately feed into a
decision support module to provide early warnings for crowding,
with results visualized on an internal dashboard to enhance
operational planning. Additionally, future efforts will address
key implementation steps such as ensuring data privacy,
developing user-facing interfaces aligned with clinical
workflows, and conducting usability testing. The goal is to build
a fully automated infrastructure for continuous monitoring,
model retraining, and maintenance, supporting long-term
reliability and clinical utility.

Conclusions
The results of this study show that advanced ML approaches
are effective in predicting ED waiting counts based on
real-world data from our collaborating hospital. By integrating
multiple datasets—ED tracking, inpatient data, weather, and
significant dates—the research developed hourly and daily
prediction models. The hourly model provides real-time,
6-hour-ahead forecasts, enhancing decision-making and resource
allocation. The daily models offer insights into patient volumes
at daily averages, aiding in operational planning.

A comprehensive evaluation was conducted by testing 11
different ML algorithms on 16 distinct datasets, each generated
through careful feature engineering and hyperparameter
optimization to explore optimal feature combinations. The
results revealed that for the hourly prediction approach
(6-hour-ahead prediction), the TSiTPlus algorithm consistently
delivered the best performance, with DS15 emerging as the
most effective dataset. DS15 incorporated a diverse range of
features, including waiting count lags, rolling averages, patient
flow indicators, weather conditions, hospital census data, and
significant event markers. This combination enabled the model
to achieve an MAE of 4.19, MSE of 29.36, RMSE of 5.42, and
R² of 0.56, outperforming all other datasets. For the daily
prediction approach (predicting the next 24-hour average waiting
count), the best performance was achieved by the XCMPlus
model using DS12, with an MAE of 2.00, MSE of 6.64, RMSE
of 2.57, and an R² of 0.44. Through the creation and analysis
of multiple feature sets, we identified the most effective feature
combinations for improving prediction accuracy, demonstrating
the critical role of feature engineering in model optimization.

This study also incorporated detailed extreme case and
hour-of-the-day analyses to better understand prediction
performance under various conditions. Extreme case analysis
specifically evaluated how well the model predicts waiting
counts during periods of severe overcrowding, defined as values
exceeding the mean by 1, 2, or 3 SDs. The hour-of-the-day
analysis further highlighted performance variations throughout
the day, providing actionable insights into periods of higher
prediction uncertainty and variability. This research paper
represents one component of a larger decision support system
initiative; in the future, hourly and daily prediction
models—alongside additional PFMs such as boarding count
and treatment count—will be integrated and operated together
as part of a comprehensive, real-world decision-support system
for ED management. Such a system can improve resource
allocation, optimize staffing, and enhance overall operational
efficiency. By leveraging the hourly model’s real-time forecasts
and the daily model’s planning insights, ED administrators can
make data-driven decisions to better handle patient flow, reduce
overcrowding, and ensure timely care delivery.
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Abbreviations
ARIMA: autoregressive integrated moving average
BiLSTM: bidirectional long short-term memory
CNN: convolutional neural network
ED: emergency department
ESI: Emergency Severity Index
FCNPlus: fully convolutional network plus
FCP: full capacity protocol
ICU: intensive care unit
IRB: Institutional Review Board
LSTM: long short-term memory
MAE: mean absolute error
ML: machine learning
MSE: mean squared error
N-BEATS: neural basis expansion analysis for interpretable time series forecasting
PFCT: patient flow coordination team
PFM: patient flow measure
ResNetPlus: residual network plus
RF: random forest
RMSE: root mean squared error
RNN: recurrent neural network
Seq2Seq: sequence to sequence learning with neural networks
TSiTPlus: time series vision transformer plus
TSTPlus: time series transformer plus
XCMPlus: explainable convolutional neural network plus
XGBoost: extreme gradient boosting
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