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Abstract
Background: Rectal cancer (RC) is a common malignant tumor, with lymph node metastasis (LNM) being a critical
determinant of patient prognosis. Traditional diagnostic methods have limitations, necessitating the development of predictive
models using clinical data.
Objective: This study aimed to construct and validate machine learning (ML) models to predict LNM risk in patients with RC
based on clinical data.
Methods: Retrospective data from 2454 patients with RC (SEER [Surveillance, Epidemiology, and End Results] database)
were split into training (n=1954) and internal validation (n=500) sets. An external cohort (n=500) was obtained from the
First Affiliated Hospital of Anhui Medical University. Lymph node features identified via computed tomographic scans were
integrated with clinicopathological data. Variables were selected using LASSO (Least Absolute Shrinkage and Selection
Operator), followed by univariate and multivariate logistic regression. Eleven ML models (Logistic Regression, K-Nearest
Neighbors, Extremely Randomized Trees, Naive Bayes, XGBoost [XBG], Light Gradient Boosting Machine, Multilayer
Perceptron, Gradient Boosting, Support Vector Machine, Random Forest, and Ada-Boost) were evaluated via area under the
receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis.
Results: LNM prevalence was 26.9% (training), 27% (internal validation), and 81% (external validation). Independent LNM
predictors included tumor grade, clinical T stage, N stage, tumor length, neural invasion, and total lymph nodes. Internal
validation AUC ranged from 0.859 to 0.964; external validation AUC was 0.735‐0.838. In the internal validation set, Random
Forest and Extremely Randomized Trees achieved the highest AUC (0.964, 95% CI 0.950‐0.978), while XGB demonstrated
superior cross-cohort stability (AUC 0.942, 95% CI 0.925‐0.959). For external validation, Gradient Boosting had the highest
AUC (0.838, 95% CI 0.801‐0.875), followed by XGB (0.832, 95%CI 0.794‐0.869). XGB showed minimal calibration error
with curves closest to the ideal diagonal and yielded the highest net benefit in decision curve analysis across critical thresholds.
Conclusions: This study successfully developed and validated 11 ML models to predict LNM risk in RC. The XGB model
was optimal, achieving an AUC >0.9 in 10 internal models and an AUC >0.8 in 7 external models. The identified predictors of
LNM can facilitate early diagnosis and personalized treatment, highlighting the potential of integrating computed tomographic
scan data with clinicopathological findings to build effective predictive models.
Trial Registration: Chinese Clinical Trial Registry ChiCTR2400094858; https://www.chictr.org.cn/showproj.html?
proj=254325
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Introduction
Rectal cancer (RC) is among the most prevalent malignant
tumors globally and is currently the second leading cause
of cancer-related deaths worldwide [1,2]. A recent study [3]
projects that by 2040, the incidence of RC will rise to 3.2
million new cases annually, with 1.6 million deaths world-
wide. Lymph node metastasis (LNM) is a critical determi-
nant of poor prognosis in RC, and numerous studies [4-7]
have shown that accurate prediction of LNM is crucial for
treatment selection in patients and prognostic assessment.
Initially, while current imaging technologies can assess the
risk of LNM to some degree [8-10], they largely depend
on radiologists’ anatomical expertise for evaluation [11].
However, these methods still face limitations in terms
of accuracy and efficiency [12]. Specifically, conventional
computed tomography (CT)–based N staging struggles to
detect small metastatic lymph nodes (<5 mm) and subtle
morphological changes (eg, irregular borders, heterogeneous
texture), which are critical for early metastasis diagnosis but
require expert manual annotation [13]. Second, pathologists
determine the presence of LNM in patients with RC based
on clinical pathology reports. This approach is inefficient
and subject to the constraints of the individual pathologist’s
expertise.

In recent years, the rapid advancement of machine learning
(ML) technology has led to its growing application in the
medical field, particularly in disease prediction, diagnosis,
and treatment decision-making, demonstrating significant
potential [14,15]. ML algorithms can process and analyze
large volumes of clinical data, identifying disease-related
patterns and features, which enhances the accuracy of
predictive models [16]. However, most existing ML models
rely on automated radiomic features or clinical data alone,
neglecting the value of radiologist-annotated CT morpho-
logical features [17]. In predicting LNM in RC, previous
studies have utilized ML models, including Support Vector
Machines, neural networks, and decision trees, achieving
notable results [18-21]. Both clinical data and CT results
are not entirely accurate in predicting pathological LNM. In
the study by Li et al [22], the overall accuracy of N stage
based on CT images ranged from 59% to 68%. Meanwhile,
up to 70% of metastatic lymph nodes in colorectal cancer
have a diameter of less than 5 mm. This indicates that
both clinicopathological features and preoperative CT have
certain limitations in predicting the malignant lymph node
status of patients with T1 colorectal cancer. Therefore, there
is an urgent need to develop novel predictive tools that
integrate ML with radiological parameters and clinical data,
thereby enhancing the accuracy and efficiency of diagnostic
processes. Recent evidence suggests that systematic manual
annotation by trained radiologists can improve the sensitivity
of detecting sub-centimeter metastatic lymph nodes compared

with routine clinical reports. This highlights the potential of
this method in bridging current diagnostic gaps [23].

This study aimed to develop and validate ML models
using clinical data to predict LNM risk in RC. We suc-
cessfully constructed and validated 11 predictive models
integrating radiologist-annotated CT lymph node features
with clinicopathological data. These models show significant
potential to assist clinicians in early diagnosis and personal-
ized treatment planning. We anticipate that the findings will
provide new insights for RC management and serve as a
valuable reference for future research and practice.

Methods
Data Collection and Inclusion Criteria
This study encompassed clinical data from 2454 patients with
RC in the SEER database, wherein 1954 cases were ran-
domly selected to form the training cohort, and the remain-
ing 500 formed the internal validation cohort. Additionally,
it included data from 500 patients with RC treated at the
author’s hospital between January 1, 2017, and December
31, 2023, which served as the external validation cohort.
The inclusion criteria were (1) patients with RC staged
as I-IV according to the American Joint Committee on
Cancer (AJCC) staging system; (2) those who underwent
curative surgery; and (3) those with complete clinical and
pathological information; and (4) radical surgery in stage
IV patients. In this study, some patients with stage IV RC
with oligometastasis (limited resectable metastases) or locally
advanced tumors with resectable metastatic lesions underwent
radical surgery after evaluation by a multidisciplinary team.
The surgical decision was based on the multidisciplinary
team’s comprehensive assessment of tumor burden, physical
condition, expected survival, and surgical risks. The goal
was to achieve R0 resection and combine it with postoper-
ative adjuvant therapy to reduce recurrence risk. Data for
these patients were complete and underwent strict screen-
ing to ensure they met the research criteria. The exclusion
criteria included (1) a history of other malignant tumors,
(2) inability to assess lymph node status, (3) incomplete
clinical information, and (4) administration of neoadjuvant
therapy. The LNM status for 2454 patients with RC in the
SEER database was ascertained from pathological assess-
ments of surgical specimens. For the 500 cases at the
author’s hospital, LNM status, clinical T and N staging, and
tumor length were determined by precisely annotating and
measuring contrast-enhanced CT images with the radiologi-
cal software ITK-SNAP software (version: 4.0.1; Professor
Paul Yushkevich's team, University of Pennsylvania, USA),
corroborated by pathological assessments from surgical
specimens. For example, the definition of tumor length
in the SEER database (training/internal validation cohorts)
was measured from pathological specimens. In the external
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validation cohort, tumor length was annotated and measured
on contrast-enhanced CT scans using ITK-SNAP software
by radiologists, with cross-validation against postoperative
pathology (mean error <0.3 cm).
Clinical Pathological Features
The study collected the following clinical and pathological
characteristics of the patients: sex, age, perineural invasion,
carcinoembryonic antigen (CEA), tumor length, clinical T
stage, N stage, tumor differentiation, chemotherapy and
radiotherapy administration, liver metastasis status, and tumor
histology. For the training and internal validation cohorts,
data extraction was conducted using the SEER*STAT
software, version 8.4.3 (Surveillance, Epidemiology, and End
Results Program, National Cancer Institute, USA). In the

external validation cohort, clinical data were independently
collected and processed by 2 researchers, while CT images
were annotated and measured with precision by 50 physi-
cians, evenly distributed into 25 groups, each consisting of
2 physicians for cross-validation purposes. The inclusion
criteria for metastatic lymph nodes were fulfilled if any of
the following five conditions was met: (1) the short axis/
long axis ratio was ≥0.8; (2) the short axis was ≥5 mm; (3)
there was aggregation of three or more lymph nodes; (4)
the lymph node had an irregular shape with a rough margin;
(5) the lymph node signal was inhomogeneous, with high
signal areas in the CT imaging for lymph nodes (including
mesenteric and presacral lymph nodes). Figure 1 illustrates
the acquisition process.
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Figure 1. Workflow of this study. AB: Ada-Boost; CT: computed tomography; ET: Extremely Randomized Trees; GB: Gradient Boosting; KNN:
K-Nearest Neighbors; LGBM: Light Gradient Boosting Machine; LR: Logistic Regression; MLP: Multilayer Perceptron; NB: Naive Bayes; RF:
Random Forest; ROC: receiver operating characteristic; SEER: Surveillance Epidemiology and End Results; SVM: Support Vector Machine; XGB:
XGBoost.

Data Processing and Analysis
All collected data will be subjected to rigorous preprocessing
in Python, encompassing data cleaning, outlier detection, and
missing value imputation. Subsequent statistical analysis will
utilize suitable methods including χ2 tests, ANOVA, and both
univariate and multivariate regression analyses to evaluate the
correlations between clinical pathological features and LNM.

Feature Engineering and Selection
In this study, we standardized numerical features, includ-
ing tumor length, to mitigate the effects of varying scales
and enhance their compatibility with the input require-
ments of ML models. For categorical variables like clin-
ical T staging, we applied label encoding to transform
them into numerical data. All features were first normalized
to eliminate scale effects (Multimedia Appendix 1). We
then performed univariate feature screening via independent
t tests or Mann-Whitney U tests (P≤.05), retaining fea-
tures. Next, Pearson correlation analysis reduced redundancy
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by removing features with mean absolute correlation
>0.9, yielding decorrelated features. Finally, features with
nonzero coefficients were selected through LASSO regres-
sion (10-fold cross-validated) with regularization parameter
α. Notably, this LASSO-based selection served as initial
screening; tree-based models (Random Forest [RF]/XGBoost
[XGB]/Light Gradient Boosting Machine [LGBM]) subse-
quently performed endogenous feature reweighting to capture
nonlinear interactions during model training. This method
incorporates an L1 regularization term that aids in pinpoint-
ing the most influential features while promoting model
sparsity. Furthermore, we performed a correlation analysis
among the features to verify the independence of the selected
variables. Utilizing the principle of Permutation Importance,
we evaluated the importance of each feature to ascertain its
contribution to the model’s predictive performance.
Predictive Model Construction and
Validation
This study developed 11 distinct ML models: Logistic
Regression (LR), Naive Bayes (NB), Support Vector
Machine, K-Nearest Neighbors (KNN), RF, Extremely
Randomized Trees (ET), XGB, LGBM, Gradient Boosting
(GB), Ada-Boost (AB), and Multilayer Perceptron (MLP),
for predicting the risk of LNM in patients with RC (Mul-
timedia Appendix 2). To counteract the imbalance in data
distribution, we used random oversampling techniques and
applied a penalty parameter λ to drive the coefficient
estimates of nonsignificant features toward zero. The models’
performance was evaluated through 10-fold cross-valida-
tion. The performance of each ML classifier was assessed
using the receiver operating characteristic curve, where a
higher area under the receiver operating characteristic curve
(AUC) indicates greater predictive accuracy. We evaluated
the variable weights and permutation importance and used
heatmaps to visualize the significance and correlations among
the variables. To select the optimal model, we evaluated each
model’s performance across multiple metrics: AUC (with
95% CI), accuracy, sensitivity, specificity, and F1 score.
Calibration curves and decision curve analysis (DCA) were
further employed to assess calibration accuracy and clini-
cal utility, particularly focusing on net benefits at critical
thresholds.

Ethical Considerations
This study was approved by the Ethics Committee of the First
Affiliated Hospital of Anhui Medical University (Appro-
val No.: Quick-PJ 2023-13-34). As a retrospective analy-
sis using anonymized data, the requirement for informed
consent was waived. Primary data collection in the SEER
database obtained patient informed consent, and its Institu-
tional Review Board explicitly authorized secondary analysis
without additional approval. All direct identifiers (including
names, ID numbers, medical record numbers) were removed
from our hospital’s dataset, with only aggregated data utilized
in the analyses to ensure privacy protection. No partici-
pant compensation was involved, and no identifiable images
appear in the manuscript or supplementary materials.

Results
Demographic Characteristics and
Parameter Selection
In our study, the training cohort included 1954 patients with
RC, the internal validation cohort included 500 patients with
RC, and the external validation cohort included 500 patients
with RC. Across the training cohort, internal validation
cohort, and external validation cohort, stratification by LNM
status (positive vs negative) revealed statistically significant
differences in age, gender, total lymph node count, tumor
length, neural invasion, clinical T stage, N stage, liver
metastasis status, tumor histology, and tumor differentiation
(all P<.001; see Table 1). For CEA, the P value was .001,
indicating a statistically significant difference (Table 1). We
used the LASSO regression method to identify a significant
set of risk factors for predicting the risk of LNM in patients
with RC.
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Risk Factors for Lymph Node Metastasis
Using the nonzero coefficients from the LASSO logistic
regression model as a guide, we applied both the LASSO
method and the multivariate logistic regression model to
identify the risk factors associated with LNM in patients with
RC, as depicted in Figure 2. The penalty parameters λ for the
internal and external validation sets were found to be 0.0047
and 0.0036, respectively. Univariate and multivariate analyses
yielded the forest plots for both the internal and external
validation sets, as shown in Figure 3. Key predictors from

univariate and multivariate analyses are detailed in Table 2.
This analysis assists in pinpointing factors that potentially
contribute to LNM, marking a pivotal step in comprehend-
ing disease progression and in formulating evidence-based
treatment strategies. The multivariate logistic regression
analysis of the external validation set identified number of
peritumoral and total lymph nodes examined (P=.022), tumor
length (P<.001), neural invasion (P<.001), clinical T stage
(P<.001), N stage (P<.01), and tumor differentiation grade
(P<.01) as independent risk factors for LNM.

Figure 2. Feature selection using LASSO logistic regression. (A) Adjustment parameters in the LASSO logistic regression for both the training and
internal validation sets (C) are selected using 10-fold cross-validation with minimum criteria. The relationship between binomial deviation and the
logarithm of the penalty parameter (λ) is depicted. The optimal λ is indicated by a black vertical line, determined by the minimum criterion and
the minimum standard error of λ. (B) LASSO coefficients for 12 clinical factors in the training set and internal validation set (D) are presented,
illustrating the coefficient profiles against the logarithm of λ. LASSO: Least Absolute Shrinkage and Selection Operator; MSE: mean squared error.
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Figure 3. Univariate and multivariate logistic regression analyses yielded a forest plot of odds ratios. (A) In the external validation cohort,
single-factor analysis yielded a forest plot of odds ratio. (B) In the external validation cohort, multiple factor analysis yielded a forest plot of odds
ratios. (C) In the internal validation cohort, single-factor analysis yielded a forest plot of odds ratios. (D) In the internal validation cohort, multiple
factor analysis yielded a forest plot of odds ratios. CEA: carcinoembryonic antigen; PNI: perineural invasion.

Table 2. Univariate and multivariate logistic regression analysis.

Characteristics
Univariate logistic Multivariable logistics
ORa (CI) P value OR (CI) P value

Internal validation cohort
  Sex 0.382 (0.347‐0.420) <.001 0.999 (0.803‐1.244) .99
  Age 0.888 (0.879‐0.896) <.001 1.046 (1.002‐1.092) .09
  Total number of lymph

nodes
0.962 (0.958‐0.966) <.001 1.017 (1.006‐1.028) .01

  Tumor length 0.847 (0.834‐0.860) <.001 0.828 (0.786‐0.873) <.001
  PNIb 1.347 (1.106‐1.640) .01 3.372 (2.472‐4.600) <.001
  CEAc 0.465 (0.412‐0.524) <.001 1.245 (0.992‐1.564) .11
  Clinical T stage 0.741 (0.722‐0.761) <.001 0.711 (0.602‐0.839) <.001
  N stage 1.193 (1.103‐1.290) <.001 1569.010 (300.065‐

8209.112)
<.001

  Liver metastasis 1.645 (1.131‐2.392) .03 1.533 (0.931‐2.522) .16
  Differentiation extent 0.375 (0.347‐0.405) <.001 0.001 (0.000‐0.008) <.001
External validation cohort
  Sex 0.383 (0.344‐0.425) <.001 1.042 (0.821‐1.323) .78
  Age 0.887 (0.878‐0.897) <.001 1.055 (1.007‐1.105) .06
  Total number of lymph

nodes
0.962 (0958‐0.967) <.001 1.016 (1.005‐1.028) .02

  Tumor length 0.848 (0.834‐0.862) <.001 0.843 (0.797‐0.891) <.001
  PNI 1.337 (1.077‐1.660) .03 3.142 (2.246‐4.397) <.001
  CEA 0.465 (0.408‐0.531) <.001 1.295 (1.012‐1.655) .09
  Clinical T stage 0.740 (0.718‐0.762) <.001 0.681 (0.568‐0.815) <.001
  N stage 1.185 (1.088‐1.292) <.001 1307.798 (249.635‐

6849.973)
<.001
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Characteristics
Univariate logistic Multivariable logistics
ORa (CI) P value OR (CI) P value

  Liver metastasis 1.400 (0.945‐2.075) .16 Ref (Ref) Ref
  Differentiation extent 0.374 (0.344‐0.407) <.001 0.002 (0.000‐0.009) <.001

aOR: odds ratio.
bPNI: perineural invasion.
cCEA: carcinoembryonic antigen.

Optimal Predictive Model Selection

Feature Weight Ranking
Based on the penalty coefficient obtained from cross-valida-
tion, we selected features with coefficients greater than 0 and
represented them using feature weights. The features in the
training set and internal validation set are ranked as follows:
Clinical N staging, receipt of chemotherapy or radiotherapy,
neural invasion, tumor histology, tumor length, number of

peritumoral and total lymph nodes examined, liver metastasis,
age, CEA, clinical T stage, and tumor length (Figure 4A). In
contrast, the features in the training set and external valida-
tion set are ranked as follows: Clinical N staging, receipt
of chemotherapy or radiotherapy, neural invasion, tumor
histology, tumor length, liver metastasis, gender, differentia-
tion degree, age, CEA, tumor length, and clinical T stage
(Figure 4B).

Figure 4. The weight of clinical features in the lymph node prediction model of rectal cancer. (A) Internal validation cohort. (B) External validation
cohort. CEA: carcinoembryonic antigen; PNI: perineural invasion.

Model Performance Evaluation
In the internal validation cohort (n=500), the 11 ML models
demonstrated a wide range of discriminative performance
(AUC range 0.859‐0.964). RF (AUC 0.964, 95% CI 0.950‐
0.978) and ET (AUC 0.964, 95% CI 0.949‐0.978) achieved
the highest AUC values, with sensitivities of 0.881 and 0.983
and specificities of 0.900 and 0.828, respectively (Multime-
dia Appendix 3). NB showed the lowest AUC (0.859, 95%
CI 0.830‐0.887) despite perfect sensitivity (1.000) but with

specificity limited to 0.566. The XGB model yielded an AUC
of 0.942 (95% CI 0.925‐0.959), sensitivity of 0.795, and
specificity of 0.913. In the external cohort (n=500), Gradi-
ent Boosting exhibited the highest AUC (0.838, 95% CI
0.801‐0.875) but the lowest sensitivity (0.685); XGB (AUC
0.832, 95% CI 0.794‐0.869) and LGBM (AUC 0.831, 95% CI
0.793‐0.869) ranked second and third, with XGB demonstrat-
ing the smallest sensitivity-specificity gap (Δ=0.113) and an
F1-score of 0.690 (Table 3).

Table 3. Comprehensive performance metrics of machine learning models for lymph node metastasis prediction in patients with rectal cancer across
validation cohorts.
Model name AUCa (95% CI) Accuracy Sensitivity Specificity F1b

Internal validation cohort
  LRc 0.924 (0.9043‐0.9435) 0.849 0.824 0.858 0.747
  Naive Bayes 0.859 (0.8300‐0.8873) 0.684 1.000 0.566 0.632
  SVMd 0.924 (0.9038‐0.9446) 0.801 0.920 0.756 0.715
  KNNe 0.920 (0.8949‐0.9442) 0.869 0.864 0.871 0.781
  Random Forest 0.964 (0.9502‐0.9784) 0.895 0.881 0.900 0.820
  Extremely Randomized

Trees
0.964 (0.9491‐0.97820) 0.870 0.983 0.828 0.805
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Model name AUCa (95% CI) Accuracy Sensitivity Specificity F1b

  XGBoost 0.942 (0.9251‐0.9585) 0.881 0.795 0.913 0.784
  LGBMf 0.943 (0.9266‐0.9602) 0.872 0.835 0.886 0.780
  Gradient Boosting 0.909 (0.8889‐0.9298) 0.722 1.000 0.619 0.662
  AdaBoost 0.913 (0.8924‐0.9330) 0.756 0.989 0.669 0.688
  MLPg 0.935 (0.9168‐0.9525) 0.813 0.932 0.769 0.731
External validation cohort
  LRc 0.821 (0.7817‐0.8611) 0.760 0.702 0.789 0.667
  Naive Bayes 0.749 (0.7027‐0.7949) 0.662 0.845 0.567 0.631
  SVMd 0.814 (0.7734‐0.8539) 0.764 0.696 0.799 0.669
  KNNe 0.781 (0.7383‐0.8230) 0.697 0.756 0.666 0.630
  Random Forest 0.759 (0.7137‐0.8047) 0.725 0.655 0.762 0.620
  Extremely Randomized

Trees
0.735 (0.6894‐0.7813) 0.672 0.762 0.625 0.614

  XGBoost 0.832 (0.7943‐0.8695) 0.752 0.708 0.821 0.690
  LGBMf 0.831 (0.7928‐0.8693) 0.776 0.732 0.799 0.691
  Gradient Boosting 0.838 (0.8012‐0.8750) 0.796 0.685 0.854 0.697
  AdaBoost 0.815 (0 7761‐0.8536) 0.768 0.589 0.861 0.635
  MLPg 0.830 (0.7921‐0.8671) 0.772 0.649 0.836 0.661

aAUC: Area Under the receiver operating characteristic curve.
bF1 Harmonic mean of precision and recall.
cLR: Logistic Regression.
dSVM: Support Vector Machine.
eKNN: K-Nearest Neighbors.
fLGBM: Light Gradient Boosting Machine.
gMLP: Multilayer Perceptron.

The relative importance of model variables varies between
the internal and external validation sets, depending on the
characteristics. In the internal validation set, the clinical
N-stage is the most important variable for the RF, ET, and
XGB models. However, for the LGBM model, age and
tumor length are the most important variables. In the external

validation set, tumor length, clinical N-stage, and nerve
invasion are among the top three important features for both
the GB and LGBM models (Figure 5). We assessed feature
correlations using a heatmap (Figure 6). In both validation
sets, no significant correlations were observed, indicating the
absence of collinearity and the independence of variables.

JMIR MEDICAL INFORMATICS Hou et al

https://medinform.jmir.org/2025/1/e73765 JMIR Med Inform 2025 | vol. 13 | e73765 | p. 11
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e73765


Figure 5. Rank the relative importance of each input variable. (A) Internal validation cohort and (B) external validation cohort. CEA: carcinoem-
bryonic antigen; LGBM: Light Gradient Boosting Machine; PNI: perineural invasion; XGB: XGBoost.
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Figure 6. Correlation of clinical features. (A) Internal validation cohort and (B) external validation cohort.
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Calibration Curve Analysis
Calibration curves (Figure 7) demonstrated the agreement
between predicted probabilities and observed event fre-
quencies. In the internal cohort (Figure 7A), the XGB
curve adhered closest to the ideal diagonal (45° refer-
ence line) throughout, with minimal deviation from actual
frequencies in the 0.3‐0.7 probability range; ET exhibited
consistent positioning above the diagonal at >0.8 probabilities

(systematic overestimation), while RF deviated slightly below
the diagonal between 0.6 and 0.8 (mild underestimation).
In the external cohort (Figure 7B), XGB maintained the
smallest overall deviation (closest to the diagonal); GB
showed systematic distribution below the diagonal at 0.4‐0.6
probabilities (underestimation), and LGBM positioned above
the diagonal at <0.3 thresholds (overestimation).

Figure 7. Calibration curve of lymph node metastasis prediction in the internal validation cohort (A) and external validation cohort (B) of patients.
The dashed diagonal line represents perfect calibration where predicted probability equals actual probability. KNN: K-Nearest Neighbors; LR:
Logistic Regression; MLP: Multilayer Perceptron; SVM: Support Vector Machine.

Decision Curve Analysis
We evaluated the net benefits of the models in both validation
sets using DCA (Figure 8). In the internal validation set, DCA
indicates that the XGB model has a net benefit similar to that
of the XGB and LGBM models at lower threshold probabil-
ities (approximately 0‐0.3). Furthermore, the XGB model
maintains net benefit across a broader range of threshold
probabilities (approximately 0‐0.9). Between 0.7 and 0.9,
where the net benefits of other models decrease, the net
benefit of the XGB model still sustains. The RF model shows

net benefit within the range of 0‐0.8. The ET model has
a net benefit from 0.1 to 0.75. The LGBM model demon-
strates net benefit in the range of 0.1‐0.7. In the external
validation set, DCA reveals that the XGB model’s net benefit
is higher than that of the GB and LGBM models when the
threshold probability is between 0.3 and 0.4. Furthermore, the
XGB model maintains net benefit across a broader range of
threshold probabilities (approximately 0‐0.4). The GB model
shows net benefit within the range of 0.1‐0.3, while the
LGBM model has net benefit from 0.1 to 0.35.
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Figure 8. Decision curve analysis of lymph node metastasis prediction in the internal validation cohort (A) and external validation cohort (B) of
patients with RC. DCA: decision curve analysis.

Final Model Selection
XGB was selected as the definitive predictive model through
comprehensive evaluation of cross-cohort discriminative
stability, calibration fidelity, and clinical utility. The model

achieved AUC values of 0.942 (95% CI 0.925‐0.959) in
the internal cohort and 0.832 (95% CI 0.794‐0.869) in the
external cohort, with a reduction in AUC of -0.110 between
cohorts. This reduction was smaller than those observed for
RF (−0.205), ET (−0.229), and GB (−0.071). Calibration
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curves demonstrated closest alignment to the ideal diagonal
in the internal cohort (minimal deviation at 0.3‐0.7 proba-
bilities), whereas ET systematically overestimated risk at
probabilities >0.8 and RF underestimated at 0.6‐0.8. In the
external cohort, XGB maintained minimal deviation, GB
underestimated at 0.4‐0.6 probabilities, and LGBM overesti-
mated at thresholds <0.3. DCA revealed that XGB sustained
the broadest net benefit range (0‐0.9) in the internal validation
set, outperforming comparison models at 0.7‐0.9 thresholds.
In the external set, it maintained net benefit across 0‐0.4
thresholds and yielded higher net benefit than GB and LGBM
at 0.3‐0.4 probability thresholds.
Confusion Matrix Analysis
Multimedia Appendix 4 displays the confusion matrices of
the XGB model in the internal (A) and external (B) validation
cohorts. In the internal cohort (n=500), the model correctly
identified 333 LNM-negative cases (true negative) and 107
metastasis-positive cases (true positive), with 32 false positive
and 28 false negative (FN) predictions. In the external cohort
(n=500), it detected 160 true negative and 216 true positive
cases, while generating 35 false positive and 89 FN classi-
fications. The positive predictive value was 77% (107/139)
in the internal cohort and 86.1% (216/251) in the external
cohort; the negative predictive values were 92.2% (333/361)
and 64.3% (160/249), respectively.

Discussion
Principal Findings
The main findings demonstrate that the XGB model achieved
optimal performance in predicting RC LNM, with tumor
differentiation grade, clinical T stage, tumor length, neural
invasion, N stage, and total lymph node count identified
as independent predictors. RC LNM significantly impacts
patient prognosis, necessitating accurate prediction of LNM
for the development of effective treatment plans. While
traditional diagnostic methods offer some insights, their
accuracy is constrained. This study employed ML algorithms
to develop 11 prediction models for RC LNM. We extracted
clinical data from the SEER database for the training and
internal validation sets. Additionally, we acquired relevant
clinical data from CT scans at the author’s hospital, uti-
lizing precise pixel-level annotation and measurement for
the external validation set. We filtered clinical data using
the LASSO, univariate, and multivariate logistic regression
analyses to develop and validate a predictive model for LNM.
The selection of the optimal model was determined through
comparative analysis of internal and external validation sets,
leveraging the AUC, calibration curves, and DCA for precise
assessment.

In this study, we successfully developed and validated 11
ML models for predicting LNM in RC. This study revealed
three key findings. First, the six independent predictors of
LNM include tumor differentiation, clinical T stage, N stage,
tumor length, total number of lymph nodes, and neural
invasion. Second, among the 11 constructed ML models for
predicting LNM, 10 models had an AUC greater than 0.9 in

the internal validation set and 7 models had an AUC greater
than 0.80 in the external validation set. Lastly, following
a comparison of the models’ performance and their valida-
tion set discrepancies, the XGB model emerged as the most
suitable among the 11 models.
Comparison With Prior Studies
Utilizing LASSO logistic regression and multivariate
analysis, we identified tumor differentiation, clinical T stage,
N stage, tumor length, neural invasion, and total number of
lymph nodes as the key clinical predictive factors. Low tumor
differentiation, advanced clinical T stage, advanced N stage,
increased tumor length, and neural invasion are significantly
associated with LNM. Identifying these factors is essential
to comprehend the tumor’s biological behavior and invasive
potential. Variations in feature importance across models
(Figure 5) arise from the following factors: First, clinical
data encompass both continuous (eg, tumor length) and
categorical variables (eg, pathological grade), where XGB’s
exact splitting favors continuous features while LGBM’s
histogram-based algorithm optimizes high-dimensional sparse
feature processing. Second, regularization differences lead
to distinct weight allocation—XGB’s combined L1/L2
regularization strictly controls overfitting, whereas LGBM’s
leaf-wise growth prioritizes locally significant features. Third,
although LASSO-based feature selection reduced dimension-
ality, residual feature correlations are differentially processed.
These inherent algorithmic variations confirm that no single
model can fully capture feature relationships, necessitating
multimodel comparison for complementary insights. Poorly
differentiated tumor cells show greater invasiveness and a
higher likelihood of LNM. A study by Saraste et al [24]
involving 1664 patients with RC from the Swedish Rectal
Cancer Registry between 2007 and 2010 concluded through
multivariate analysis that poorly differentiated tumors are a
significant risk factor for LNM, aligning with the findings
of this study. Advanced clinical T stage is a direct indicator
of deeper tumor invasion. A study by von den Grün et al
[25], which involved a binary logistic regression multivariate
analysis of 776 patients with RC, revealed that advanced
T stage is a significant prognostic factor for LNM in RC.
Previous studies [25-27] have established that clinical T
stage and N stage significantly influence the prognosis and
treatment of RC, aligning with the results of the univariate
and multivariate analyses presented in Table 2. Increased
tumor length may afford tumor cells increased opportuni-
ties to interact with adjacent lymph nodes. In a study [28]
that employed 7 clinical parameters as independent prognos-
tic factors to develop a nomogram prediction model, 6484
patients with RC from the SEER database were analyzed
using Cox proportional hazards regression. This analysis
identified independent prognostic factors such as T stage and
tumor length. However, unlike this study, the aforementioned
research did not include an external validation cohort. The
presence of neural invasion indicates a high level of tumor
invasiveness and the potential for dissemination along neural
pathways. Neural invasion is a significant factor in both
univariate and multivariate analyses, as well as in evaluating
the importance of model features. Studies by Ueno et al
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[29] and Song et al [30] have shown that neural invasion
is a significant factor in LNM in RC. The total number of
perirectal examined lymph nodes, as a key factor, plays a
crucial role in accurate staging and prognostic assessment of
RC. Guan et al [31] found that a higher number of perirectal
examined lymph nodes in RC is linked to more accurate
lymph node staging and improved survival. Analyzing data
from stage I to III resected RC in multi-institutional Chi-
nese and US SEER databases revealed that an increasing
number of perirectal examined lymph nodes significantly
raises the proportion of cases shifting from lymph node-nega-
tive to lymph node-positive. Furthermore, after adjusting for
confounding factors, overall survival consistently improves.

Utilizing the selected clinical characteristics, we developed
a predictive model for LNM in RC. We extracted a cohort of
2454 patients with RC from the SEER database and randomly
selected 500 cases for the internal validation cohort. The
remaining 1954 cases served as the training cohort, while
an additional 500 cases from the author’s hospital constituted
the external validation cohort. In the internal validation set,
the RF and ET models achieved an AUC of 0.964. The
LGBM and XGB models also performed remarkably well,
with AUC values of 0.943 and 0.942, respectively. Among
all models, the NB model had the lowest AUC of 0.859,
while the remaining 10 models all exceeded 0.9. In the
external validation set, the GB model demonstrated the best
performance with an AUC of 0.838, followed by the XGB
and LGBM models, which reached AUC values of 0.832
and 0.831, respectively. In the study by Guan et al [18],
6578 patients with RC were enrolled across several institu-
tions, including the Cancer Hospital of the Chinese Acad-
emy of Medical Sciences, Peking Union Medical College,
Changhai Hospital of Naval Medical University, and the
Second Affiliated Hospital of Harbin Medical University.
The XGB model was identified as the optimal in their
study, achieving AUCs of 0.78 and 0.71 across two valida-
tion cohorts. In contrast, our study’s XGB model showed
superior performance, achieving an AUC of 0.942 in the
internal validation cohort and 0.832 in the external validation
cohort. In the external validation cohort, LNM status, clinical
T and N stages, and tumor length were ascertained through
the annotation of CT imaging combined with clinical data.
However, across both internal and external validation cohorts,
most models in this study demonstrated relatively good
performance across various validation sets, with the AUCs
of the optimal models all exceeding 0.80, indicating a certain
level of accuracy and reliability. These results demonstrate
that our models exhibit high stability and generalizability
across diverse datasets. Regardless of whether the patients
with RC are in the United States or China, our models
show accurate predictive ability for forecasting LNM in RC.
Second, the LNM status and associated details in the 500
case records from the hospital were meticulously annotated
by 50 physicians. These annotations were made by integrat-
ing clinical and pathological data using imaging software
on enhanced CT scans. Following the initial annotation,
two radiologists, possessing 8 and 20 years of experience,
respectively, conducted a review and confirmation of the
annotations. The multi-physician annotation strategy, which

incorporates clinical pathology data and imaging software,
boosts the reliability of the data and, in turn, elevates the
predictive accuracy of the model. A similar approach was
taken in Liu et al’s study [32], wherein integrating clinical
data with ML for magnetic resonance image analysis elevated
the AUC value of single-region radiomics from 0.702 to
0.827. In a study by Wan et al [33], an automated segmenta-
tion method using deep learning demonstrated potential for
predicting LNM in RC. However, our manual annotation
method ensures precise localization of small lymph nodes
(diameter < 5 mm) and ambiguous lesions, which are crucial
for RC staging but challenging for automated tools. This
strategy is particularly valuable in resource-limited environ-
ments lacking artificial intelligence infrastructure. Although
magnetic resonance imaging is widely regarded as the gold
standard for local T-staging and lymph node status assess-
ment in RC, in this study, we chose to analyze CT images
due to the diversity of data sources and the prevalence of CT
images. CT scanning is less costly and quicker. Particularly,
in resource-limited medical settings, CT remains a routine
examination tool that can effectively provide important
information on lymph node status and tumor staging. This
highlights the benefits of integrating both clinical data and
imaging information into ML models. While the annotation of
CT images and their incorporation are standard practices in
traditional radiomics and the development of deep learning
models, they are less common in models derived solely
from clinical data. This study shows that employing imaging
software to annotate CT scans and extract data for clinical
predictive models not only yields high-quality data for model
development but also presents an innovative approach to data
acquisition and processing for future studies.
Strengths and Limitations
A key innovation of this study is the comprehensive
utilization of diverse advanced ML algorithms, coupled with
the validation of the model’s performance across data from
various sources. Our models have shown strong generaliza-
tion capabilities, as evidenced by their performance in both
internal and external validation cohorts. Additionally, using
LASSO logistic regression for feature selection enabled us
to pinpoint key clinical predictive factors. This approach
not only bolstered the model’s predictive accuracy but also
improved its interpretability. We presented the importance
of features in a ranked order and investigated the correla-
tions among variables with a correlation heatmap. Finally,
the optimal model was ascertained through a comprehen-
sive, evidence-based methodology integrating multimetric
performance evaluation (AUC, 95% CI, accuracy, sensitiv-
ity, specificity, and F1-score), augmented by high-resolution
assessment of calibration curves and DCA.

Despite strong performance in both the internal and
external validation sets, our model in this study has some
limitations. First, the dataset is constrained by its population
representativeness. The SEER database comprises exclusively
American cases, and the dataset from the author’s hospital
consists solely of Chinese cases. This could impact the
model’s ability to generalize across diverse populations. In
Shulman et al.’s study [34], which analyzed 34,500 patients
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with RC, it was found that patients of different races
exhibited varying lymph node statuses. Second, the model
did not include variables like BMI, alpha-fetoprotein, cancer
antigen 125, carbohydrate antigen 19-9 [18], which were
previously explored in clinical information. This omission
could impact the model’s predictive accuracy and compre-
hensiveness. Future studies could further refine predictive
accuracy by incorporating serum biomarkers (eg, BMI,
carbohydrate antigen 19-9) and emerging indicators such as
circulating tumor DNA, combined with radiomic features.
Third, FN classifications warrant clinical attention. The FN
rate was 20.7% (28/135) in the internal cohort and 29.2%
(89/305) in the external cohort. Such misclassifications may
lead to undertreatment (eg, omission of adjuvant chemother-
apy or lymph node dissection), increasing risks of recurrence
and metastasis. Crucially, while our model was developed
to surpass conventional CT assessments, reducing FNs
remains a priority for future optimization through biomarker
integration or advanced imaging techniques. The study by
Yu et al [35] demonstrated that incorporating multicenter
data and multimodal features significantly reduced FN rates,
providing a feasible direction for refining our model. In
this study, we utilized 11 ML methods. Future research

could further enhance the model’s predictive performance
by integrating diverse ML algorithms and leveraging their
unique strengths.
Conclusions
In conclusion, this study successfully developed a ML-based
risk prediction model for LNM in RC, validating its per-
formance using both an internal and an external validation
set. Through the analysis of extensive clinicopathological
data, we identified tumor differentiation, clinical T stage,
N stage, tumor length, neural invasion, and total number
of lymph nodes as independent predictive factors. Among
the 11 models evaluated, the XGB model demonstrated the
best predictive performance. These models are anticipated
to aid in clinical decision-making, offering vital insights for
treatment selection and prognostic assessment of patients
with RC. They hold significant clinical utility and scien-
tific importance. Concurrently, the external validation set
demonstrates that clinical data derived from CT imaging
annotation and measurement are comparable to traditionally
obtained clinical data and can effectively serve as a source of
clinical data for ML applications.

Acknowledgments
This research was collectively supported by The University Synergy Innovation Program of Anhui Province (Grant No.
GXXT-2022-056) and the Key Project of the Department of Education Quality Engineering (Grant No. 2023jyxm1111). We
thank the SEER (Surveillance, Epidemiology, and End Results) database and the First Affiliated Hospital of Anhui Medical
University for providing patient data. The authors sincerely thank all the staff of our department for their help in data
collection, sample annotation, and manuscript writing. The following is the list of personnel who have contributed to pixelated
annotation: Jiarui Zhang, Xiaosu Li, Xiaoya Wang, Wenna Chai, Chuiyan Huang, Tianxu Yang, Jingwen Hu, Yiran Zhang,
Ping Wang, Bingjing Zhu, Jiani Ma, Yuyan Ma.
Data Availability
The raw data sets are available only upon reasonable request because of privacy and ethical restrictions. The data are not
publicly available because of these restrictions. The code is available upon reasonable request.
Authors’ Contributions
WH and CL are primarily responsible for data organization, analysis, and model construction. ZW was in charge of literature
search and data collection. WW provided guidance on data analysis. SW offered guidance on model construction and
validation. BZ was responsible for literature quality assessment and manuscript review and served as the corresponding author.
All authors have read and approved the manuscript.
Conflicts of Interest
None declared.
Multimedia Appendix 1
Normalization standards of clinical data.
[DOCX File (Microsoft Word File), 14 KB-Multimedia Appendix 1]

Multimedia Appendix 2
The hyperparameter settings and tuning strategies of the 11 models.
[DOCX File (Microsoft Word File), 15 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Range standard for property values of clinical features in models.
[DOCX File (Microsoft Word File), 20 KB-Multimedia Appendix 3]

Multimedia Appendix 4

JMIR MEDICAL INFORMATICS Hou et al

https://medinform.jmir.org/2025/1/e73765 JMIR Med Inform 2025 | vol. 13 | e73765 | p. 18
(page number not for citation purposes)

https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app1.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app1.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app2.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app2.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app3.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app3.docx
https://medinform.jmir.org/2025/1/e73765


Confusion matrices for lymph node metastasis (LNM) prediction in rectal cancer (RC) patients.
[PNG File (Portable Network Graphics File), 86 KB-Multimedia Appendix 4]
References
1. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. May

2020;70(3):145-164. [doi: 10.3322/caac.21601] [Medline: 32133645]
2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality

worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. [doi: 10.3322/caac.21834] [Medline:
38572751]

3. Morgan E, Arnold M, Gini A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality
estimates from GLOBOCAN. Gut. Feb 2023;72(2):338-344. [doi: 10.1136/gutjnl-2022-327736] [Medline: 36604116]

4. Liersch T, Langer C, Ghadimi BM, et al. Lymph node status and TS gene expression are prognostic markers in stage
II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J Clin Oncol. Sep 1,
2006;24(25):4062-4068. [doi: 10.1200/JCO.2005.04.2739] [Medline: 16943523]

5. Kuru B, Camlibel M, Dinç S, Erdem E, Alagöl H. Prognostic factors affecting local recurrence and survival for operable
rectal cancers. J Exp Clin Cancer Res. Sep 2002;21(3):329-335. [Medline: 12385573]

6. Leibold T, Shia J, Ruo L, et al. Prognostic implications of the distribution of lymph node metastases in rectal cancer after
neoadjuvant chemoradiotherapy. J Clin Oncol. May 1, 2008;26(13):2106-2111. [doi: 10.1200/JCO.2007.12.7704]
[Medline: 18362367]

7. Isaka N, Nozue M, Doy M, Fukao K. Prognostic significance of perirectal lymph node micrometastases in Dukes’ B
rectal carcinoma: an immunohistochemical study by CAM5.2. Clin Cancer Res. Aug 1999;5(8):2065-2068. [Medline:
10473087]

8. Govindarajan A, Gönen M, Weiser MR, et al. Challenging the feasibility and clinical significance of current guidelines
on lymph node examination in rectal cancer in the era of neoadjuvant therapy. J Clin Oncol. Dec 1,
2011;29(34):4568-4573. [doi: 10.1200/JCO.2011.37.2235] [Medline: 21990400]

9. Moons LMG, Bastiaansen BAJ, Richir MC, et al. Endoscopic intermuscular dissection for deep submucosal invasive
cancer in the rectum: a new endoscopic approach. Endoscopy. Oct 2022;54(10):993-998. [doi: 10.1055/a-1748-8573]
[Medline: 35073588]

10. Anitei MG, Zeitoun G, Mlecnik B, et al. Prognostic and predictive values of the immunoscore in patients with rectal
cancer. Clin Cancer Res. Apr 1, 2014;20(7):1891-1899. [doi: 10.1158/1078-0432.CCR-13-2830] [Medline: 24691640]

11. Abbaspour E, Karimzadhagh S, Monsef A, Joukar F, Mansour-Ghanaei F, Hassanipour S. Application of radiomics for
preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg.
Jun 1, 2024;110(6):3795-3813. [doi: 10.1097/JS9.0000000000001239] [Medline: 38935817]

12. Chu LC, Fishman EK. Pancreatic ductal adenocarcinoma staging: a narrative review of radiologic techniques and
advances. Int J Surg. Oct 1, 2024;110(10):6052-6063. [doi: 10.1097/JS9.0000000000000899] [Medline: 38085802]

13. Ushigome H, Fukunaga Y, Nagasaki T, et al. Difficulty of predicting lymph node metastasis on CT in patients with
rectal neuroendocrine tumors. PLoS ONE. 2019;14(2):e0211675. [doi: 10.1371/journal.pone.0211675] [Medline:
30742649]

14. Dankwa-Mullan I, Weeraratne D. Artificial intelligence and machine learning technologies in cancer care: addressing
disparities, bias, and data siversity. Cancer Discov. Jun 2, 2022;12(6):1423-1427. [doi: 10.1158/2159-8290.CD-22-0373]
[Medline: 35652218]

15. Müller S, Diekmann S, Wenzel M, et al. Combining machine learning with real-world data to identify gaps in clinical
practice guidelines: feasibility study using the prospective German stroke registry and the national acute ischemic stroke
guidelines. JMIR Med Inform. Jul 11, 2025;13:e69282. [doi: 10.2196/69282] [Medline: 40653745]

16. Nemlander E, Ewing M, Abedi E, et al. A machine learning tool for identifying non-metastatic colorectal cancer in
primary care. Eur J Cancer. Mar 2023;182(100-6):100-106. [doi: 10.1016/j.ejca.2023.01.011] [Medline: 36758474]

17. Hamerla G, Meyer HJ, Hambsch P, et al. Radiomics model based on non-contrast CT shows no predictive power for
complete pathological response in locally advanced rectal cancer. Cancers (Basel). Oct 29, 2019;11(11):1680. [doi: 10.
3390/cancers11111680] [Medline: 31671766]

18. Guan X, Yu G, Zhang W, et al. An easy-to-use artificial intelligence preoperative lymph node metastasis predictor (LN-
MASTER) in rectal cancer based on a privacy-preserving computing platform: multicenter retrospective cohort study. Int
J Surg. Mar 1, 2023;109(3):255-265. [doi: 10.1097/JS9.0000000000000067] [Medline: 36927812]

19. Ding L, Liu GW, Zhao BC, et al. Artificial intelligence system of faster region-based convolutional neural network
surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer. Chin Med J (Engl). Feb
2019;132(4):379-387. [doi: 10.1097/CM9.0000000000000095] [Medline: 30707177]

JMIR MEDICAL INFORMATICS Hou et al

https://medinform.jmir.org/2025/1/e73765 JMIR Med Inform 2025 | vol. 13 | e73765 | p. 19
(page number not for citation purposes)

https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app4.png
https://jmir.org/api/download?alt_name=medinform_v13i1e73765_app4.png
https://doi.org/10.3322/caac.21601
http://www.ncbi.nlm.nih.gov/pubmed/32133645
https://doi.org/10.3322/caac.21834
http://www.ncbi.nlm.nih.gov/pubmed/38572751
https://doi.org/10.1136/gutjnl-2022-327736
http://www.ncbi.nlm.nih.gov/pubmed/36604116
https://doi.org/10.1200/JCO.2005.04.2739
http://www.ncbi.nlm.nih.gov/pubmed/16943523
http://www.ncbi.nlm.nih.gov/pubmed/12385573
https://doi.org/10.1200/JCO.2007.12.7704
http://www.ncbi.nlm.nih.gov/pubmed/18362367
http://www.ncbi.nlm.nih.gov/pubmed/10473087
https://doi.org/10.1200/JCO.2011.37.2235
http://www.ncbi.nlm.nih.gov/pubmed/21990400
https://doi.org/10.1055/a-1748-8573
http://www.ncbi.nlm.nih.gov/pubmed/35073588
https://doi.org/10.1158/1078-0432.CCR-13-2830
http://www.ncbi.nlm.nih.gov/pubmed/24691640
https://doi.org/10.1097/JS9.0000000000001239
http://www.ncbi.nlm.nih.gov/pubmed/38935817
https://doi.org/10.1097/JS9.0000000000000899
http://www.ncbi.nlm.nih.gov/pubmed/38085802
https://doi.org/10.1371/journal.pone.0211675
http://www.ncbi.nlm.nih.gov/pubmed/30742649
https://doi.org/10.1158/2159-8290.CD-22-0373
http://www.ncbi.nlm.nih.gov/pubmed/35652218
https://doi.org/10.2196/69282
http://www.ncbi.nlm.nih.gov/pubmed/40653745
https://doi.org/10.1016/j.ejca.2023.01.011
http://www.ncbi.nlm.nih.gov/pubmed/36758474
https://doi.org/10.3390/cancers11111680
https://doi.org/10.3390/cancers11111680
http://www.ncbi.nlm.nih.gov/pubmed/31671766
https://doi.org/10.1097/JS9.0000000000000067
http://www.ncbi.nlm.nih.gov/pubmed/36927812
https://doi.org/10.1097/CM9.0000000000000095
http://www.ncbi.nlm.nih.gov/pubmed/30707177
https://medinform.jmir.org/2025/1/e73765


20. Weiser MR, Chou JF, Keshinro A, et al. Development and assessment of a clinical calculator for estimating the
likelihood of recurrence and survival among patients with locally advanced rectal cancer treated with chemotherapy,
radiotherapy, and surgery. JAMA Netw Open. Nov 1, 2021;4(11):e2133457. [doi: 10.1001/jamanetworkopen.2021.
33457] [Medline: 34748003]

21. Lu Y, Yu Q, Gao Y, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based
convolutional neural networks. Cancer Res. Sep 1, 2018;78(17):5135-5143. [doi: 10.1158/0008-5472.CAN-18-0494]
[Medline: 30026330]

22. Li S, Li Z, Wang L, et al. CT morphological features for predicting the risk of lymph node metastasis in T1 colorectal
cancer. Eur Radiol. Oct 2023;33(10):6861-6871. [doi: 10.1007/s00330-023-09688-9] [Medline: 37171490]

23. Niu Y, Wen L, Yang Y, et al. Diagnostic performance of node reporting and data system (Node-RADS) for assessing
mesorectal lymph node in rectal cancer by CT. BMC Cancer. Jun 11, 2024;24(1):716. [doi: 10.1186/s12885-024-12487-
0] [Medline: 38862951]

24. Saraste D, Gunnarsson U, Janson M. Predicting lymph node metastases in early rectal cancer. Eur J Cancer. Mar
2013;49(5):1104-1108. [doi: 10.1016/j.ejca.2012.10.005] [Medline: 23122785]

25. von den Grün JM, Hartmann A, Fietkau R, et al. Can clinicopathological parameters predict for lymph node metastases
in ypT0-2 rectal carcinoma? Results of the CAO/ARO/AIO-94 and CAO/ARO/AIO-04 phase 3 trials. Radiother Oncol.
Sep 2018;128(3):557-563. [doi: 10.1016/j.radonc.2018.06.008] [Medline: 29929861]

26. Gunderson LL, Sargent DJ, Tepper JE, et al. Impact of T and N stage and treatment on survival and relapse in adjuvant
rectal cancer: a pooled analysis. J Clin Oncol. May 15, 2004;22(10):1785-1796. [doi: 10.1200/JCO.2004.08.173]
[Medline: 15067027]

27. Duchalais E, Glyn Mullaney T, Spears GM, et al. Prognostic value of pathological node status after neoadjuvant
radiotherapy for rectal cancer. Br J Surg. Oct 2018;105(11):1501-1509. [doi: 10.1002/bjs.10867] [Medline: 29663352]

28. Zhao S, Chen X, Wen D, Zhang C, Wang X. Oncologic nomogram for stage I rectal cancer to assist patient selection for
adjuvant (chemo)radiotherapy following local excision. Front Oncol. 2021;11(632085):33816269. [doi: 10.3389/fonc.
2021.632085] [Medline: 33816269]

29. Ueno H, Hase K, Mochizuki H. Criteria for extramural perineural invasion as a prognostic factor in rectal cancer. Br J
Surg. Jul 2001;88(7):994-1000. [doi: 10.1046/j.0007-1323.2001.01810.x] [Medline: 11442534]

30. Song JH, Yu M, Kang KM, et al. Significance of perineural and lymphovascular invasion in locally advanced rectal
cancer treated by preoperative chemoradiotherapy and radical surgery: can perineural invasion be an indication of
adjuvant chemotherapy? Radiother Oncol. Apr 2019;133:125-131. [doi: 10.1016/j.radonc.2019.01.002] [Medline:
30935568]

31. Guan X, Jiao S, Wen R, et al. Optimal examined lymph node number for accurate staging and long-term survival in
rectal cancer: a population-based study. Int J Surg. Aug 1, 2023;109(8):2241-2248. [doi: 10.1097/JS9.
0000000000000320] [Medline: 37428195]

32. Liu X, Yang Q, Zhang C, et al. Multiregional-based magnetic resonance imaging radiomics combined with clinical data
improves efficacy in predicting lymph node metastasis of rectal cancer. Front Oncol. 2020;10(585767):585767. [doi: 10.
3389/fonc.2020.585767] [Medline: 33680919]

33. Wan L, Hu J, Chen S, et al. Prediction of lymph node metastasis in stage T1-2 rectal cancers with MRI-based deep
learning. Eur Radiol. May 2023;33(5):3638-3646. [doi: 10.1007/s00330-023-09450-1] [Medline: 36905470]

34. Shulman RM, Deng M, Handorf EA, Meyer JE, Lynch SM, Arora S. Factors associated with racial and ethnic disparities
in locally advanced rectal cancer outcomes. JAMA Netw Open. Feb 5, 2024;7(2):e240044. [doi: 10.1001/
jamanetworkopen.2024.0044] [Medline: 38421650]

35. Yu Y, Xu Z, Shao T, et al. Epidemiology and a predictive model of prognosis index based on machine learning in
primary breast lymphoma: population-based study. JMIR Public Health Surveill. Jun 8, 2023;9:e45455. [doi: 10.2196/
45455] [Medline: 37169516]

Abbreviations
AB: Ada-Boost
AJCC: American Joint Committee on Cancer
AUC: area under the receiver operating characteristic curve
CEA: carcinoembryonic antigen
CT: computed tomography
DCA: decision curve analysis
ET: Extremely Randomized Trees
GB: Gradient Boosting
KNN: K-Nearest Neighbors

JMIR MEDICAL INFORMATICS Hou et al

https://medinform.jmir.org/2025/1/e73765 JMIR Med Inform 2025 | vol. 13 | e73765 | p. 20
(page number not for citation purposes)

https://doi.org/10.1001/jamanetworkopen.2021.33457
https://doi.org/10.1001/jamanetworkopen.2021.33457
http://www.ncbi.nlm.nih.gov/pubmed/34748003
https://doi.org/10.1158/0008-5472.CAN-18-0494
http://www.ncbi.nlm.nih.gov/pubmed/30026330
https://doi.org/10.1007/s00330-023-09688-9
http://www.ncbi.nlm.nih.gov/pubmed/37171490
https://doi.org/10.1186/s12885-024-12487-0
https://doi.org/10.1186/s12885-024-12487-0
http://www.ncbi.nlm.nih.gov/pubmed/38862951
https://doi.org/10.1016/j.ejca.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23122785
https://doi.org/10.1016/j.radonc.2018.06.008
http://www.ncbi.nlm.nih.gov/pubmed/29929861
https://doi.org/10.1200/JCO.2004.08.173
http://www.ncbi.nlm.nih.gov/pubmed/15067027
https://doi.org/10.1002/bjs.10867
http://www.ncbi.nlm.nih.gov/pubmed/29663352
https://doi.org/10.3389/fonc.2021.632085
https://doi.org/10.3389/fonc.2021.632085
http://www.ncbi.nlm.nih.gov/pubmed/33816269
https://doi.org/10.1046/j.0007-1323.2001.01810.x
http://www.ncbi.nlm.nih.gov/pubmed/11442534
https://doi.org/10.1016/j.radonc.2019.01.002
http://www.ncbi.nlm.nih.gov/pubmed/30935568
https://doi.org/10.1097/JS9.0000000000000320
https://doi.org/10.1097/JS9.0000000000000320
http://www.ncbi.nlm.nih.gov/pubmed/37428195
https://doi.org/10.3389/fonc.2020.585767
https://doi.org/10.3389/fonc.2020.585767
http://www.ncbi.nlm.nih.gov/pubmed/33680919
https://doi.org/10.1007/s00330-023-09450-1
http://www.ncbi.nlm.nih.gov/pubmed/36905470
https://doi.org/10.1001/jamanetworkopen.2024.0044
https://doi.org/10.1001/jamanetworkopen.2024.0044
http://www.ncbi.nlm.nih.gov/pubmed/38421650
https://doi.org/10.2196/45455
https://doi.org/10.2196/45455
http://www.ncbi.nlm.nih.gov/pubmed/37169516
https://medinform.jmir.org/2025/1/e73765


LASSO: Least Absolute Shrinkage and Selection Operator
LGBM: Light Gradient Boosting Machine
LNM: lymph node metastasis
LR: Logistic Regression
ML: machine learning
MLP: Multilayer Perceptron
NB: Naive Bayes
PNI: Perineural Invasion
RC: rectal cancer
RF: Random Forest
SEER: Surveillance, Epidemiology, and End Results
SVM: Support Vector Machine
XGBoost: Extreme Gradient Boosting

Edited by Andrew Coristine; peer-reviewed by Chengliang Yin, Malin Hjärtström, Ting Chen; submitted 11.03.2025; final
revised version received 29.07.2025; accepted 30.07.2025; published 23.09.2025

Please cite as:
Hou W, Li C, Wang Z, Wang W, Wan S, Zou B
Predicting Lymph Node Metastasis in Rectal Cancer: Development and Validation of a Machine Learning Model Using
Clinical Data
JMIR Med Inform 2025;13:e73765
URL: https://medinform.jmir.org/2025/1/e73765
doi: 10.2196/73765

© Wei Hou, Chuangwei Li, Zhen Wang, Wanqin Wang, Shouhong Wan, Bingbing Zou. Originally published in JMIR Medical
Informatics (https://medinform.jmir.org), 23.09.2025. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright
and license information must be included.

JMIR MEDICAL INFORMATICS Hou et al

https://medinform.jmir.org/2025/1/e73765 JMIR Med Inform 2025 | vol. 13 | e73765 | p. 21
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e73765
https://doi.org/10.2196/73765
https://medinform.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://medinform.jmir.org/
https://medinform.jmir.org/2025/1/e73765

	Predicting Lymph Node Metastasis in Rectal Cancer: Development and Validation of a Machine Learning Model Using Clinical Data
	Introduction
	Methods
	Data Collection and Inclusion Criteria
	Clinical Pathological Features
	Data Processing and Analysis
	Feature Engineering and Selection
	Predictive Model Construction and Validation
	Ethical Considerations

	Results
	Demographic Characteristics and Parameter Selection
	Risk Factors for Lymph Node Metastasis
	Optimal Predictive Model Selection
	Calibration Curve Analysis
	Decision Curve Analysis

	Discussion
	Principal Findings
	Comparison With Prior Studies
	Strengths and Limitations
	Conclusions



