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Abstract
Background: Seasonal influenza is a major global public health concern, leading to escalated morbidity and mortality
rates. Traditional early warning models rely on binary (0/1) classification methods, which issue alerts only when predefined
thresholds are crossed. However, these models exhibit inflexibility, often leading to false alarms or missed warnings and
failing to provide granular risk assessments essential for decision-making. Therefore, we propose a probability-based early
warning system using machine learning to mitigate these limitations and to offer continuous risk estimations of alerts (0‐1
variable) instead of rigid threshold-based alerts. Based on probabilistic prediction, public health experts can make more
flexible decisions in combination with the actual situation, significantly reducing the uncertainty and pressure in the decision-
making process and reducing the waste of public health resources and the risk of social panic.
Objective: The main aim of this study is to devise an innovative approach for early warning systems focused on influenza-like
cases. Therefore, a Dense Residual Network (Dense ResNet), a supervised deep learning model, was developed. The model’s
training involved fitting the influenza-like illness positive rate, which enabled the early detection and warning of signals of
changes occurring in the activity level of influenza-like cases. This departure from conventional methodologies underscores the
transformative potential of machine learning, particularly in providing advanced capabilities for timely and proactive warnings
in the context of influenza outbreaks.
Methods: We developed a Dense ResNet machine learning model trained on influenza surveillance data from Northern
and Southern China (2014‐2024). This model generates early warning signals 3, 5, and 7 days in advance, providing a
probability-based risk assessment represented as a continuous variable ranging from 0 to 1, in contrast to the traditional binary
(0/1) warning systems. We evaluated the performance of this model using area under the curve scores, accuracy, recall, and
F1-scores, then compared it with support vector machine (SVM), random forests, XGBoost (Extreme Gradient Boosting), and
LSTM (long short-term memory) models.
Results: The Dense ResNet model demonstrated the best performance, characterized by 5-day lead warnings and a 50th
percentile probability threshold, achieving area under the curve scores of 0.94 (Northern China) and 0.95 (Southern China).
Relative to traditional models, probability-based warning signals improved early detection, reduced false alarms, and facilitated
tiered public health responses.
Conclusions: This study presented a novel probability-based machine learning model essential for early warning signals of
influenza, demonstrating superior accuracy, flexibility, and practical applicability compared to other techniques. This approach
enhances preparedness for influenza among the population and promotes the use of automated artificial intelligence–driven
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public health responses by replacing binary warnings with probability-driven risk assessments. Future research should integrate
real-time surveillance data and dynamic transmission models to improve the precision of early warning.
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Introduction
Seasonal influenza is a contagious disease posing significant
threats to human health globally, characterized by a steady
increase in annual incidence. Currently, approximately 1
billion people worldwide are infected each year, and 290,000‐
650,000 fatalities are due to influenza-related respiratory
diseases [1,2].

This disease occurs in various seasons throughout the
year, and its outbreak can be influenced by an environment
conducive to viral survival, host immunity [3], patterns
of physical contact with other people [4], or viral interfer-
ence caused by other respiratory pathogens [5]. Therefore, a
timely indication of an unusual increase in the prevalence of
influenza is crucial; early detection and warning signals can
mitigate the impact of this disease on public health, providing
a foundation for the formulation of preventive measures and
the timely allocation of medical resources. Previous studies
have predominantly concentrated on predicting the trends of
influenza outbreaks [6,7]. However, providing timely warning
signals to the population is of greater practical significance
for public health departments.

Various scenarios may trigger warning signals for
influenza outbreaks, including surpassing historical baselines
[8], excessively rapid increases in the prevalence trends,
the discovery of new pathogens, increased disease severity,
and insufficient medical resources [9]. This study concen-
trates on the warning scenario in which influenza transi-
tions into an epidemic phase, characterized by an upward
trend in the epidemic curve. In this scenario, the number
of infected individuals increases, increasing demand for
medical resources. As the prevalence rises, the disease burden
intensifies steadily, necessitating specific personal protective
or preventive measures to suppress the escalated outbreak
and decelerate its transmission. Issuing a warning signal at
this stage does not imply the emergence of a pandemic
or a deviation from the usual trend; instead, it emphasizes
the necessity for health departments and society to remain
vigilant regarding the influenza epidemic.

The results of traditional early warning methods are
categorized into 2 types: early warning signal and no early
warning signal. An alarm will only be triggered when
the expected threshold is exceeded. While these methods
have been widely used in public health surveillance, they
are constricted by several critical limitations [10,11]. For
example, binary warning signals lack granularity, providing
only rigid “yes” or “no” decisions rather than rendering a
nuanced risk assessment. This often leads to the activation of
false alarms or increases the likelihood of missed detec-
tions, reducing system reliability. Moreover, fixed-threshold

models, such as the 40th percentile warning system, fail to
distinguish between increasing and decreasing trends of the
epidemic, which occasionally creates alerts even when cases
are in decline. Finally, these models do not cater to tiered
public health responses, making it difficult for decision-mak-
ers to prioritize interventions based on varying levels of
outbreak risk [12]. Addressing these limitations requires
a more flexible and adaptive approach, where warning
signals are expressed as continuous probability values rather
than binary classifications [11,12]. This study introduces a
probability-based early warning model that enables tiered
response strategies and artificial intelligence (AI)-driven
automation, offering a significant improvement compared to
traditional methods.

The rise of machine learning and AI methodologies
provides a thrilling prospect for transforming early warning
systems of influenza. Traditional warning models, such as
the Moving Epidemic Method model [13], rely on historical
data to predict the current prevalence of influenza. Machine
learning methods, on the other hand, offer the potential to
forecast warnings in advance. This shift toward advanced
computational techniques not only improves the accuracy of
predictions but also revolutionizes the ability of the popula-
tion to anticipate and respond to public health threats.

Machine learning models such as the Self-Excitation
Attention Residual Network have demonstrated the abil-
ity to dynamically adapt to evolving disease trends and
changes in surveillance systems, enhancing the effectiveness
of early warning systems [14]. These models can process
complex, heterogeneous data from multiple sources, including
cases of influenza-like illness (ILI), virological surveillance,
climate and demography data, and resultant queries from
search engines [15]. Consequently, they can identify intricate
patterns and relationships that traditional models might miss,
leading to more sensitive and accurate predictions.

Moreover, machine learning approaches have been shown
to outperform traditional models with various traits such as
sensitivity, specificity, and timeliness. For example, studies
have found that machine learning models can issue warning
signals before the onset of influenza outbreaks, exhibiting
higher accuracy than threshold-based methods [16]. This
enables public health officials to take preemptive meas-
ures, such as implementing vaccination campaigns or public
advisories, to mitigate the impact of the disease.

Machine learning also demonstrates its potential for
integrating various data sources and applying complex
nonlinear models, such as long short-term memory (LSTM)
or other neural networks, to the dataset, which can lead
to higher prediction accuracy. These models can learn
from genetic sequences and associated metadata to predict
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the antigenic properties of circulating influenza viruses,
providing insights into the evolution of influenza and
antigenic drift.

Integrating machine learning and AI into early warning
systems of influenza represents a significant leap forward in
our capacity to predict and prepare for influenza outbreaks.
These advanced methodologies offer a more proactive,
data-driven approach to public health surveillance, potentially
saving lives and reducing the societal and economic burdens
of influenza.

By constructing a Dense Residual Network (Dense
ResNet) machine learning model to achieve probabilistic
prediction of influenza outbreaks, it can effectively provide
detailed probability information on the risk of an outbreak.
Based on this probability prediction, public health experts
can, in combination with their professional experience and the
actual situation, make more flexible decisions on whether to
issue a warning, avoiding the rigidity of the traditional binary
decision-making model, significantly reducing the uncertainty
and pressure in the decision-making process, and signifi-
cantly reducing the waste of public health resources and the
risk of social panic. The continuous probability model can
provide more detailed epidemic warning information based
on the risk level, supporting the implementation of graded
intervention strategies by health departments, such as early
deployment of medical resources and strengthening public
health awareness campaigns when the probability is high, and
internal monitoring and precise prevention measures when

the probability is medium or low. This precise intervention
effectively avoids unnecessary social panic and resource
waste.

The main aim of this study is to devise an innovative
approach for early warning systems focused on influenza-like
cases. Therefore, a Dense ResNet, a supervised deep learning
model, was developed. The model’s training involved fitting
the influenza-like illness positive rate (ILI+), which ena-
bled the early detection and warning of signals of changes
occurring in the activity level of influenza-like cases. This
departure from conventional methodologies underscores the
transformative potential of machine learning, particularly
in providing advanced capabilities for timely and proactive
warnings in the context of influenza outbreaks.

Methods
Data Sources
The study population includes Northern China and Southern
China. We derived proxy measures for the activity of the
influenza virus in the communities, referred to as ILI+ rates,
by multiplying the ILI percentage (ILI%) with the propor-
tions of influenza-positive specimens [13] derived from the
Chinese National Influenza Surveillance Network for the 2
regions. A total of 569 weekly reports were included in this
study. The standardized ILI+ for each region was presented
(Figure 1).

Figure 1. The influenza-like illness positive rate of Northern China (North) and Southern China (South).

Warning Definition and Labeling
Throughout this study, the warning scenario was defined as
an ascending trend during the influenza season. Following the
conventional definition of the influenza season presented in

previous studies [17], we designated a warning when ILI+
exceeds the 40th percentile, demonstrating an upward trend.
The labeled outcomes are illustrated in Figure 2.
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Figure 2. ILI+ warning diagram for Northern and Southern China under different quantile values. Panels A, C, and E refer to Northern China, panels
B, D, and F refer to Southern China, panels A and B refer to quantile 0.4, panels C and D refer to quantile 0.5, and panels E and F refer to quantile
0.6. ILI+: influenza-like illness positive rate.

Model Construction
This study aimed to construct and train a model that could
identify the intrinsic features of the input data and estab-
lish a mapping from ILI+ features to warning categories to
accurately classify ILI+ for warning signals precisely. This
was achieved by proposing an innovative deep learning model
called Dense ResNet (Figure 3).

Dense layers and residual connection methods were used
to design the Dense ResNet model to enhance the accuracy
of the early warning function. Experimental results have
demonstrated that this model could effectively map ILI+
features to the early warning category. The Dense ResNet
model constructed in this study comprised 7 Dense layers,
6 Dropout layers, and 7 residual connections. From top to
bottom, Dense layers of 1024, 512, 256, 128, 64, and 32 units
were employed to extract data features from top to bottom.
In addition, 6 layers with a dropout rate of 0.25 were applied
after each Dense layer to prevent overfitting. Furthermore,
7 residual connections were added primarily to retain global
information effectively while preventing gradient vanishing.
The Sigmoid activation function was employed in the last
fully connected layer to predict the probability of warning
classes of 0 and 1. The predictive result was a probability
value between 0 and 1 for each warning category.

In this study, Dense ResNet was selected over other deep
learning models for time series early warning modeling of
infectious diseases of the respiratory system, based on several
key considerations. First, we used the ILI+ sequence as the
feature for early warning judgments. Although it exhibited
certain seasonality and trends, its variations were heavily
influenced by external factors such as abrupt climate changes

and public health interventions, leading to sudden shifts and
nonstationarity. As a result, it does not adhere to consis-
tent temporal evolution patterns. Traditional recurrent neural
networks (LSTMs and Gated Recurrent Units), proficient in
modeling strong sequential dependencies, are not entirely
suitable for the ILI+ data used in this study. In contrast,
Dense ResNet focuses on direct feature extraction, and by
cumulatively integrating deep features, it is more adept at
capturing the complex associations and nonlinear variation
patterns present in the data, making it more compatible with
the ILI+ features adopted in this research. Second, although
models such as Transformers perform excellently in large-
scale time series tasks, they have an escalated number of
parameters that are highly prone to overfitting during the
training process. This issue is particularly pronounced in this
study due to the limited sample size of the ILI+ features,
leading to poor generalization. In comparison, the proposed
Dense ResNet structure is relatively simple; it mitigates the
challenges of deep network training through effective residual
connections, enabling stable training and superior perform-
ance on small to medium-sized datasets, offering higher
practical application value.

In summary, considering the characteristics of the data,
task requirements, model performance, training stability, and
practical feasibility, this study ultimately adopted Dense
ResNet for the early warning task instead of traditional
recurrent neural network–based sequence models or large-
scale Transformer architectures. This choice effectively
balances the complex feature extraction capabilities, training
stability, overfitting control, and deployment feasibility,
providing strong technical support for achieving efficient and
accurate early warning signals.

JMIR MEDICAL INFORMATICS Cui et al

https://medinform.jmir.org/2025/1/e73631 JMIR Med Inform 2025 | vol. 13 | e73631 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e73631


Figure 3. Structural diagram of the Dense Residual Network (Dense ResNet) model.

Dataset Construction
This study innovated the construction of the training dataset
to activate early warning signals. Figure 2 illustrates the
graphical refactoring of the dataset. We divided the data into
3 sections: observation time period, advance time period, and
warning time point. We combine the features of the observa-
tion time period and the labels of warning time points to
form a reconstructed dataset and train the model using this

dataset to achieve early warning signals. For example, if a
person needs to determine whether November 26, 2023, is a
warning, you only need to observe the characteristic values
from November 12, 2023, to November 18, 2023, will be
observed (Figure 4).

In this study, for the choice of advanced time period, we
adopted advanced time periods of 3, 5, and 7 days to select
advanced periods, and the results were obtained.
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Figure 4. Schematic diagram of data construction. ILI+: influenza-like illness positive rate.

Dataset Segmentation
This section encompasses 3969 days spanning from Decem-
ber 30, 2013, to November 11, 2024, in Southern and
Northern China, to construct training. Following the
conventional division methods of deep learning, including
training set, validation set, and test set, and considering the
practical significance of ILI% prediction, the period from
December 30, 2013, to October 31, 2022 was designated as
the training set, while the period from November 1, 2022, to
November 11, 2024 was assigned as the test set. The training
set encompasses 9 ILI% activity peaks, while the test set
contains 2 ILI% peaks.
Model Training
In model training, we initialized the network weights using
He normal initialization and trained the model using the
Adam optimizer with default parameters (β₁=.900, β₂=.999).
The initial learning rate was set to 0.001 with a batch
size of 32. To further improve the model convergence, we
employed a learning rate scheduler (ReduceLROnPlateau)
that reduced the learning rate by 0.1 if the validation loss did
not improve for 5 consecutive epochs. The binary cross-
entropy loss function was used during training. The training
was conducted for a maximum of 100 epochs. We adopted
an early stopping strategy with a patience of 10 epochs
based on the validation loss to prevent overfitting. The model
development and experiments were implemented using the
PyTorch framework (version 2.0.0; Meta AI). All the training,
validation, and testing processes were performed on one

NVIDIA RTX 4090 Graphics Processing Unit (GPU) with
24 GB of memory.
Ethical Considerations
This study was approved by the Research Ethics Review
Committee for Biomedical Research Involving Humans,
Chinese Academy of Medical Sciences, and Peking
Union Medical College (approval no. CAMS&PUMC-
IEC-2025-010). The study did not involve any personally
identifiable or sensitive health information. No compensation
was provided to participants.

Results
Following the training and validation procedures employing
the Dense ResNet model, early warning signals were issued
at 3-, 5-, and 7-day intervals. The results indicated that, in
Northern and Southern China, the most effective lead time is
3 days, 50 quantiles, allowing for the detection of warning
signals 2 and 5 days in advance (Figure 5).

This study assessed the warning performance in Northern
and Southern China, using metrics such as accuracy, recall,
F1-score, and area under the curve (AUC) to validate the
model. The outcomes highlight the highest AUC score for
issuing warning signals 3 days in advance (Northern China:
0.94, Southern China: 0.95) (Table 1). The receiver operating
characteristic curves are depicted in Figure 6.
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Compared to other commonly used models (support vector
machine [SVM], random forest, XGBoost [Extreme Gradient
Boosting], and LSTM), the Dense ResNet model exhibits

superior warning performance in Southern and Northern
China, as well as in Beijing and Yunnan province (Table 2).

Figure 5. Comparison of current warning signals per 3, 5, and 7 days in advance of predicted warning signals in (A) Southern China and (B)
Northern China. The black line refers to the ILI+ (%). ILI+: influenza-like illness positive rate.

Table 1. Evaluation of early warning in Northern China and Southern China.
Days in advance and warning category Precision Recall F1-score AUCa score
Northern China
  3 days 0.94
   Warning 0 0.96 0.95 0.96
   Warning 1 0.89 0.93 0.91
  5 days 0.90
   Warning 0 0.91 0.95 0.93
   Warning 1 0.88 0.81 0.84
  7 days 0.87
   Warning 0 0.84 0.99 0.91
   Warning 1 0.99 0.60 0.75
Southern China
  3 days 0.95
   Warning 0 0.94 0.99 0.97

 

JMIR MEDICAL INFORMATICS Cui et al

https://medinform.jmir.org/2025/1/e73631 JMIR Med Inform 2025 | vol. 13 | e73631 | p. 7
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e73631


 
Days in advance and warning category Precision Recall F1-score AUCa score
   Warning 1 0.98 0.81 0.89
  5 days 0.92
   Warning 0 0.91 0.99 0.95
   Warning 1 0.99 0.69 0.82
  7 days 0.91
   Warning 0 0.89 0.99 0.94
   Warning 1 0.99 0.61 0.76

aAUC: area under the curve.

Figure 6. Receiver operating characteristic curves of early warning effect in Northern and Southern China. (A) Northern China at 3 days in advance;
(B) Northern China at 5 days in advance; (C) Northern China at 7 days in advance; (D) Southern China at 3 days in advance; (E) Southern China at 5
days in advance; and (F) Southern China at 7 days in advance. ROC: receiver operating characteristic.

Table 2. Evaluation and comparison of the 3-day early warning results of 5 models.
Modela Precision Recall F1-score AUCb score
Northern China

SVMc 0.87 0.67 0.76 0.81
XGboostd 0.85 0.76 0.80 0.85
RFe 0.79 0.75 0.77 0.85
LSTMf 0.69 0.75 0.72 0.81
Dense Resnetg 0.89 0.93 0.91 0.94

Southern China
SVM 0.89 0.80 0.84 0.89
XGboost 0.67 0.80 0.73 0.84
RF 0.68 0.85 0.76 0.87
LSTM 0.76 0.66 0.70 0.87
Dense ResNet 0.98 0.81 0.89 0.95

aThe warning category for all models is 1.
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Modela Precision Recall F1-score AUCb score

bAUC: area under the curve.
cSVM: support vector machine.
dXGBoost: Extreme Gradient Boosting.
eRF: random forest.
fLSTM: long short-term memory.
gDense ResNet: Dense Residual Network.

The results demonstrate that Dense ResNet outperforms
models such as SVM, random forest, and LSTM, primarily
for the following reasons. First, Dense ResNet leverages
its deep network architecture, particularly through multi-
ple dense layers and residual connections, to effectively
capture complex nonlinear relationships in the data. In
contrast, traditional machine learning models such as SVM
and random forest, while capable of handling some degree
of nonlinearity, often exhibit limitations in modeling high-
dimensional data and intricate relationships. SVM typically
relies on kernel functions for nonlinear mapping; however,
it is less flexible compared to deep neural networks when
processing large-scale data and complex features. Random
forest, on the other hand, enhances the expressiveness of the
model through an ensemble of decision trees. However, it
reveals low performance compared to deep neural networks
when dealing with highly correlated features or long-range
dependencies.

Second, the Dense ResNet model benefits from hierarch-
ical feature learning, with each dense layer progressively
extracting more abstract and complex features, gradually
building a representation from low-level to high-level
features. In comparison, traditional models such as SVM and
random forest rely more heavily on manual feature engineer-
ing or selection. While LSTM excels in processing sequential
data, it depends on longer input sequences to capture complex
global information and long-term dependencies, making it
less efficient than Dense ResNet for learning both short-term
and long-term features, as may be involved in this study.

Finally, the Dense ResNet model in this study incorporates
residual connections, effectively mitigating the vanishing
gradient problem and facilitating the training of deeper
networks. By allowing information to skip layers, residual
connections help preserve more global information, a crucial
advantage when handling large-scale datasets. In contrast,
models such as SVM, random forest, and LSTM lack such
structural designs, which may limit their performance in
modeling high-dimensional or complex data.

Discussion
Principal Findings
In China, seasonal influenza follows a predictable pattern,
peaking during the colder months and, in some regions,
during the summer. The ability to issue timely and precise
warnings is crucial for public health preparedness. This study
introduces a continuous probability-based warning system
(0‐1 variable), moving beyond the traditional binary (0/1)

warning models. This advancement significantly enhances
the flexibility, accuracy, and applicability of early warning
systems.

A probability-based risk assessment improves the accuracy
of warning signals. Traditional early warning models [18]
rely on binary classifications—either issuing a warning or
not—which often leads to false alarms or missed detections.
These rigid threshold-based warning systems do not account
for the varying degrees of epidemic severity. In contrast, our
continuous probability warning approach provides a more
nuanced risk assessment, offering granular insights into the
likelihood of an outbreak. This enables decision-makers to
adjust intervention strategies based on the level of risk rather
than adhering to a fixed binary outcome. As a result, the
reliability and adaptability of early warning systems are
significantly improved.

Moreover, a probability-based warning system supports
tiered response strategies, which can be dynamically adjusted
according to the predicted severity of an outbreak. For
example, when the warning probability is moderate (0.4‐
0.6), internal monitoring may be prioritized, whereas higher
probabilities (≥0.7) would prompt targeted interventions
such as increasing health care preparedness or reinforcing
public health advisories. When the probability reaches 0.9 or
above, immediate public health measures can be activated.
This graduated approach prevents unnecessary disruptions in
low-risk situations while ensuring timely action in high-risk
scenarios.

A flexible warning system supports precise public health
interventions. Another key advantage of probability-based
warnings is their role in scientific policy making and public
communication. Traditional threshold-based methods may
trigger unnecessary alarms in low-risk years, leading to
economic losses and diminishing public responsiveness to
warning signals. Conversely, these methods may fail to
escalate warnings quickly enough in high-risk years, resulting
in delayed response measures. By shifting to a risk-proba-
bility framework, this study enables a more rational and
transparent decision-making process, allowing authorities to
communicate risk levels clearly to the population to prevent
overreactions.

In addition, when the probability of an outbreak is low,
ranging from 0.3 to 0.5, preventive measures can be targeted
at high-risk groups, such as older adults and individuals with
pre-existing health conditions, without imposing large-scale
interventions. This precision prevention strategy minimizes
unnecessary economic losses and social disruption while
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ensuring that those at the most significant risk receive
appropriate protection.

AI-driven automation enhances the efficiency of warning
responses. Beyond improving warning accuracy, continuous
probability warnings pave the way for AI-driven automa-
tion in public health management. In future applications,
AI-assisted decision-making systems can integrate probability
forecasts into automated response frameworks. For exam-
ple, when the probability is ≥0.7, automated alerts can be
dispatched to health care facilities. If a probability is ≥0.9,
public health advisories can be issued automatically to initiate
broader containment measures. For probabilities between 0.4
and 0.6, real-time monitoring can continue internally without
initiating unnecessary public concerns.

By integrating machine learning and automation, this
system improves the efficiency of response, consequently
reducing delays in the intervention while optimizing the
allocation of health care resources. Early warning facili-
tates the implementation of timely interventions, leading
to improved mitigation of the outbreak. The effectiveness
of the proposed model was demonstrated through empiri-
cal validation. Our study shows that the machine learning
model can issue warnings 5 days earlier than traditional
methods, significantly improving public health preparedness
[19]. Given that implementing preventive measures taken
5 days in advance can impact the infection chain by 2‐
4 generations, this proactive alert system is essential for
managing the dissemination of influenza. Similar findings
have been observed in real-time surveillance systems for
other infectious diseases, such as dengue [20], where early
detection has been shown to reduce the outbreak’s severity
and enhance the efficiency of implemented control measures.
Moreover, our results indicate that when predicting outbreaks
3 days in advance, the model achieves the highest sensitivity,
specificity, and timeliness. This suggests that while earlier
warning signals provide more time for response, optimizing
the trade-off between lead time and accuracy is essential.
Future research should explore hybrid models that integrate
transmission dynamics modeling and data-driven time-series
forecasting to further improve warning precision.

Machine learning outperforms traditional threshold-based
methods. Compared to the conventional fixed percentile
warning system, such as the 40th percentile thresholds,
our probability-based approach provides 3 key advantages,
including (1) earlier detection, which is usually executed.
This approach enables a crucial preparatory window for
vaccine distribution, hospital readiness, and community
interventions; (2) distinguishing between rising and declin-
ing trends, which often provide warning signals even after

the peak of the outbreak, with probability-based warning
signals dynamically adjusted based on real-time trends, unlike
fixed-threshold methods; and (3) improved adaptability to
different epidemic conditions, in which machine learning
models learn from historical patterns, providing a flexible
response mechanism even during atypical flu seasons.

A probability-based warning system enhances influenza
preparedness. This study demonstrated the superior perform-
ance of probability-based machine learning models in the
early warning of seasonal influenza.
Conclusions
This study presented a novel probability-based machine
learning model for the early warning of influenza, dem-
onstrating superior accuracy, flexibility, and practical
applicability. By replacing binary warning signals with
probability-driven risk assessments, this approach enhances
influenza preparedness and supports automated AI-driven
public health responses. Future research should integrate
real-time surveillance data and transmission dynamic models
to improve the precision of early warning signals further.
On the one hand, the Susceptible-Exposed-Infected-Recov-
ered model can effectively depict the transmission stages
and overall trends of infectious diseases among the pop-
ulation, providing a basic framework for understanding
disease transmission. Conversely, agent-based modeling can
simulate the complex interaction behaviors and heterogeneity
among individuals, making the model closer to the actual
communication process. In contrast, the hybrid data-driven
and mechanism model provides novel prospects for pre-
dicting influenza. Data-driven models can extract potential
patterns and rules from extensive historical datasets, whereas
mechanism models based on understanding the principles of
disease transmission provide comprehensive insights into the
disease transmission process. Combining these 2 approaches
mitigates the limitations of a single model and improves the
accuracy and reliability of influenza prediction. Meanwhile,
this hybrid model can handle scenarios of incomplete data
or highly uncertain datasets, enhancing the robustness and
adaptability of the model. This system enhances public health
preparedness and reduces unnecessary disruptions by issuing
warning signals 5 days in advance and providing a flexible,
risk-adaptive approach. Compared to traditional methods,
machine learning accurately distinguishes epidemic trends,
minimizes false alarms, and facilitates automated AI-driven
public health responses. Future research should further refine
warning frameworks by integrating transmission dynamics
models and real-time surveillance data, ensuring improved
promptness, timeliness, and efficacy of prevention and
control measures for influenza.
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