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Abstract
Background: The heart and kidneys have vital functions in the human body that reciprocally influence each other physiologi-
cally. Pathological changes in 1 organ can damage the other. Epidemiologic studies show that greater than 50% of patients with
heart failure (HF) have preserved ejection fraction (HFpEF). Additionally, 1 in 6 patients identified as having chronic kidney
disease (CKD) also has HF. Thus, it is important to be able to predict and identify the cardiorenal relationship between HFpEF
and CKD.
Objective: Creating an electrocardiogram (ECG)-enabled model that stratifies suspected patients with HFpEF would help
identify CKD-enriched HFpEF clusters and phenogroups. Simultaneously, a minimal set of significant ECG features derived
from the stratification model would aid precision medicine and practical diagnoses due to being more accessible and widely
readable than a large set of clinical inputs. Furthermore, the validation of the existing cardiorenal relationship using this
ECG-enabled model may lead to better biological understanding.
Methods: Using unsupervised clustering on all extractable ECG features from FinnGen, patients with an indication of HFpEF
(filtered by left ventricular ejection fraction [LVEF] values ≥50% and N-terminal pro B-type natriuretic peptide [NT-proBNP]
values >450 pg/mL) were categorized into different phenogroups and analyzed for CKD risk. After isolating significant
predictive ECG features, unsupervised clustering and risk analysis were performed again to demonstrate the efficacy of using a
minimal set of features for phenogrouping. These clusters were then compared to clusters formed using dynamic time warping
(DTW) on raw ECG time series electrical signals. Afterward, these clusters were analyzed for CKD enrichment.
Results: The PR interval and QRS duration stood out as significant features and were used as the minimal feature set.
After generating and comparing clusters (k-means with all extracted ECG features, k-means with a minimal feature set, and
DTW with full lead II ECG waveform), the DTW-generated clusters were most stable. ANOVA analysis also showed that
several HFpEF clusters exhibited a deviation of CKD risk from baseline, allowing for further trajectory analysis. Specifically,
the creatinine levels (a proxy for CKD) of several DTW-created clusters showed significant differences from the average.
Based on the Jaccard score, the DTW clusters also showed the greatest alignment to baseline comparison clusters created by
clustering on creatinine. In comparison, the other 2 sets of clusters (created by all extracted ECG features and the minimal set)
performed similarly.
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Conclusions: This project validates both the known cardiorenal relationship between HFpEF and CKD and the importance
of the PR interval and QRS duration. After exploring the use of ECG data for patient clustering and stratification, DTW
clustering with lead II waveforms resulted in the most clinically meaningful clusters in the context of HFpEF and CKD. This
methodology may prove useful in exploring ECG clustering applications outside of HFpEF as well.
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Introduction
Background
This paper examines the relationship between a specific
subtype of heart failure (HF), heart failure with preserved
ejection fraction (HFpEF), and chronic kidney disease (CKD)
marked by progressive renal failure [1-3], emphasizing the
pathophysiological connections. It explores the potential use
of technology in trials and clinical management by lever-
aging simple and widely accessible clinical tools such as
electrocardiograms (ECGs) to predict the underlying risk in
subgroups and to enable earlier and more precise interven-
tions. Such interventions can improve patient outcomes for

chronic diseases of cardiovascular or overlapping renal origin
[4-6].
Biological Rationale
HF and renal failure are 2 interrelated conditions that often
coexist, significantly impacting patient outcomes [7-9]. The
intricate and bidirectional relationship between the heart and
kidneys illustrated in Figure 1, often referred to as the
cardiorenal axis, underscores the significant unmet need to
understand how dysfunction in 1 organ can precipitate or
exacerbate dysfunction in the other, so that patients at risk for
progression can be precisely diagnosed for earlier interven-
tion before full onset of disease, thus improving the odds of
better patient outcome [10].

Figure 1. Illustration of the cardiorenal relationship and functional mediators.

HF, which is marked by the heart’s inability to pump blood
effectively, initiates a series of physiological changes that
can negatively impact renal function. Reduced cardiac output
in HF leads to decreased renal perfusion, triggering compen-
satory mechanisms such as the activation of the renin-angio-
tensin-aldosterone system and sympathetic nervous system
[11,12].

Although these mechanisms initially aim to preserve renal
function and maintain blood pressure, their chronic activation

can produce adverse effects, including increased sodium and
water retention, further worsening heart failure symptoms and
contributing to renal impairment [13,14]. HFpEF is character-
ized by the heart’s inability to relax (diastolic defect) and fill
properly, leading to heart failure symptoms despite a normal
ejection fraction (systolic function).

Conversely, renal failure can significantly affect cardiac
function. The kidneys regulate fluid and electrolyte balance,
blood pressure, and the elimination of metabolic waste
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products. When renal function declines, fluid overload,
electrolyte imbalances, and the accumulation of uremic toxins
can occur, adding strain on the heart. This may lead to
worsening HF, creating a cycle of deteriorating cardiac and
renal function. This bidirectional nature of the heart-kidney
interaction underscores the complexity of managing patients
with both HF and renal failure. The ability to better pre-
dict risk in these vulnerable cohorts would be beneficial for
disease understanding and clinical trial recruitment.

ECG for Clustering
Recent advancements in artificial intelligence and machine
learning have shown potential in predicting and managing
the risks associated with cardiorenal syndrome. Artificial
intelligence–enabled models, for example, using ECG and
biomarkers, have demonstrated promise in clinical care
settings [15,16].

An additional use of such an ECG model in drug devel-
opment could be to identify patients with HFpEF who
may demonstrate a potential risk profile for worsening
kidney function based on a screening ECG. Such patients
may demonstrate other comorbidities such as hypertension,
diabetes, or obesity, as stated earlier. This underlying and
hidden risk can be revealed early for an improved under-
standing of the associated risks with renally cleared cardio-
vascular drugs. The cardiac-specific electric signals provide
significant discriminatory power for endophenotyping within
the broader HFpEF spectrum [17]. By leveraging machine
learning-based unsupervised cluster analysis, this study aims
to phenomap patients with HFpEF, enhancing the understand-
ing and prediction of cardiorenal risk through a generalizable
and interpretable ECG-based machine learning model.

Evaluating the importance of ECG features for unsuper-
vised clustering can be difficult. A lot of tabular health
care data, including the extracted ECG features, are highly
correlated, which may lead to poor clustering results in
practice. This also makes feature selection through Lasso very
difficult. Reducing dimensionality often makes interpretabil-
ity difficult as well, which is especially an issue for health
care research. Thus, finding an unsupervised method that
clusters high-dimensional correlated data through feature
selection rather than dimension reduction would be very
helpful [18].

Dynamic Time Warping With ECG
Dynamic time warping (DTW) measures the similarity
between 2 temporal sequences and, thus, can be used as
a metric for clustering temporal sequences. By creating a
nonlinear alignment of time sequences that are of different
lengths or exhibit time shift, it can calculate the Euclidean
distance between points of the 2 warped sequences. DTW has
been frequently used for longitudinal and trajectory analysis,
including in health care settings [19]. Due to the temporal
nature of ECGs, DTW has been used to classify ECG frames
and has been shown to be effective in finding nonlinear
clusters of ECGs [20]. Previous literature and studies for
DTW ECG clustering use the lead II recording wavelengths
due to the lead II wavelength being generally considered the

best view of the electrical signals because of the electrode’s
placement [19].

ECGs are particularly appropriate for this combination of
DTW-supported unsupervised clustering and feature analysis.
First, the assumption that patients themselves, rather than
the extracted ECG values, are independent and identically
distributed is much easier to meet. This may make unsu-
pervised clustering results more promising than on extrac-
ted ECG data (which would be correlated tabular data).
By treating each ECG record as a singular data point, we
can perform DTW on the ECG as a time series. DTW
is a technique that calculates the optimal match between
given sequences (it can be thought of as clustering curves
via distance rather than individual data points). This way,
different clusters of ECG records can be formed and then
analyzed for disease endpoint incidence, cluster stability, and
other performance metrics.

Many studies focus on the relationship between HFpEF
and electrocardiographic (ECG) features, but our work
attempts to explore the cross-organ interactions between the
heart and kidney in HFpEF by using an algorithm that uses
specific features within ECG features as novel predictors of
cardiorenal risk. Small changes in the electroconductance
system of the heart can have a big impact on the hemody-
namic load on the heart, exacerbating the load, and over time,
affecting volume overload [10] on the kidneys. However,
such small changes in ECG, which may appear early, may
not always be clinically apparent and can often be missed.
In patients with HFpEF, clinical phenotype can be associated
with diabetes, hypertension, and obesity [21]. Using an ECG
model to identify nonobvious patterns in the electrical signals
of the heart captured through a standard ECG (12 leads) can
serve as indicators for left ventricular dysfunction associated
with HFpEF and can potentially also identify potential signals
for renal risk in a subset of patients. This study seeks to
validate the established cardiorenal relationship through ECG
data analysis and investigate a novel approach for clustering
in HFpEF subgroups using ECG data.

Methods
Ethical Considerations
The real-world electronic health data used from the FinnGen
database, provided for analysis, were already anonymized by
FinnGen. The ethics status, data collection process, consent
process, and approvals can be seen in the original study [22].
This study’s data analysis was approved by the FinnGen
Committee. Due to this, there was no need to seek further
ethics board approval.
Dataset Description
The FinnGen study is a large-scale genomics initiative that
has analyzed over 500,000 Finnish biobank samples and
correlated genetic variation with health data to understand
disease mechanisms and predispositions. The project is a
collaboration between research organizations and biobanks
within Finland and international industry partners [22]. This
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public-private partnership aggregates data from 9 different
Finnish biobanks, research institutes, university hospitals,
and 13 international pharmaceutical partners along with the
Finnish Biobank Cooperative. Sample collection and data
releases began in 2017, and the main phase of sample
collection ended with FinnGen2 in 2023.

The Expansion Area 3 (EA3) studies aim to collect data
on diseases that may not be present within existing FinnGen
registries. Among these data is the EA3 Heart Failure Study
cohort, which compiles relevant cardiovascular data from 4‐6
participating hospital biobanks. The study contains ECG files,
ejection fraction values (40,809 individuals), and laboratory
measurements (40,024 individuals) with B-type natriuretic
peptide (BNP), proBNP, and creatinine values. Since the
study is aggregated from several different existing biobanks,

not all individuals have the same laboratory measurements.
This project used the EA3 Heart Failure study, individuals
with ECG, ejection fraction, and laboratories with creatinine
and proBNP values all present.

The methods for extracting relevant features are changing
and evolving over time [23], but the idea remains the same.
The ECG follows a characteristic PQRST wave that occurs in
a periodic pattern. Each peak, trough, or section of this wave
represents electrical signals of the heart and can be evaluated
for further meaning. Clinicians can look at the ECG visu-
ally for meaning, but signal processing techniques can also
retrieve the mathematical values from the waves themselves.
Since there are multiple electrodes for measuring the ECG,
this is usually taken from lead II signals (Figure 2) [24] or
aggregated.

Figure 2. A sample lead II ECG wave. ECG: electrocardiogram.

Data Preprocessing
The dataset was restricted to the population with HFpEF
(Table 1). This was determined by selecting individuals with
ejection fraction values greater than or equal to 50 and
exhibiting HF at that time (Figure 3). All selected individuals
were verified to have HF diagnoses (either I9 HF or I9 HF
NS). Only ECGs recorded within a 6-month period of the
heart failure diagnosis or laboratory indicative of HF were
used in this study. Creatinine values were used as a proxy
for the presence of CKD. The EA3 HF Cohort contained
1,626,275 laboratory records for 40,024 unique individuals.
Among these, there were 7170 complete ECGs (extracted
ECG values and raw ECG signals) and creatinine laboratory
records for 3864 unique individuals with HFpEF (Figure 3).

The raw lead II ECG signals each contained 5000 points of
data and were taken from individual ECG files within the
EA3 HF cohort. These signals were directly input into the
DTW algorithm. It was these ECG and laboratory records that
were used for clustering and analysis (Figure 4). Specifically,
the data groups to be clustered included extracted ECG
values, a minimal set of extracted ECG values, and raw lead
II signals.

Clusters created through hierarchical clustering on
creatinine served as a baseline for CKD risk, against which
the ECG-enabled clusters were compared. This comparison
aimed to evaluate the effectiveness of ECG-enabled clusters
in stratifying patients with CKD risk within the context of
HFpEF.

Table 1. A characteristics average table to give a better understanding of the clustering cohort. This cohort is comprised of individuals who have
characteristics that indicate HFpEF (LVEF≥50% and NT-proBNP>450 pg/mL).
Clustering cohort baseline characteristics Values
Age (years), mean (SD) 71.16 (11.32)
Women, n (%) 3478 (48.5)
BMI (kg/m2), % 28.4
NT-proBNP (pg/mL) 2018.1
LVEFa (%) 60.25
Creatinine (µmol/L) 103.02
Height (cm) 170.3
Weight (kg) 82.7
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Clustering cohort baseline characteristics Values
Current smoker, n (%) 882 (12.3)
Chronic kidney disease, n (%) 115 (1.6)

aLVEF: left ventricular ejection fraction.
bNT-proBNP: N-terminal pro B-type natriuretic peptide.

Figure 3. An illustration of the data processing flow and the sources of the dataset. CKD: chronic kidney disease; ECG: electrocardiogram;
Expansion Area 3; HFpEF: heart failure with preserved ejection fraction.
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Figure 4. An illustration of the methodology workflow. FinnGen ECG and laboratory records are used to create different sets of clusters: Creatinine
clusters (hierarchical clusters based off creatinine labs to be used as a baseline indication for CKD), ECG feature clusters (clusters created using all
extracted ECG features), PR-QRS clusters (clusters created using top variables determined to be significant in predicting CKD in HFpEF), and DTW
clusters (clusters created using DTW on the raw ECG time series). For each set of clusters, 5 groups were formed. CKD: chronic kidney disease;
DTW: dynamic time warping; ECG: electrocardiogram; HFpEF: heart failure with preserved ejection fraction.

Statistical Analysis
Univariate analysis was first performed for exploratory
purposes. Distributions and averages of the extracted ECG
values (ie, ventricular rate, PR interval, QRS duration, QT
corrected, P axis, R axis, T axis, QRS count, Q onset, Q
offset, P onset, P offset, T offset, atrial rate, and QT interval)
were calculated. A 1-tailed t test was conducted for all

extracted ECG variables to determine if there was a signif-
icant difference between patients with non-CKD and CKD
HFpEF ECG values. It was shown that all extracted features
were indeed significantly different with a significance level of
.05 (Figure 5). Survival analysis was also conducted using a
Cox proportional hazard model and a Kaplan-Meier curve.

Figure 5. Distribution of significant extracted ECG values (QRS Duration and PR Interval) between patients who are CKD-positive and CKD-nega-
tive. CKD: chronic kidney disease; ECG: electrocardiogram; HF: heart failure; HFpEF: heart failure with preserved ejection fraction.

Multivariate analysis of the extracted features was also
conducted. It must be noted that the method may not be
wholly accurate because the correlation between the extracted
features is derived from the ECG waveform itself and can

have some overlap (Figure 6). It must be noted that the
method may not be wholly accurate because of the correlation
between the extracted features. Additionally, these features
lose some information in terms of the time component.
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However, it provides good exploratory insight into which
combination of features would perform well for both CKD
prediction and patient phenotyping.

Figure 6. A heatmap showing the correlation between extracted ECG features. ECG: electrocardiogram.

Determining the Number of Clusters
To determine the number of clusters created, elbow curves
(Figure 7) were created and analyzed to determine which
number of clusters would be optimal. As both elbow charts

exhibit diminishing returns at around the 5-cluster mark,
it was determined that 5 clusters would be generated and
compared.

Figure 7. Elbow curves for extracted feature and DTW hierarchical clustering. This was used to determine the optimal number of clusters (t=5). The
number of clusters was determined using these elbow charts and by seeing where the reduction in inertia or cut threshold has diminishing returns.
DTW: dynamic time warping. WCSS: within-cluster sum of squares.

Extracted Feature Clustering
Several methods were used, including principal component
analysis (PCA), significance, and Lasso feature selection.

Relevant hyperparameters (eg, α for Lasso dropout) were
tuned iteratively to find the top 5 (5 is predefined) features.
For PCA, 50 simulations were run for stability and robust-
ness purposes. In every simulation, the FinnGen data were
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randomly sampled (training=0.8, 80% from all data) and PCA
was conducted on this random sample to select the top 5
ranked features. The top 5 features in order are: ventricular
rate, PR interval, QRS duration, QT corrected, and P axis.
As for Lasso regression, the top features were QRS dura-
tion, QT interval, R axis, QT corrected, and PR interval.

In terms of significance, the top features were ventricular
rate, PR interval, QRS duration, QT corrected, and P axis,
with the average explained variance reported in Table 2 on
the top features identified from multiple methods. From this
exploration, we can see that the PR interval and QRS duration
were always selected as top features.

Table 2. A table ranking component (electrocardiogram variable) importance by average explained variance. PR interval and QRS duration are
among the top 3 extracted variables. Ventricular rate was not chosen because it was not selected among the top 5 features during Lasso regression.
PCAa component ECGb variable Average explained variance
0 Ventricular rate 0.276
1 PR interval 0.251
2 QRS duration 0.156
3 QT corrected 0.122
4 P axis 0.091

aPCA: principal component analysis.
bECG: electrocardiogram.

However, despite bootstrapping for stability and generaliza-
bility, the clusters formed from PR interval and QRS duration
had low stability and consensus, despite performing better
than clustering on all features. This is probably due to
the correlated nature of the extracted ECG features. Thus,
hierarchical clustering using DTW distance calculations was
also performed to consider the correlation.
DTW Clustering
The ECG lead II data were split into a training, validation,
and test sets, each with 500 different unique individuals.
Every patient’s lead II data included 5000 signals. These
were then clustered using hierarchical clustering with the
Ward method. The Ward method was chosen because it
is close in functionality to k-means, which makes it intui-
tive and interpretable. However, it also performs better than
k-means on uncovering clusters of uneven size and irregular
non-spherical clusters. Exploratory analysis has shown the
clusters to be uneven and not guaranteed to be regular, which
makes the Ward method a good fit.

DTW was used to determine the similarity between two
time series. In this case, the time series would be the lead
II ECG signals. This was done by calculating the Euclidean
distance between each point after finding the best alignment

of the 2 sequences (Figure 8). In order to find the best
alignment or shift, the distance between pairs of points
is compared, and the minimum distance is taken. This is
done for the entirety of the 2 sequences. After creating
a matrix representation for the costs associated with each
alignment, the algorithm returns the minimum cost—that is,
the minimum distance between aligned time series. For the
regular ECGs, little shift was needed to occur. No normali-
zation techniques were applied to the ECG lead II records.
For faster processing speeds, the code was parallelized using
the Python (Python Software Foundation) multiprocessing
module.

Afterward, creatinine values were associated with every
ECG, and the average creatinine value was calculated for
every cluster. The average creatinine value of the population
with HFpEF was 101.51 umol/l. Additionally, all clusters
were validated through bootstrapping the data. Multiple
subsets of 500 were created and clustered. This was per-
formed to measure the stability and generalizability of the
various clusters. Since the k-means and hierarchical algo-
rithms are not consistent and exact in their results every time,
this was necessary to ensure that the observed clusters (and
their associated creatinine values) remained stable.

JMIR MEDICAL INFORMATICS Zhao et al

https://medinform.jmir.org/2025/1/e73353 JMIR Med Inform 2025 | vol. 13 | e73353 | p. 8
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e73353


Figure 8. Pseudocode demonstrating the flow of the DTW algorithm and the generation of the matrix used for determining similarity between two
separate time series. DTW: dynamic time warping.

Creatinine Clusters
Since all clusters were created in an unsupervised manner,
there was no true baseline to compare the cluster labels to.
Thus, the 5 clusters formed by hierarchical clustering on
the creatinine laboratory values were created as a stand-in.
Being a waste product from muscle and protein breakdown,
creatinine levels can serve as an estimation of kidney function
and a metric for CKD. Thus, comparing the extracted
ECG value and DTW-formed clusters to these creatinine-
based clusters can demonstrate the former’s capabilities in
demonstrating creatinine enrichment and, subsequently, CKD
enrichment.

Cluster stability was measured using the silhouette score
[25], co-cluster occurrence (Jaccard score), and Rand index
[26]. For the hierarchical clustering on the DTW-determined
distance, the Jaccard index was determined to be a more
relevant metric than the silhouette score. Compared to naively
clustering on extracted features, the clusters were shown to be
more stable.

Average features were calculated for every ECG cluster.
ANOVA (Table 3) was conducted to determine any signifi-
cant extracted feature difference between the clusters.

Table 3. ANOVA test on all extracted ECGa values between the 5 clusters identified in the ECG feature clusters.
ECG variable F test (df) P value
Ventricular rate 46.945 (4, 495) <.001
PR interval 2.466 (4, 495) .062
QRS duration 42.311 (4, 495) <.001
QT corrected 14.901 (4, 495) <.001
P axis .498 (4, 495) .684
R axis 61.873 (4, 495) <.001
T axis .226 (4, 495) .878
QRS count 47.793 (4, 495) <.001
Q onset 15.444 (4, 495) <.001
Q offset 28.054 (4, 495) <.001
P onset 5.614 (4, 495) .001
P offset 3.295 (4, 495) .020
T offset 28.427 (4, 495) <.001
Atrial rate 14.475 (4, 495) <.001
QT interval 29.769 (4, 495) <.001

aECG: electrocardiogram.
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Results
Clustering on Extracted ECG Features
The top 2 features determined are QRS duration and PR
interval. Both of these features were unique among the top
5 ranked features in every method used (significance, Lasso,
and PCA).

Although there is a difference between CKD incidence
when clustering on all available ECG features compared

to clustering on the significant ECG features (PR interval
and QRS duration), the difference may be too small to be
clinically significant.
Clustering With DTW
Regardless of how many clusters the parameter is set for with
hierarchical clustering, clustering with DTW consistently
yielded approximately 5 groups (Figure 9). This phenomenon
could be seen in both the testing and validation sets, and also
when bootstrapping.

Figure 9. Hierarchical clustering on the validation set. It can be seen that approximately 5 clusters form which match up to the number of clusters
estimated using the elbow method on the extracted ECG values. Due to the number of time series that were clustered, there were too many labels to
list individually. ECG: electrocardiogram.

Figure 10 shows that there were creatinine differences among
DTW clusters. Additionally, all extracted ECG features with
the exception of P axis, T axis, and PR interval were shown
to be statistically significant from cluster to cluster (Table 3).
This indicates that the clusters did measurably separate the
ECG time series, not just by time series shape but also by the
relevant values or sections that would be extracted from the
series.

Based on the Jaccard Score, the DTW-created clusters are
most similar to the creatinine-based clusters (Figure 11). This
indicates that it is a better stand-in for CKD enrichment than
clustering solely on ECG extracted features.
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Figure 10. Creatinine value distribution among the 5 clusters identified in dynamic time warping clusters.

Figure 11. Jaccard score heatmap that compares the clusters’ similarities to each other. DTW: dynamic time warping; ECG: electrocardiogram.
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Discussion
Principal Findings
From the results, the PR interval and QRS duration are shown
to be the extracted ECG variables most associated with CKD
in the HFpEF cohort. This follows the biological rationale as
the PR interval and QRS complex are 2 important features of
an ECG signal that capture both time and spatial dynamics
of a cardiac cycle. Each aspect of the selected ECG features
can provide valuable information about the heart’s function.
Since the heart pumps blood systemically and into the lungs
and kidneys, the electric signals may also inform about any
altered hemodynamics in the latter organs [27].

The PR interval represents the time it takes for the
electrical impulse to travel from the sinoatrial node, through
the atria, to the ventricles. A prolonged PR interval may
indicate a delay in the conduction of the electrical impulse,
which can be caused by various conditions and is often
suggestive of atrial abnormalities (eg, atrial volume and
strain). The atrial changes can, in turn, affect subsequent
changes in the ventricular contraction phase [28].

The QRS complex represents the depolarization of the
ventricles, which triggers the contraction of the ventricles
and the pumping of blood out of the heart into systemic
circulation. The duration of the QRS complex is an impor-
tant indicator of the heart’s function, and a prolongation
may indicate a delay in the conduction of the electrical
impulse through the ventricles, which can be caused by
various conditions, including bundle branch blocks, ventric-
ular hypertrophy, or myocardial infarction [29,30]. There is
evidence to suggest that abnormalities in the PR interval and
QRS duration may be associated with an increased risk of
kidney disease in patients with HFpEF [28].

To make the connection from the heart to the kidney
as shown in Figure 1, it is important to note that these 2
time intervals reflect the heart’s electrical conductance system
and are intricately linked to cardiac relaxation, also known
as diastole. During diastole, the heart fills with blood after
the contraction of the ventricles, and this relaxation phase is
important for maintaining adequate blood flow to the whole
body, a capacity that is often lost in some patients with
HFpEF.

ANOVA analysis shows significant differences between
the creatinine levels of the 5 clusters generated by DTW.
Not all the clusters’ creatinine levels differ significantly, but
clusters 1 and 2 (Figure 10) do exhibit statistically significant
differences. This means that DTW-enabled clustering was
capable of stratifying patients with HFpEF with differing
creatinine levels and thus differing CKD risk levels.

Despite the supported relationship between PR interval
and QRS duration with CKD in HFpEF, the PR-QRS
clusters did not demonstrate much similarity with the
established creatinine clusters. Additionally, these PR-QRS
clusters demonstrated low stability and less pronounced CKD
incidence rates among the individual clusters. However, the
PR-QRS clusters’ Jaccard similarity with the creatinine scores

(0.09) and silhouette scores was similar to that of the ECG
Feature clusters’ Jaccard similarity (0.11) with the creatinine
scores and silhouette scores. This indicates that clustering
on PR-QRS performs similarly to clustering on all extrac-
ted ECG features—further demonstrating that a relationship
exists between PR interval and QRS duration with CKD in
HFpEF. Nevertheless, due to the cluster instability and low
Jaccard similarity with the creatinine baseline, it could not be
used to inform clinical decisions.

DTW clusters performed much better than the PR-QRS
clusters and ECG feature clusters in terms of Jaccard
similarity (0.37) to the established creatinine baseline.
Although the cluster groupings were not perfectly equivalent,
the similarity demonstrates the potential application of using
DTW for ECG clustering. This is intuitively expected due
to the DTW being able to fully use the entire ECG signal.
Previous literature has also supported the clustering capabili-
ties of DTW for ECG and other signal-based records.

However, the specific reason why DTW performed
better remains to be seen. Knowing the difference between
the information DTW clustering captures compared to the
information extracted ECG features clustering captures would
be helpful. This could be used for better understanding of
the statistical aspects of DTW application for clustering, as
well as the cardiorenal relationship between HFpEF and CKD
in this case. DTW’s better performance implies that the full
lead II waveform contains more data than the extracted ECG
features—minimal set or otherwise. This means that solely
using extracted ECG features when working with ECG data
analysis may lead to some loss of context.
Limitations
There were certain limitations to the dataset, most notably
with regard to its demographics. As the FinnGen study
aggregates data from Finnish biobanks, the population is
overwhelmingly Finnish and lacks heterogeneity that may
pose a challenge to generalizability to other populations.
Certain patients were also overrepresented in the dataset. The
average patient with HFpEF had 5 ECGs spaced over a 1-year
period. However, there were patients who had many ECG
records (greater than 5) and patients with only a few ECG
records. The FinnGen EA3 Heart Failure cohort is also not
representative of all HF or patients with HFpEF. This means
that extrapolating this project’s results to the wider population
may not yield good results. There are disease differences
between FinnGen and the external population—the renal and
cardiovascular outcomes may not perform well.

Additionally, although all data were sourced from the
FinnGen EA3 Heart Failure cohort, the cohort itself is
comprised of several different biobanks, and each biobank
provides differing amounts of data. ECG data were only
available from the Central Finland Biobank. This meant that,
while some patients had characteristics that indicated HFpEF,
they could not be included in this study since they lacked
ECG data. This data limitation introduces bias as it means
all individual data is effectively from the Central Finland
Biobank.
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HFpEF itself is also difficult to diagnose, and the current
diagnosis is multifaceted, with many clinical parameters. Due
to a lack of diagnosis codes in the FinnGen EA3 Heart
Failure cohort, clinical diagnosis of HFpEF could not be
obtained. We used the FinnGen R12 cohort to confirm that
the selected dataset had HF diagnostic codes (either I9 Heart
Failure or I9 Heart Failure NS). Thus, using this in combina-
tion with the LVEF and NT-proBNP values (some of the
main parameters for HFpEF), the selected individuals are
indicated for HFpEF. Although this selected cohort may not
be purely composed of clinically diagnosed patients with
HFpEF, there could have also been a greater likelihood of
finding an enrichment for patients with HFpEF. Furthermore,
as the biological rationale behind the hypothesis is on the
cardiorenal associations between the heart and kidneys, it is
the specific heart features (ie, hypercontractility and failure)
that are most relevant rather than a clinical diagnosis. The
relationship between the heart and kidneys is already known
to exist, so this cohort serves as a sort of positive control.

Due to the lack of diagnosis codes in the EA3 Heart
Failure Cohort, CKD was also difficult to label. Even with
diagnosis codes, it is entirely possible that this subset may be
underdiagnosed. Creatinine laboratory records provided in the
EA3 Heart Failure Cohort were used as proxies for CKD.
Estimated glomerular filtration rate could have also been
used, but these data were not as complete as the creatinine
records and would have severely limited the cohort.

There are also confounding factors, such as medications
or co-morbidities, that may affect both ECG readings and
creatinine levels. Unfortunately, the lack of medications and
co-morbidities from the dataset is a limitation that can be
rectified in the future through validation on an external
dataset such as the FinnGen R12 Cohort.

In addition, DTW also has its own limitations. Although it
does consider the entire ECG signal, it reduces it down to a
singular similarity metric (ie, distance) that may be reduc-
tive. Additionally, it is very computationally intensive and
sensitive to noise. Extracted ECG values are not as sensitive
to noise.

The main challenge with DTW was the time needed for
calculations—it took a long time for every calculation. Since
the distance needed to be calculated for every possible time
series pair (of which there were 14,000 due to an average
of 5 ECGs per patient), this was very time-consuming. Since
all analysis took place within the FinnGen sandbox, which is
a closed environment, not all packages were available. This
included the conventional packages for DTW calculations.
This was further parallelized using Python’s multiprocessing
library for efficiency’s sake.
Future Directions
Applying ECG clustering with DTW to other disease areas
for similar cluster enrichment analysis may be fruitful.
Previous literature has demonstrated the capabilities of ECG
for risk prediction in both cardiovascular and non-cardio-
vascular disease areas. Analyzing the differences in cluster

enrichment analysis with DTW and classic supervised risk
prediction approaches may be informative.

Further work could also segment the ECG time signals.
In doing so, each area could be examined for its contribu-
tion to the DTW-determined signal similarity or distance.
This way, the parts of the ECG that most affect the DTW
distance could be identified and determined. However, this
method would be very computationally intensive—even more
so than the current approach, which requires calculations for
every pairwise ECG combination. Additionally, the FinnGen
sandbox that houses the EA3 Heart Failure study only allows
select Python packages to be installed and used (eg, the
most popular and well-known ones such as pandas, numpy,
matplotlib, scikit-learn, and more). DTW-related packages
such as fastdtw, dtaidistance, or tslearn are not available on
the server and must be manually coded and parallelized. This
work would also need to be done for any signal segmentation
DTW analysis.

Other future work involves incorporating DTW distance
as a representation into autoencoders. Previous literature in
both ECG and non-ECG areas has shown autoencoders to be
accurate for disease trajectory and risk assessment. Incorpo-
rating not just the extracted ECG signals into autoencoders,
but perhaps also a DTW score can be helpful.

Additionally, this study did not consider all comorbidities
that are known to be associated with HFpEF [1], nor did
it account for associated changes due to medication use in
the selected cohort, for example, blood pressure control.
As such, the study has limited its scope to cardiac-specific
criteria and specific analytes (eg, creatinine in its methodol-
ogy to understand the direct cardiorenal association). In the
future, we may want to understand the potential synergies
and constraints derived from adding more features, which
may improve the accuracy of the prediction. In particular, we
may want to evaluate the combinatorial effect of underly-
ing physiology, medication, preexisting diseases, urinary and
blood-based metabolic and protein biomarkers, and genet-
ics that may interact with each other and our selected
features. While lack of various associated clinical data may
be a limitation of this study, we propose that our approach
minimizes noncardiac effects that may often mask the true
association between organs, for example, changes in blood
pressure or pulmonary changes that may also be seen in
HFpEF that have shown as a phenogroup in earlier studies
[17], do not stand in conflict with our methodology. As we
validate our study using other public datasets, for example,
the UK Biobank, we would consider expanding the scope of
the analysis.

As for practical adoption for clinical practice, the model
itself is currently exploratory. The DTW-enabled clusters do
show promise for patient stratification and exhibit statisti-
cally significant results in the context of HFpEF and CKD,
but the associations may not be strong enough to be clin-
ically relevant. However, the model does further validate
the cardiorenal relationship and also shows ECG data to
be particularly useful for phenogrouping. It showcases the
relationship in a well-established cohort with good clinical
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phenotyping and ECG data. Specifically, the full lead II
waveform is most beneficial for detecting CKD risk in
patients with HFpEF—more so than any single or set of
extracted ECG variables. Relying on extracted ECG variables
may not give the full picture. With this information in mind,
health care providers can be more aware during clinical
practice. In a research setting, this information about ECG
data extraction is important as it shows that not using the full
waveform could lead to loss of data. The model built will be
useful in expanding research beyond the relationship between
ECG from patients with HFpEF to other interesting clinical
phenotypes as well.

Conclusions
From the results, the PR interval and QRS duration are shown
to be the extracted ECG variables most associated with CKD
in the HFpEF cohort. This follows the biological rationale as
the PR interval and QRS complex are 2 important features of
an ECG signal that capture both time and spatial dynamics
of a cardiac cycle. The DTW application for ECG clustering
would also be fruitful to explore.
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