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Abstract

Background: Kidney cancer remains a significant challenge in oncology, with accurate prognostic assessment being crucial
for postoperative management. While radiomics has shown promise in cancer prognosis, there is limited research on compre-
hensive models that effectively integrate radiomic features with clinical parameters for kidney cancer survival prediction.

Objective: This study aimed to develop and validate a comprehensive computed tomography (CT) radiomics-based nomo-
gram for predicting overall survival in postoperative patients with kidney cancer by integrating radiomic features with clinical
parameters.

Methods: Radiomic features were extracted from regions of interest in CT images of 207 postoperative patients with kidney
cancer. The eigenvalue data of all radiomic features were processed using z score standardization and the R software package
GLMNet. We integrated survival time, survival status, and radiomic features and screened these features using the least
absolute shrinkage and selection operator—Cox regression method. We conducted 10-fold cross-validation to obtain an optimal
model of 5 radiomic features. Multivariate Cox regression hazard models were established to analyze patients’ overall survival.
The predictive ability of the nomogram (receiver operating characteristic curve and calibration curve) was evaluated using
bootstrap resampling validation. Patients were divided into high- and low-risk groups based on the radiomic risk score cutoff
value, and the Kaplan-Meier method was conducted to identify established models’ forecasting ability. Five radiomic features
were screened for predictive model construction.

Results: This retrospective analysis was conducted from April 2024 to July 2024 using data from The Cancer Imaging
Archive public database. The final cohort included 207 patients (3 excluded from the initial 210) who underwent nephrectomy
for kidney cancer. The median follow-up time was 33 (IQR 11-47) months. The receiver operating characteristic curve and
area under the curve showed that the predictive model performed well. The calibration curve of nomogram and radiomic
features in the cohort study set indicated an overall net benefit. Kaplan-Meier curves indicated that overall survival time was
dramatically shorter in the high-risk group.

Conclusions: Our radiomics nomogram successfully integrates CT-derived radiomic features with clinical variables for
kidney cancer survival prediction, demonstrating good prognostic capability and offering a noninvasive, quantitative tool for
personalized postoperative management and clinical decision-making.
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Introduction

Methods

Background

Kidney cancer is the most common malignant cancer of the
urinary system, and nephrectomy is the standard treatment for
locoregional kidney cancer [1]. Progress has been achieved
through multiple optional methods of surgical resection and
systemic therapies for kidney cancer [2]. However, overall
survival (OS) and prognosis, especially if the cancer is
detected at an advanced stage, remain unsatisfactory if the
cancer is not treated optimally because of its high invasive-
ness, high mortality, and resistance to chemoradiotherapy [2,
3]. Furthermore, the incidence of kidney cancer has been
reported to have steadily increased in recent years [4-6]. The
ability to predict the prognosis preoperatively and noninva-
sively is vital; however, patients who undergo nephrectomy
still lack specific radiomic markers because of the complex-
ity of disease progression and high heterogeneity. Radiomic
markers that can facilitate predicting and monitoring the
prognosis with good accuracy are urgently needed, after
which a personalized strategy for clinical treatment needs
to be provided. However, there remains limited research on
comprehensive prognostic models that effectively integrate
radiomic features with clinical parameters for kidney cancer
survival prediction [7].

Radiomics is a rapidly developing field in which med-
ical images are transformed into available radiological
data and allows for efficacy monitoring, prognosis surveil-
lance, microenvironment evaluation, and biological behav-
ior assessment through quantitatively extracting features
and facilitating in-depth characterization of tumor pheno-
types beyond imaging interpretation [8-10]. Clinically, the
postoperative prognosis of patients with cancer is frequently
evaluated using the tumor-node-metastasis (TNM) classifica-
tion system [11]. Recently, there has been an increasing focus
on the application of computed tomography (CT) radiomics
in kidney cancer, which has satisfactory potential in terms
of lesion characterization, histological grade, and assessment
of response to treatment [12-14]. Nevertheless, the correla-
tion between radiomic features and the prognosis of patients
with kidney cancer remains unclear, and further research is
required to provide references for the clinical setting.

Objectives

To address this need, we developed a comprehensive
radiomics-based nomogram that combines CT-derived
features with clinical parameters for survival prediction in
postoperative patients with kidney cancer. This integrated
approach provides a practical tool for prognostic assessment
and clinical decision-making.
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Patient Selection and Clinical Data
Collection

Data from 210 patients with kidney cancer were obtained
from The Cancer Imaging Archive (TCIA) database [15].
Inclusion criteria were (1) pathologically confirmed kid-
ney cancer, (2) having undergone nephrectomy, (3) availa-
ble contrast-enhanced CT imaging data, and (4) complete
survival follow-up data. Exclusion criteria were patients
with an OS of 0 days (n=3). Our final cohort comprised
207 patients. Clinical characteristics collected included
demographic data (age and gender), smoking history,
comorbidities, tumor characteristics (pathology TNM stage,
tumor histologic subtype, and tumor International Society
of Urological Pathology grade), surgical parameters, and
survival outcomes (vital status and survival time). To identify
independent risk factors of OS, univariate and multivariate
Cox regression analyses were conducted using the survival
and forest plot packages in R (R Foundation for Statistical
Computing).

Radiomic Datasets and Feature
Extraction

Image Preprocessing

CT images were preprocessed using wavelet-based meth-
ods. Before feature extraction, all images were resampled
according to a voxel size of 1 x 1 x 1 mm?® to ensure
standardized spatial resolution across the dataset.

Region of Interest Definition

Presegmented regions of interest, including gross tumor
volume (GTV) and healthy kidney regions, were obtained
from the TCIA database annotations. All regions of
interest were visually inspected for quality and anatomi-
cal accuracy to ensure appropriate boundaries for radiomic
analysis.

Feature Extraction

Feature extraction was based on the 3D Slicer platform
and was conducted using the PyRadiomics package [16].
A total of 851 radiomic features were extracted from the
GTV and healthy kidney regions, including shape features
(volume, surface area, and sphericity), first-order statistical
features (mean, variance, skewness, and kurtosis), and texture
features (gray-level dependence matrix [GLDM], gray-level
co-occurrence matrix, neighboring gray tone difference
matrix, gray-level size zone matrix, and gray level run
length matrix). Wavelet-transformed features from different
frequency decompositions were also extracted. The eigen-
value data of all radiomic features were processed using z
score standardization to ensure comparability across different
feature scales [17].
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Feature Selection and Model
Development

Feature Selection Rationale and Methodology

Least absolute shrinkage and selection operator (LASSO)
regression was chosen for feature selection due to sev-
eral advantages: (1) it effectively handles high-dimensional
data with small sample sizes, which is common in radio-
mics studies; (2) it performs automatic feature selection by
shrinking coefficients of less important features to 0; (3) it
reduces overfitting risk through L1 regularization; and (4) it
has been widely validated in survival analysis and radiomics
research.

LASSO-Cox regression analysis was conducted using the
glmnet package in R. We integrated survival time, survival
status, and radiomic features from all 207 patients. The
optimal regularization parameter (A) was determined through
10-fold cross-validation using the minimum cross-validated
partial likelihood deviance as the selection criterion. Features
with nonzero coefficients at the optimal A were selected for
model construction.

Risk Score Construction and Stratification

A radiomic risk score was constructed using the linear
combination of selected features weighted by their LASSO
regression coefficients. The optimal cutoff value for risk
stratification was determined using time-dependent receiver
operating characteristic (ROC) curve analysis. Patients were
then classified into high- and low-risk groups using this cutoff
value.

Statistical Analysis and Model Validation

Model Development and Nomogram
Construction

Univariate and multivariate Cox regression analyses were
conducted on the entire cohort to identify independent
prognostic factors using the survival and forestplot packages
in R. Clinical variables with P<.10 in univariate analysis were
included in multivariate analysis along with the radiomic risk
score. A nomogram was constructed using the rms package
incorporating significant variables from multivariate analysis.

Model Performance Evaluation

Model performance was assessed using multiple metrics
following established methodologies for machine learn-
ing—based cancer prediction studies [18]: discrimination
(time-dependent ROC curves and area under the curve
[AUC] at 1, 2, 4, and 6 years using the survivalROC
package), calibration (calibration plots comparing predicted
vs observed survival probabilities), clinical utility (decision
curve analysis to evaluate clinical net benefit), and risk
stratification (Kaplan-Meier survival curves with the log rank
test to compare survival differences between risk groups) [19,
20].
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Validation Strategy

Given the presegmented nature of the TCIA dataset, we
used bootstrap resampling for model validation. The 10-fold
cross-validation was specifically used during the LASSO
regression phase to determine the optimal regularization
parameter (M) for feature selection. For final model valida-
tion, we performed 1000 bootstrap iterations on the entire
cohort (N=207) to assess model stability and obtain CIs for
performance metrics.

Statistical Software and Significance

All analyses were conducted using the R software (version
3.6.3). A 2-sided P<.05 was considered statistically signifi-
cant. Missing data were handled using complete case analysis.

Ethical Considerations

This study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Jiangxi
Cancer Hospital & Institute (2024ky057). As this study used
publicly available databases, all data in this study have been
anonymized or de-identified, so written informed consent
from patients was not obtained.

Results

Clinical Data

This retrospective analysis was conducted from April 2024
to July 2024 using data from the TCIA public database. The
final cohort included 207 patients (3 excluded from the initial
210) who underwent nephrectomy for kidney cancer. This
study comprised 58.5% (121/207) male and 41.5% (86/207)
female patients. The median follow-up time was 33 (range
1-102; IQR 11-47) months at the time of analysis.

Radiomic Feature Variable Selection

Five radiomic features were selected through LASSO-Cox
regression analysis for OS prediction (Figure 1). The
radiomic features included the following: kurtosis of first-
order wavelet-LLH (H: high-frequency band; L: low-fre-
quency band; GTV; feature 1), large-area high gray-level
emphasis of the gray-level size zone matrix of wavelet-LHL
(GTV; feature 2), dependence nonuniformity of GLDM
of wavelet-HHL (healthy kidney; feature 3), long-run low
gray-level emphasis of gray-level run length matrix of
wavelet-LHL (GTV; feature 4), and large-dependence low
gray-level emphasis of GLDM of wavelet-LLL (GTV; feature
5). The 5 selected radiomic features represent different
aspects of tumor and tissue characteristics that may have
clinical relevance. Texture features such as gray-level
emphasis and dependence measures reflect tissue heteroge-
neity and organizational patterns, which may correlate with
tumor biological behavior and aggressiveness. The inclusion
of features from both tumor regions (GTV) and healthy
kidney tissue suggests that both local tumor characteristics
and the impact on surrounding normal tissue contribute to
prognostic assessment. These features collectively capture
quantitative imaging biomarkers that complement traditional
clinical prognostic factors.
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Figure 1. LASSO regression feature selection for kidney cancer survival prediction (entire cohort: N=207). (A) LASSO coefficient paths and (B)
10-fold cross-validation curve for selecting five radiomic features. LASSO: least absolute shrinkage and selection operator.
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The variables from features 1 to 5 represent the significant
radiomic features for predicting OS and are shown in Table 1.

The formula for the OS radiomic risk score was as follows: * featureS
Table 1. Features 1 to 5, corresponding to different parameters for radiomics.
Feature number CT? radiomics
1 Kurtosis of first-order wavelet-LLH (GTVb)
2 Large-area high gray-level emphasis of GLSZM® of wavelet-LHL (GTV)
3 Dependence nonuniformity of GLDMY of wavelet-HHL (healthy kidney)
4 Long-run low gray-level emphasis of GLRLM?® of wavelet-LHL (GTV)
5 Large-dependence low gray-level emphasis of GLDM of wavelet-LLL (GTV)

4CT: computed tomography.

PGTV: gross tumor volume.

CGLSZM: gray-level size zone matrix.
dGLDM: gray-level dependence matrix.
°GLRLM: gray-level run length matrix.
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Establishment of Nomograms and 5 features, we established a nomogram using the Cox method
Prediction Performance of the to assess the prognostic significance of these features in 207
Nomo gram Models patients. As shown in Figure 3, all calibration curves showed

good results for the study samples.
As shown in Figure 2, based on identified radiomic features,
after integrating the data on survival time, survival status, and

Figure 2. Nomogram prediction for 1-, 2-, 4-, and 6-year survival for patients with kidney cancer (entire cohort: N=207). Rad-score: radiomic risk
score.
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Figure 3. Kidney cancer overall survival nomogram calibration plots (entire cohort: N=207).
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Model Validation Results

Bootstrap validation using 1000 iterations demonstrated
robust model performance. The bootstrap-corrected AUC
values were 0.80 (SD 0.03) for 1-year survival prediction,
0.77 (SD 0.04) for 2-year survival prediction, 0.74 (SD
0.04) for 4-year survival prediction, and 0.71 (SD 0.05) for
6-year survival prediction. The optimism-corrected concord-
ance index was 0.73 (95% CI 0.68-0.78), indicating minimal
overfitting.

Association Between Radiomic Features
and Survival Prognosis

As shown in Figure 4, we analyzed the relationship between
risk scores and patient outcomes across the entire cohort. The

https://medinform jmir.org/2025/1/e73162

visualization clearly demonstrates that patients with higher
risk scores experienced shorter survival times and higher
mortality rates, as expected. The heat map pattern shows how
the 5 radiomic features (features 1-5) collectively contrib-
ute to risk stratification, with distinct expression patterns
between high-risk and low-risk patient groups. This risk
score—based stratification effectively separates patients into
clinically meaningful survival groups.

As shown in Figure 5, we used the time-varying ROC
curve and AUC as the criteria for evaluating the nomo-
gram. Figure 5 shows AUC of the model combining clinical
features, and the radar score shows good performance.
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Figure 4. Risk stratification visualization showing the relationship between radiomic risk score and patient survival outcomes (entire cohort: N=207).
The upper panel displays the distribution of risk scores ranked by patient survival time. The middle panel shows survival time for each patient. The
lower panel illustrates the expression patterns of the 5 selected radiomic features (features 1-5) contributing to the risk score calculation. Color coding
indicates patient survival status and risk group classification (high-risk vs low-risk groups based on the optimal cutoff value).
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Figure 5. The 1-, 2-, 4-, and 6-year time-dependent receiver operating characteristic curves to assess the predictive accuracy for overall survival
(entire cohort: N=207). AUC: area under the curve; FPR: false-positive rate; TPR: true-positive rate.
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Figure 6. Survival curve depicting the high- and low-risk groups based on the radiomics score classification (entire cohort: N=207; low-risk group:
n=154; high-risk group: n=53). H: high-risk group; HR: hazard ratio; L: low-risk group.
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On the basis of publicly available data from the TCIA
database, this study developed and validated prognostic
nomogram models for patients with kidney cancer, and
the results showed that our nomogram was advantageous
for predicting patient prognosis. The nomogram could be
useful for postoperative evaluation of patients with kidney
cancer and development of individualized treatment plans.
ROC and calibration curve results showed that the nomo-
gram performed well in terms of noninvasive prediction
of survival in patients with kidney cancer. The nomogram
visually showed how to numerically quantify each factor for
predicting survival in patients with kidney cancer. On the
basis of our results, we observed good performance in terms
of our radiomics characterization and the predict nomogram,
suggesting that our model can be used to effectively predict
the prognosis of patients with kidney cancer and create a
robust decision-making framework for clinicians.

Comparison With Previous Work

The incidence of kidney cancer has been steadily increasing
over recent decades, although the reasons for this remain
unclear [1]. The annual incidence of kidney cancer has
been increasing in both men and women [21]. However,
patients with the same type of kidney tumors might have

https://medinform jmir.org/2025/1/e73162

ard invasive method for assessing prognostic indicators (ie,
histological classification, grades, and stages) of kidney
cancer to guide further treatment [21,22]. An objective and
noninvasive approach is needed to evaluate and predict the
clinical outcomes of patients with kidney cancer. CT plays
a vital role in the diagnosis and prognosis of renal disease
as it is noninvasive and convenient, especially compared
with biopsy, surgery, and immunohistochemistry. Biopsy is
not always necessary because imaging is a highly accurate
method for characterizing renal malignancy [23]. Radiomics,
which is a commonly used method to extract characteristics
in terms of mass data from each medical image, can provide
tumor characteristics and functions at both macroscopic and
micromolecular levels [24]. Recently, several studies have
explored the biological progress of kidney cancer via the
construction of radiomic models using CT images. Feng et
al [25] and Kocak et al [26] showed that CT radiomics
has the potential to predict the BRCAI-associated protein 1
mutation status in patients with kidney cancer. Ghosh et al
[27] provided a radiomics-genetics pipeline that extracted 3D
intratumor heterogeneity features from contrast-enhanced CT
images and explored associations between features and gene
mutation status. In 2001, a nomogram used to predict the
5-year survival of patients with kidney cancer was reported
by Kattan et al [28]. The nomogram incorporated 4 factors:
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symptoms, histological subtype, tumor size, and TNM stage
(1997 version) [28]. In 2018, Zhang et al [29] developed
a nomogram specifically to assess the prognosis of patients
with renal clear cell carcinoma postoperatively based on
clinical data from 35,151 patients. However, several studies
addressing the roles of immune profiles have encountered
various uncertainties and have used constructed classification
models to preoperatively identify pathological grades for
patients with kidney cancer using machine learning—based
CT radiomics with noninvasion [30-32]. Some studies have
also shown the significance of CT radiomics in distinguish-
ing kidney cancer from other renal mass diseases. Yang et
al [33] developed various machine learning—based classifica-
tion models to differentiate renal angiomyolipoma and kidney
cancer, which performed well. Coy et al [34] reported the
utility of machine learning in differentiating kidney cancer
from oncocytoma on routine CT images using their models,
which were able to accurately predict renal lesion histology
on imaging. Meng et al [35] proposed a CT-based radiomic
method to distinguish sarcoma from kidney cancer, with a
good diagnostic performance. This is the first study to provide
a predictive nomogram showing that radiomics can be used
independently to predict prognosis in patients with kidney
cancer. Our results indicated that our model could be a pivotal
tool for the prognostic surveillance of kidney cancer.

Clinical Implications

Risk stratification with specific risk scores using a radio-
mic signature was accurately performed, and the predic-
tive nomogram, which comprehensively integrated radiomic
and clinical signatures, could effectively predict outcomes
for patients with kidney cancer and facilitate decision-mak-
ing for clinicians. The noninvasive nature of this approach
makes it particularly valuable for routine clinical application,
potentially reducing the need for invasive procedures while
providing accurate prognostic information [36]. In clinical
practice, the radiomics nomogram could be integrated into
routine postoperative imaging review to guide surveillance
intensity and treatment decisions. High-risk patients might
benefit from more frequent monitoring or earlier interven-
tion discussions, whereas low-risk patients could have less
intensive follow-up schedules. The scoring system could be
incorporated into existing hospital information systems using
automated feature extraction, requiring minimal workflow
changes for clinical staff.

Methodological Considerations

Our analytical approach evolved during the course of this
study. Initially, we planned to use a traditional 70:30 train-test
split for model development and validation. However, when
we examined the TCIA dataset more carefully, we found that
the presegmented images and the relatively small sample size
(N=207) would result in insufficient power for robust model
validation using a holdout approach, particularly for survival
outcomes at multiple time points.

Therefore, we modified our approach to use the entire
cohort (N=207) for model development, with bootstrap
resampling for internal validation. This is a well-established
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alternative when sample sizes are limited, as recommended
in radiomics guidelines [37]. Bootstrap validation provides
robust performance estimates and CIs while maximizing the
use of available data. Our results indicate acceptable model
performance without significant overfitting.

This methodological adaptation underscores the impor-
tance of flexibility when working with real-world datasets and
the need for transparent reporting of analytical decisions in
radiomics research.

Limitations

This study had several limitations that should be acknowl-
edged. First, our conclusions were based on data obtained
from public databases, which inevitably have limitations
due to patient selection characteristics and data availabil-
ity constraints. To mitigate this limitation, we applied
rigorous inclusion and exclusion criteria and standardized
image preprocessing protocols. However, this may still
affect the generalizability of our results. Future studies
should incorporate multi-institutional datasets with standar-
dized imaging protocols to improve data quality and external
validity. Second, our study sample size was relatively small
(207 patients with kidney cancer), which was insufficient
for robust model development and validation. This limitation
may affect the performance and efficiency of the predictive
signatures and limit the statistical power of our analysis.
Future research should aim to include larger, multicenter
prospective cohorts to validate this predictive model and
improve its reliability. Third, TNM staging was not selected
as a clinical feature related to OS in this study because
patients with hepatocellular carcinoma with portal vein
tumor thrombosis are classified as being in the late clini-
cal stage, which makes it challenging to predict OS using
clinical staging as all patients have similar staging infor-
mation. This may limit the comprehensive evaluation of
traditional prognostic factors. Future studies should explore
methods to better integrate staging information with radiomic
features. Fourth, our model only explored tumor regions
using imaging. To our knowledge, peripheral tumors provide
biological information for prognosis monitoring, but we
did not investigate peritumoral regions that might contain
valuable prognostic information. Future research should
explore the integration of peritumoral radiomic features to
enhance predictive performance. Fifth, the TCIA dataset may
introduce selection bias as cases were contributed by specific
institutions with potentially different patient populations
and referral patterns. In addition, heterogeneous CT imag-
ing protocols across contributing institutions (scanner types,
reconstruction algorithms, and contrast protocols) present
challenges for radiomic feature standardization and reprodu-
cibility. These factors limit the direct clinical applicability
of our model, requiring validation and potential recalibration
for different imaging protocols and patient populations before
clinical implementation.

Future Directions
To advance radiomics-based prognostic modeling in kidney

cancer, several key research directions should be prioritized.
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First, multicenter prospective validation studies using
standardized imaging protocols are essential to establish the
generalizability and clinical applicability of radiomics models
across different institutions and patient populations. These
studies should include larger collaborative cohorts (>500
patients) to improve statistical power and model reliability.
Second, radiomics research should expand beyond tumor
regions to systematically investigate peritumoral features
and explore integration with clinical biomarkers to enhance
predictive performance. In addition, focused investigation of
patient subgroups, particularly those with shorter survival
periods who may benefit most from accurate prognostic
prediction, represents an important research priority. Finally,
the development of automated radiomics workflows and
real-time clinical decision support systems will be crucial
for translating research findings into routine clinical practice

He et al

and facilitating widespread adoption of radiomics-based
prognostic tools [38,39].

Conclusions

We developed a triphasic contrast-enhanced CT-based
radiomics nomogram that combined clinical factors and
radiomic features. This nomogram demonstrated favorable
predictive efficacy for differentiating kidney cancer post-
operative outcomes. The model, combining CT-extracted
radiomic features, showed good potential for evaluating OS
in patients treated with nephrectomy and may facilitate
clinical management and prognostic evaluation of postoper-
ative patients with kidney cancer. As a noninvasive and
quantitative method, the radiomics nomogram represents a
promising tool for personalized medicine in kidney cancer
management.
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