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Abstract

Background: Several studies have used electronic health records (EHRs) to build machine learning models predicting the
likelihood of developing gestational diabetes mellitus (GDM) later in pregnancy, but none have described validation of the
GDM “label” within the EHRs.

Objective: This study examines the accuracy of GDM diagnoses in EHRs compared with a clinical team database (CTD) and
their impact on machine learning models.

Methods: EHRs from 2018 to 2022 were validated against CTD data to identify true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Logistic regression models were trained and tested using both EHR and validated
labels, whereafter simulated label noise was introduced to increase FP and FN rates. Model performance was assessed using
the area under the receiver operating characteristic curve (ROC AUC) and average precision (AP).

Results: Among 3952 patients, 3388 (85.7%) were correctly identified with GDM in both databases, while 564 cases lacked a
GDM label in EHRs, and 771 were missing a corresponding CTD label. Overall, 32,928 (87.5%) of cases were TN, 3388 (9%)
TP, 771 (2%) FP, and 564 (1.5%) FN. The model trained and tested with validated labels achieved an ROC AUC of 0.817 and
an AP of 0.450, whereas the same model tested using EHR labels achieved 0.814 and 0.395, respectively. Increased label noise
during training led to gradual declines in ROC AUC and AP, while noise in the test set, especially elevated FP rates, resulted in
marked performance drops.

Conclusions: Discrepancies between EHR and CTD diagnoses had a limited impact on model training but significantly
affected performance evaluation when present in the test set, emphasizing the importance of accurate data validation.
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Introduction

Electronic health records (EHRs) are an important source
of real-world data, offering detailed, longitudinal patient
information historically stored in medical charts, and forming
the basis of real-world evidence [1,2]. Together with
advancements in artificial intelligence and machine learning

https://medinform.jmir.org/2025/1/e72938

(ML), EHRs are increasingly being used to develop models
that improve the prediction of health and disease outcomes

[3].

Integration of EHRSs into clinical research offers numerous
opportunities for advancing health care delivery and patient
outcomes. However, EHR data is often stored in unstructured
formats such as free text, requiring information extraction
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algorithms to enable ML applications [4]. This extraction
process can introduce data quality concerns due to various
issues such as data entry errors and cut-and-paste errors [5].
The quality and consistency of EHR data are particularly
critical when the target variable, that is, the variable being
predicted, is used in ML models.

Inaccuracies in EHRs present challenges for developing
and applying ML algorithms in health care, primarily due
to the dependency on data quality and accuracy of tar-
get labels [6]. This “label noise,” which refers to inaccur-
acies or inconsistencies in the data labels (eg, diagnosis
codes) extracted from EHRs, can significantly impact model
performance by introducing errors in the target variable,
leading to potentially misleading conclusions [7]. Training
ML models on unvalidated EHRs may lead to systematic
errors in the model output with the potential for the model
to miss, underestimate, or overestimate clinically significant
relationships [8.9].

Accurate diagnosis and recording of gestational diabe-
tes mellitus (GDM) in EHRs is important not only for
effective patient management but also for informing public
health strategies and economic forecasting in national health
care planning [10,11]. EHRs are often used to train ML
approaches that support clinical decision-making and care
pathways that improve pregnancy outcomes [12]. However,
the utility of EHRs remains a concern due to potential
discrepancies in data recording practices [8]. When using
ML in GDM prediction [13], the accuracy of input data is
paramount because inaccuracies can lead to flawed prediction
models and ineffective or adverse clinical decisions [14].

Several studies have used EHRs to build ML mod-
els predicting the likelihood of developing GDM later in
pregnancy [15], but none have described validation of the
GDM “label” within the EHRs. This study has 3 primary
aims: first, to assess the accuracy of reporting of GDM
diagnoses in EHRs by comparing them to a database
maintained in real-time by the hospital’s clinical team;
second, to evaluate how discrepancies in GDM reporting
impact ML models; and third, to examine ML model
performance using varying levels of simulated label noise in
the dataset. By identifying discrepancies between these data
sources, we aim to highlight the importance of data validation
for advancing digital health and ML-driven health care.

Methods
Study Design

A retrospective validation design was used to assess the
accuracy of GDM diagnoses recorded in the EHRs of a
national maternity hospital (The Coombe Hospital, Dublin).
We matched patient ID between the EHR system and a
reference standard established by a real-time clinical team
database (CTD) of those formally diagnosed with and
managed for GDM, which served as a ground truth. This
approach allowed for direct comparison between the recorded
GDM status in the EHRs and the validated GDM status from
the CTD, enabling identification of true positives (TP), false
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positives (FP), true negatives (TN), and false negatives (FN)
in the EHRSs. Further, the effect of label noise on ML model
performance in predicting the development of GDM (binary
classification) was evaluated by first examining its impact
in our current EHR dataset, and then second, simulating
progressively increasing levels of label noise to understand
its effect on ML model performance both in terms of training
and testing.

Data Source and Validation

The EHR system serves as the repository for patient medical
histories, including diagnoses, family history, and outcomes
for pregnant women receiving care at the institution. The data
are collected routinely from all women by trained midwives
using standardized questions and are then computerized onto
the electronic system of the hospital, “Euroking K2.” EHRs
were collected from 2018 to 2022 and consisted of over
35,000 pregnancies during this time. The dataset from the
CTD spanned from 2018 to 2022; thus, the timeframe for
this analysis spanned from 2018 to 2022 (inclusive). Women
aged 18 years or older with complete information on GDM
status were included in the analysis. Pregnancies with missing
or incomplete data for critical variables, women without
a recorded GDM status, and pregnancies with pre-existing
diabetes were excluded. ML models were trained and tested
on pregnancies with complete EHR data up to the 12th week
of gestation.

GDM diagnoses were extracted from the EHRs based on
information recorded in a column titled “medical problems
during pregnancy.” When this column contained the entry
“diabetes developed during pregnancy,” the patient was coded
as having GDM in a newly created column designated for
this study’s analysis, referred to hereafter as “EHR-GDM.”
Patient records not meeting this criterion were coded as
not having GDM. The legacy EHR has a single structured
problem field; it does not store ICD (International Statisti-
cal Classification of Diseases and Related Health Problems)
or SNOMED (Systematized Nomenclature of Medicine)
codes. GDM is recorded exclusively by selecting “diabetes
developed during pregnancy” from that field’s drop-down list.
No alternative structured or coded location exists.

Patient IDs from the EHRs were then matched with
a separate database maintained in real-time by the clini-
cal team responsible for diabetes care, with patient details
entered each day upon confirmation from the hospital
laboratory of a diagnosis of GDM from an oral glucose
tolerance test following the IADPSG (International Associ-
ation of the Diabetes and Pregnancy Study Groups) guide-
lines. The CTD was considered the definitive ground truth
for GDM diagnoses, given its real-time, clinician-entered,
laboratory-confirmed data recording process. This matching
process produced a merged dataset for validating EHR-recor-
ded GDM diagnoses against the CTD database, leading to
the creation of 2 comparison columns: “EHR-GDM” for
EHR-identified cases of GDM and “CTD-GDM” for cases
of GDM recorded by the CTD.
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The validation process involved comparing the GDM
diagnosis status in the EHR (“EHR-GDM”) with that in the
CTD (“CTD-GDM”) to examine the agreement between the
2 datasets. This comparison allowed for the identification of
TPs (positive in EHRs and present in CTD), FPs (positive in
EHRs and not present in CTD), TNs (negative in EHRs and
not present in CTD), and FNs (negative in EHRs and present
in CTD), and thereby enabled evaluation of the accuracy of
the reporting of GDM diagnosis in the EHRs. An additional
column, validated gestational diabetes mellitus label (only
in cases where electronic health record and clinical team
database labels matched; VAL-GDM), was created indicating
a positive or negative diagnosis of GDM for cases where the
EHR-GDM and CTD-GDM labels matched, that is, for TPs
and TNs, excluding records with FPs and FNs. Thus, for the
purpose of the following stage of ML modeling, only records
that matched between EHR-GDM and CTD-GDM were used,
reducing the risk of bias from either dataset. The TPR, FPR,
TNR, and FNR were calculated for the dataset [16].

Evaluation of Label Noise on ML
Modeling

To evaluate the impact of label noise on the performance
of ML models in predicting GDM, we used logistic regres-
sion (LR), where the dataset was split into 70% training
and 30% test sets to ensure robust evaluation. Default model
hyperparameters were used, as the primary objective was to
compare performance across different training datasets rather
than optimizing hyperparameter settings. The training and
testing data comprised EHR data that was available during the
first booking visit, typically the 12th week of gestation, and
included 79 training features. The target label was GDM. The
dataset contained both categorical and numerical features.
Categorical features were processed using OneHotEncoder
with the “first” category dropped, and numerical features
were standardized using StandardScaler. While the goal of
this paper is not to produce an end point Al model, a self-
assessment checklist for reporting was followed to ensure that
adequate information about the ML model was present [17].

We trained 2 ML models: one with the EHR-GDM labels
and the other with the VAL-GDM labels. Both models were
evaluated using the same test set, which used VAL-GDM
labels, to facilitate a direct comparison of the effects of
label noise during training on a consistent test set. The year
2020 was excluded from these analyses due to emerging
research demonstrating reduced detection of diseases during
this period [18], something that we confirm in our results
below. By using both the “raw” and “validated” datasets,
the study aimed to demonstrate the impact of label noise
on model performance in the prediction of GDM, providing
insights into the importance of accurate label validation in
developing reliable predictive models using ML. In addition
to the LR model, we replicated this process with other
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ML models to ensure any effects were not model specific.
External validation datasets were sought, but this was not
successful, as documented [19].

Additionally, varying levels of label noise were introduced
to determine the threshold at which label noise significantly
affects model performance. This simulation was performed by
progressively increasing the number of FPs and FNs in the
VAL-GDM training set from 0% to 90%, that is, changing a
percentage of the positive labels to negative labels (creating
FNs) and changing a percentage of negative labels to positive
labels (creating FPs). This approach resulted in the training of
100 different models. Next, in a separate analysis, we applied
this progressive noise insertion to the VAL-GDM test set to
specifically assess the impact of test set label noise on model
evaluation, that is, evaluating these test sets using a model
trained with the “clean” VAL-GDM labels. For reproducibil-
ity, the code used to perform the label noise simulation is
made available in the Simulated Label Noise section.

Statistical Analysis

The validation findings were quantitatively assessed using
accuracy, precision, recall, Fi-score, and overall agreement
measured by Cohen x, between the EHR-recorded GDM
(EHR-GDM) and the CTD (CTD-GDM) diagnoses. The
performance of the LR ML models was evaluated using
the area under the receiver operating characteristic curve
(ROC AUC) and the average precision (AP) score. Addi-
tionally, the calibration of the model’s predictions will be
examined visually by calibration curves and quantitatively
by the slope and intercept. The statistical and ML analyses
were performed using Python (version 3.8.8; Python Software
Foundation) with libraries including NumPy 1.23.5, pandas
1.2.4, and scikit-learn 1.2.1.

Ethical Considerations

Ethical approval was granted by The Coombe Hospital
Research Ethics Committee (Study No. 06-2023; Explor-
ing the Utility of Machine Learning for the Classification
of Gestational Diabetes Risk During the First Antenatal
Visit).

Results

Population Characteristics

The dataset comprised 37,651 EHRs from 31,100 unique
patients. The mean patient age was 32 (SD 5) years, and
BMI was 26.2 (SD 5.5) kg/m?, with 20.7% exhibiting a BMI
greater than 30.0 kg/m?. The prevalence of GDM according
to the EHRs was 11%, whereas the prevalence according
to the CTD was 10.5%. Patient characteristics for the most
important features in the ML models are presented in Table 1.
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Table 1. Patient characteristics for the most important features in the machine learning models, according to the validated dataset (n=27,561). The

validated dataset represents a dataset where both the EHRs* andCTDs? agree.

Characteristics Values
Age (years), mean (SD) 32(5)
BMI (kg/m?2), mean (SD) 262 (5.3)
Systolic blood pressure (mm Hg), mean (SD) 111 (11)
Diastolic blood pressure (mm Hg), mean (SD) 67 (8)
Parity, mean (SD) 09(.1)

Ethnic origin, n (%)
Caucasian
South East Asian
Black African
Asian
Middle Eastern
Latin American
Mixed
Other
Occupation skill level (ISCO®), n (%)
Level O (unemployed)
Level 1 (elementary occupations)
Level 2 (clerical and service)
Level 3 (technicians and associates)
Level 4 (professionals and managers)
Family history of diabetes mellitus, n (%)
History of GDMY, n (%)
Other endocrine problems, n (%)
Prevalence of GDM, n (%)

24,180 (87.8)
1360 (4.9)
554 (2.0)
489 (1.8)
154 (0.6)

26 (0.1)

10 (0.1)

788 (3)

5254 (19)
369 (1.3)
4404 (15.9)
2389 (8.6)
15,145 (55.1)
6407 (23.3)
1078 (3.9)

5854 (21.4)
3188 (11.7)

4EHR: electronic health record.

YCTD: clinical team database.

“ISCO: International Standard Classification of Occupations.
dGDM: gestational diabetes mellitus.

Diagnosis Discrepancies

Of 3952 patients with matching IDs in both databases,
3388 were correctly identified with GDM in both EHR-
GDM and CTD-GDM (9% TP and 85.7% true positive rate
[TPR]), while 564 lacked a corresponding GDM label in
EHR-GDM (1.5% FN and 14.3% false negative rate [FNR]).

Additionally, 771 patients were incorrectly identified with
GDM in EHR-GDM without matching IDs in CTD-GDM
(2% FP and 2.3% false positive rate [FPR]). In EHRs, there
were 32,928 (87.5%) TN cases (97.7% true negative rate
[TNR]). The accuracy, precision, Fj-score, and Cohen % are
reported in Table 2.

Table 2. Performance metrics for the comparison of GDM? diagnoses in EHRs" with the real-time CTDC.

Year Cohen # Accuracy Precision Recall F1-score
All years 0.82 0.96 0.81 0.86 0.84
2018 0.80 0.96 0.78 0.86 0.82
2019 0.82 0.96 0.86 0.82 0.84
2020 0.77 0.96 0.70 0.90 0.79
2021 0.86 0.97 0.89 0.87 0.88
2022 0.82 0.97 0.82 0.86 0.84
All minus 2020 0.82 0.97 0.84 0.85 0.84

4GDM: gestational diabetes mellitus.
YEHR: electronic health record.
¢CTD: clinical team database.
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Yearly Data Comparison

Ninety-eight patients identified in CTD lacked corresponding
entries in EHRs. In total, 67 (68%) of these discrepancies
were observed in 2020. Furthermore, GDM prevalence for
both EHRs and CTD datasets revealed a notable reduction

Germaine et al

in 2020 (recorded at 10% in EHRs and 7.7% in CTD),
indicating a deviation from the trend observed in other years
(Figure 1). These discrepancies align with COVID-19-related
disruptions to screening practices within the hospital between
March 2020 and September 2020.

Figure 1. Comparison of prevalence rates of EHR-GDM data and CTD-GDM data from 2018 to 2022. The solid line represents the CTD data, and
the dashed line represents the EHR data. CTD: clinical team database; CTD-GDM: gestational diabetes mellitus label as recorded in the clinical team
database (reference standard label); EHR: electronic health record; EHR-GDM: gestational diabetes mellitus label as recorded in the EHR.
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Label Noise in EHRs AUC of 0.817 (95% CI 0.803-0.832) and an AP score of

The performance of LR models trained using the raw
(EHR-GDM) and validated (VAL-GDM) Ilabels was
evaluated using a test set with VAL-GDM labels only. The
model trained using the EHR-GDM labels achieved an ROC
AUC of 0.817 (95% CI 0.802-0.833) and an AP score of
0.451. The calibration curve is shown in Figure 2, with an
intercept of 0.093 and a slope of 0.984. In comparison, the
model trained using the VAL-GDM labels showed an ROC

https://medinform.jmir.org/2025/1/e72938

0.450 (Figure 3), indicating a minor impact of label noise in
training the model for this dataset (intercept —0.027 and slope
0.955). However, when the performance of the LR ML model
trained using VAL-GDM labels was evaluated on a test set
with EHR-GDM labels, an ROC AUC of 0.814 and an AP
score of 0.395 was achieved, which demonstrates a greater
impact of label noise when it is present in the test set.
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Figure 2. (Left) Calibration curve for the EHR (electronic health record)-GDM model, which was trained on EHR-GDM labels. (Right) Calibration
curve for the VAL-GDM model, which was trained on the subset of cases where electronic health record and clinical team database labels agree.
Both are evaluated against the identical standard reference labels. EHR-GDM: gestational diabetes mellitus label as recorded in the EHR; GDM:
gestational diabetes mellitus; VAL-GDM: validated gestational diabetes mellitus label (only in cases where the EHR and clinical team database labels
matched).
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Figure 3. (Left) ROC curves and (right) precision-recall curves showing the performance of 2 logistic-regression models for predicting GDM.
“EHR-GDM?” refers to the model trained on electronic health record (EHR)-GDM labels, and “VAL-GDM” refers to the model trained on the
subset of cases where the EHR and clinical team database labels agree. Both models are evaluated against the same reference labels (VAL-GDM).
EHR: electronic health record; EHR-GDM: gestational diabetes mellitus label as recorded in the EHR; GDM: gestational diabetes mellitus; ROC:
receiver operating characteristic; VAL-GDM: validated gestational diabetes mellitus label (only in cases where EHR and clinical team database labels
matched).
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In addition to LR, random forest, XGBoost (Extreme performance metrics in a similar range to the LR model, with
Gradient Boosting), and an Explainable Boosting Machine none of the models demonstrating large changes in evaluation
were assessed to compare their performance and robustness metrics regardless of the validation data used.

to label noise. As shown in Table 3, all 3 models achieved
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Table 3. Comparison of ROC AUC? and average precision for machine learning models predicting GDM? trained on the EHR® data and VALY data,

and validated against the VAL data.

Model ROC AUC Average precision Intercept Slope

EHR-GDM VAL-GDM EHR-GDM VAL-GDM EHR-GDM VAL-GDM EHR-GDM VAL-GDM
Logistic regression ~ 0.817 0.817 0.451 0.450 0.093 -0.027 0.984 0.955
Random forest 0.797 0.801 0418 0419 -0.747 -0.618 0.553 0.638
XGBoost® 0.780 0.782 0.389 0.393 -0.427 -0.507 0.619 0.608
EBMf 0.318 0.816 0.456 0.450 0.078 -0.047 0.975 0.940

4ROC AUC: area under the receiver operating characteristic curve.
PGDM: gestational diabetes mellitus.

“EHR: electronic health record.

dVAL: validated.

°XGBoost: Extreme Gradient Boosting.

fEBM: Explainable Boosting Machine.

Simulated Label Noise

The impact of simulated label noise on model performance
was assessed by progressively increasing the number of FNs
(FN noise) and FPs (FP noise) in the training set (where

https://medinform.jmir.org/2025/1/e72938

0% noise equates to the original VAL-GDM labels) without
modifying the testing set. The results demonstrate a decline
in model performance as the level of label noise increases
(Figure 4).
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Figure 4. Heatmaps illustrating how gradually introducing random label noise (NAR) degrades model performance. In each panel, the x-axis denotes
the percentage of true negatives flipped to false positives, and the y-axis denotes the percentage of true positives flipped to false negatives. In
the top-left heatmap, the ROC AUC on the training set is plotted; lighter cells signify stronger discrimination, and values above 0.5 represent
performance better than random chance. The top-right heatmap presents the corresponding average precision on the same noisy training data, with
lighter colors indicating a more favorable precision-recall trade-off. The bottom-left and bottom-right heatmaps repeat these experiments on the
held-out test set, showing ROC AUC and average precision, respectively, under increasing label noise in the test data. The unusual behavior of
average precision is discussed in this paper. Each cell is annotated with the exact metric value for that combination of false positive and false negative
noise levels. AUC: area under the curve; NAR: noise at random; ROC AUC: area under the receiver operating characteristic curve.
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Further analysis of noise in the test set showed that model i i
performance metrics, particularly ROC AUC and AP scores, Discussion
were sensitive to increasing levels of noise, especially FP
noise. As the FP rate was increased, the ROC AUC consis-
tently decreased, while the AP score initially decreased before
increasing. The introduction of FN into the test set had a less
pronounced effect on performance compared to FP, unless
both types of noise were combined, which led to a more
substantial impact (Figure 4).

This study highlights significant discrepancies between GDM
diagnoses recorded in EHRs and those validated by the CTD.
Correcting label noise in the training set had a negligible
impact on the performance of an LR-based ML model
developed from EHRs to predict GDM from early preg-
nancy data. However, correcting label noise in the test set
improved the model’s AP, underscoring the importance of
accurate labeling for evaluating model performance accu-
rately. This study also found that increasing label noise in
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the training set led to a gradual decline in model perform-
ance, while increasing FPs in the test set had a particularly
strong negative impact on ROC AUC, but counterintuitively
increased AP scores. FNs had a less pronounced impact on
ROC AUC unless combined with FP, which then caused a
decline in model performance.

Approximately 14% (564/3952) of GDM cases were not
recorded in the EHRs, while 18.5% (771/4,159) of positive
GDM diagnoses in EHRs did not align with CTD records.
Overall, there were 32,928 (87.5%) TN, 3388 (9%) TP, 771
(2%) FP, and 564 (1.5%) FN. The FPR (2.3%) remained low
in comparison to the FNR (14.3%). Similar discrepancies in
accuracy of EHRs have been reported in previous studies
within Irish maternal hospitals, though with higher agreement
in other contexts, such as miscarriage measurements (k=0.92)
[20]. More widely across Europe, wide variations exist in the
accuracy of reporting in EHRSs as it relates to acute cardiovas-
cular outcomes, with sensitivity reported at <66% for heart
failure diagnoses in particular [21]. A key challenge in these
studies is the absence of a recommended reference standard
for validating EHR data, leading to the use of various data
sources [8].

The impact of COVID-19 on screening and diagnos-
tic practices, especially in 2020, manifested in a relative
reduction of 31% in GDM diagnoses, that is, 11.2% across
2018, 2019, 2021, and 2022 compared to 7.7% in 2020.
These observations align with research indicating reduced
diagnosis rates for various medical conditions during the first
year of the pandemic [18], and suggest caution is warran-
ted when using EHRs during this year for the purpose of
health care modeling. The decrease in recorded GDM cases
in 2020 was likely driven by changes in clinical protocols
at the onset of the COVID-19 pandemic. The Irish Health
Service Executive adopted procedures recommended by the
Royal College of Obstetrics and Gynecologists in the United
Kingdom, which recommended alternative testing strategies
for screening pregnant women for GDM that focused on
replacing the 2-h oral glucose tolerance test with other tests of
shorter duration [22].

Correcting label noise has been shown to mitigate its
adverse effects on model performance, underscoring the
importance of “clean” and accurate datasets for training and
validating ML algorithms to ensure their efficacy in clini-
cal decision support systems [23]. For example, training a
model on a “clean” dataset resulted in an accuracy of 73.6%,
whereas with 30% label noise the accuracy fell to 64.1%
(-9.5%) [23]. However, the current analysis demonstrated
that training an LR model using EHR-GDM labels versus
VAL-GDM yielded negligible differences in performance
metrics, with ROC AUCs of 0.817 and 0.817, respectively
(Figure 3), a performance in line with previous research using
EHRs to predict GDM [13,15]. This is presumably due to
the low overall representation of FN and FP in the dataset of
3.5% combined, which limited the impact of label noise on
the training process.

Previous work has simulated noisy labels with artificial
introduction of different levels of label noise (10%, 20%, and
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40%) into the training set and demonstrated a gradual decline
in the accuracy of all models (mean AUC of all models at
80.3, SD 3.3, 10%; 79.3, SD 34, 20%; and 77.6, SD 3.0,
40%) as label noise increased [24]. The approach taken in
the present study differs in that it introduces systematic label
noise using noise at random [25], increasing both the FP
and FN rates linearly. Introducing noise into the training set
resulted in a gradual decline in model performance, with both
ROC AUC and AP scores decreasing as the level of noise
increased. The model was particularly sensitive to FP, which
caused a more pronounced decline in performance compared
to FN. Introducing noise into the test set also impacted model
performance, but the effects were more complex. The ROC
AUC consistently decreased as FP rates increased, indicating
that the model’s ability to distinguish between classes was
compromised. However, the AP score showed a different
pattern, with an initial decline followed by an increase as
noise levels were increased. The introduction of FN in the test
set had a less pronounced effect on performance compared to
FP, unless FP and FN were combined, which led to a more
marked decline in the model’s overall performance.

The counterintuitive increase in the AP score as the FP
rate in the test set increased can be attributed to the method
of calculating AP. AP evaluates the precision-recall trade-
off across different thresholds, specifically calculating the
proportion of TP to the sum of (TP + FP). When most
of the negative class in the test set is artificially converted
to positive, the opportunity for FP to occur is significantly
reduced. This reduction in potential FP leads to an increase in
precision, which in turn increases the AP score. Additionally,
this manipulation dramatically alters the (eg, class balance
from 90% negative to 90% positive), further influencing the
precision-recall dynamics and contributing to the observed
ostensible increase in AP. In practical terms, this finding
emphasizes that certain performance metrics such as AP can
behave unexpectedly in the presence of extensive label noise
or class imbalance, underscoring the importance of using
multiple evaluation metrics that are robust to changes in
classes (discrimination and calibration) to fully understand
model performance. These results reinforce that deploying
predictive models trained on unvalidated EHR data can
amplify false-positive and false-negative risks.

This study has several limitations that may affect the
generalizability of these findings. First, the analysis was
conducted using data from a single hospital and did not
perform any external validation with data from other hospitals
or a formal temporal validation using a future period.
Therefore, it is uncertain whether the findings would directly
generalize to different clinical settings, particularly those
with different screening practices, disease encoding, and
EHR systems. Second, the CTD, which is treated as the
ground truth, is manually maintained by the clinical team.
While it is likely more accurate than the EHR, it is not
immune to possible human errors or omissions. Any such
errors in the CTD would affect the data validation results
by erroneously labeling some EHR entries as false positives
or false negatives. However, this should minimally impact
ML modeling as only data that had agreement across both
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databases were included. Third, there is potential for model
overfitting due to the lack of an external validation set and
default parameters, which we attempted to mitigate with
the use of k-fold cross-validation, a relatively simple linear
model, and a hold-out test set. Finally, noise at random
linearly increases the FP and FN rate in the dataset, which
may not accurately reflect how errors in EHRs typically
occur.

In conclusion, the identified discrepancies in EHR-recor-
ded GDM diagnoses compared to “true” GDM diagnoses
reflect broader concerns about the accuracy of EHRs for
public health and ML applications. Further, the magnitude
of inaccuracies may play an important role in maximizing
the utility of EHRs in enhancing health care outcomes,
particularly for conditions such as GDM. However, when
these discrepancies remain a small percentage (eg, <5%)
of the dataset, such as in the case of this study, there
was no noticeable impact on model training performance.
Conversely, the risk of incorrect model evaluation increases

Germaine et al

when the test set labels are impacted by noise, as this
has a more pronounced effect on performance metrics.
These observations emphasize the importance of incorpo-
rating robust data cleaning, preprocessing, and validation
methodologies in the development of ML models for health
care. Future efforts should aim at developing standardized
validation protocols for EHRs to ensure high data quality
for training and evaluating ML algorithms. Such protocols
could include harmonizing how GDM diagnoses are recorded
across different sites, implementing automated consistency
checks (for instance, prompting for a GDM diagnosis entry
in the EHR when a laboratory result confirming GDM is
received), and performing regular audits comparing EHR
records with reference databases or laboratory results. By
improving the integrity of data entry and maintenance in
EHR systems, these measures could reduce discrepancies and
enhance the utility of EHR data for both clinical care and ML
applications.
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ROC AUC: area under the receiver operating characteristic curve

SNOMED: Systematized Nomenclature of Medicine

TN: true negative

TP: true positive

VAL-GDM: validated gestational diabetes mellitus label (only in cases where electronic health record and clinical
team database labels matched)

XGBoost: Extreme Gradient Boosting
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