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Abstract
Background: Large language models (LLMs) continue to enjoy enterprise-wide adoption in health care while evolving in
number, size, complexity, cost, and most importantly performance. Performance benchmarks play a critical role in their
ranking across community leaderboards and subsequent adoption.
Objective: Given the small operating margins of health care organizations and growing interest in LLMs and conversational
artificial intelligence (AI), there is an urgent need for objective approaches that can assist in identifying viable LLMs without
compromising their performance. The objective of the present study is to generate taxonomy portraits of medical LLMs (n=33)
whose domain-specific and domain non-specific multivariate performance benchmarks were available from Open-Medical
LLM and Open LLM leaderboards on Hugging Face.
Methods: Hierarchical clustering of multivariate performance benchmarks is used to generate taxonomy portraits revealing
inherent partitioning of the medical LLMs across diverse tasks. While domain-specific taxonomy is generated using nine
performance benchmarks related to medicine from the Hugging Face Open-Medical LLM initiative, domain non-specific
taxonomy is presented in tandem to assess their performance on a set of six benchmarks and generic tasks from the Hugging
Face Open LLM initiative. Subsequently, non-parametric Wilcoxon rank-sum test and linear correlation are used to assess
differential changes in the performance benchmarks between two broad groups of LLMs and potential redundancies between
the benchmarks.
Results: Two broad families of LLMs with statistically significant differences (α=.05) in performance benchmarks are
identified for each of the taxonomies. Consensus in their performance on the domain-specific and domain non-specific
tasks revealed robustness of these LLMs across diverse tasks. Subsequently, statistically significant correlations between
performance benchmarks revealed redundancies, indicating that a subset of these benchmarks may be sufficient in assessing
the domain-specific performance of medical LLMs.
Conclusions: Understanding medical LLM taxonomies is an important step in identifying LLMs with similar performance
while aligning with the needs, economics, and other demands of health care organizations. While the focus of the present
study is on a subset of medical LLMs from the Hugging Face initiative, enhanced transparency of performance benchmarks
and economics across a larger family of medical LLMs is needed to generate more comprehensive taxonomy portraits for
accelerating their strategic and equitable adoption in health care.
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Introduction
Large language models (LLMs) continue to show consid-
erable promise and growth in health care [1]. Popular
health care LLM applications fall under three broad task
categories, namely clinical tasks, documentation tasks, and
medical research and education tasks [2]. Specific LLM
health care applications include (1) virtual health assistants
and language translation [3], (2) summarization of clinical
narratives and ambient listening [4,5], (3) patient education
[6], and (4) clinical trial matching [7]. More importantly,
LLMs have continued to evolve in numbers, size, complex-
ity, costs, and performance, impacting their adoption [8]. A
recent perspective discussed three broad LLM implementa-
tion pathways (Training from Scratch, Fine-Tuned Pathway,
and Out of the Box Pathway) along with the risks, benefits,
and economics across four major cloud service providers for
their equitable and strategic adoption in health care [9]. The
study also elucidated the essential ingredients such as digital
data, infrastructure, workforce, ethics, and regulatory aspects
that can significantly impact LLM implementations. While
helpful, these three pathways represent broad categorizations
of LLM implementations and do not necessarily provide
insights into their similarities. Similarities between LLMs can
be based on a number of characteristics including architec-
ture, size, cost, and their performance across diverse tasks
[10]. Understanding the similarities in LLM performance
can assist in strategically selecting those with comparable
performance while aligning with the budgeting and needs of
health care organizations.

The present study focuses on standardized and objective
performance benchmarks that interrogate the ability of LLMs
across diverse tasks. Their weighted average, is often used
to rank LLMs across leaderboards [11], impacting their
adoption. These aggregated benchmarks implicitly map the
multivariate benchmark profiles onto a univariate score,
diminishing their usefulness, as each benchmark interrogates
unique capabilities of the LLMs. Therefore, it should not be
surprising to note that similarity in ranks may not neces-
sarily imply similarity in performance benchmark profiles.
The present study generates LLM taxonomies elucidating
their similarities and hierarchical associations from multivari-
ate performance benchmarks. The taxonomy is shown to
reveal inherent partitioning of the LLMs into sub-groups
with varying performance. LLMs can be either open-source

or closed source. While these implementations have distinct
advantages [12], proprietary aspects and lack of transparency
in the performance of closed-source LLMs prevent their
inclusion in the present study. In the case of open-source
LLMs, domain-specific (DS) as well as domain non-specific
(DN) multivariate performance benchmarks were available
publicly from Open LLM [13] and Open Medical LLM [14]
leaderboards at Hugging Face [15,16]. While DS bench-
marks interrogate task-specific abilities of the LLMs, DN
benchmarks assess their generic capabilities. Hugging Face
has witnessed increasing visibility, growth, and adoption by
the Generative AI and LLM communities over the years.
Its structured and transparent approach enables enhanced
reproducibility of the reported metrics and implementa-
tion; widespread collaboration between experts; unbiased
comparison of the different models; and the selection of the
LLMs based on the performance, needs, and affordability.
The DS benchmarks considered include those that assess the
medical question and answering capabilities and reasoning
skills related to medical licensing examinations, a series of
subject and DS evaluations broadly under massive multitask
language understanding, and the ability of LLMs to compre-
hend and reason biomedical literature. The DN benchmarks
were also retrieved for the medical LLMs through the Open
LLM initiative to assess their ability to answer questions that
are not specifically related to medical tasks. These bench-
marks included (1) those that assess the LLMs ability to
follow verifiable instructions, (2) chain of thought prompting,
(3) mathematical problem-solving skills, (4) graduate level
reasoning capabilities across diverse subjects, (5) multistep
reasoning abilities, and (6) multitask language understand-
ing on challenging reasoning-based questions. A detailed
description of the DS and DN benchmarks along with the
references and their abbreviations is included in Table 1.
The taxonomies were generated by hierarchical clustering
of the DS and DN multivariate performance benchmarks
that assess the task-specific and generic capabilities of these
LLMs. Subsequently, two broad groups of medical LLMs
with markedly different performance benchmark profiles
is discussed. Potential redundancies between the perform-
ance benchmarks across the DS and DN taxonomies are
also elucidated. Given the low-operating margins [17] of
health care organizations, understanding the taxonomy and
potential redundancies between the performance benchmarks
is expected to assist in objectively justifying the choice of
LLMs while controlling costs [18].

Table 1. Description and abbreviations of domain-specific (DS) and domain non-specific (DN) performance benchmarks with references.
Type Benchmark description Abbreviation
DS MedQA [Medical Question and Answer]:

Consists of multiple-choice questions (11,450 questions in the development set and 1273 questions in
the test set) from the United States Medical License Exam for benchmarking the LLMs general medical
knowledge and reasoning skills on United States Medical Licensure.

MQA [19]

DS MedMCQA [Medical Multiple-Choice Question and Answer]:
Consists of multiple-choice questions (187,000 questions in the development set and 6100 questions in
the test set) related to the Indian Medical Entrance Exam (AIIMS/NEET). As with MedQA,
MedMCQA is used to benchmark the LLMs general medical knowledge and reasoning ability as it
pertains to the Indian medical entrance exam.

MCQA [20]
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Type Benchmark description Abbreviation
DS MMLU Anatomy: [Massive Multitask Language Understanding, Anatomy]:

MMLU subset consists of multiple-choice questions (135 questions) for benchmarking the knowledge
of the LLMa on human anatomy.

ANAT [21]

DS MMLU Clinical Knowledge [Massive Multitask Language Understanding, Clinical Knowledge]:
MMLU subset consists of multiple-choice questions (265 questions) for benchmarking the clinical
knowledge and decision-making skills.

CLIN [21]

DS MMLU College Biology [Massive Multitask Language Understanding, College Biology]:
MMLU subset with multiple-choice questions (144 questions) for benchmarking the knowledge on
college biology.

BIOL [21]

DS MMLU College Medicine [Massive Multitask Language Understanding, College Medicine]
MMLU subset with multiple-choice questions (173 questions) for benchmarking the college-level
medical knowledge.

CMED [21]

DS MMLU Medical Genetics [Massive Multitask Language Understanding, Medical Genetics]
MMLU subset consists of 100 questions related to medical genetics.

GEN [21]

DS MMLU Professional Medicine [Massive Multitask Language Understanding, Professional Medicine]
MMLU subset consists of multiple-choice questions (272 questions) for benchmarking the LLM on
knowledge required for medical professionals.

PMED [21]

DS PUBMEDQA [PUBMED Question & Answer]
Closed-domain dataset comprising expert-labeled question-answer pairs (500 questions in the
development set and 500 questions in the test set) for benchmarking the LLMs ability to comprehend
and reason biomedical literature.

PUBM [22]

DN IFEval [Instruction Following Evaluation]:
Benchmarks LLMs ability to follow verifiable instructions using 25 distinct types of verifiable
instructions and 500 prompts, with each prompt containing at least one verifiable instruction.

IFEV [23]

DN BBH [Big Bench Hard]:
Benchmarks the performance of LLMs on 23 challenging Big Bench tasks (BBH) where prior LLMs
failed to outperform an average-human rater. Emphasized the importance of chain-of-thought
prompting.

BBH [24]

DN MATH [Math]:
Benchmarks the mathematical problem-solving ability of the LLM using 12,500 mathematics
competition problems.

MATH [25]

DN GPQA [Graduate Level Google Proof Q & A]:
Benchmarks LLMs using 448 multiple choice questions generated by experts in areas such as biology,
physics, and chemistry.

GPQA [26]

DN MuSR [Multistep Soft Reasoning]:
Benchmarks LLMs ability on complex multistep reasoning instances and long-range (~1000 words) free
text narratives from real-world domains.

MUSR [27]

DN MMLU Pro [Multitask Language Understanding Pro]:
Benchmarks the reasoning and language comprehension abilities of LLMs across diverse domains by
incorporating challenging, reasoning-focused question, and expanding the choice of the original MMLU
from four to ten.

MPRO [28]

aLLM: large language model.

Methods
Medical LLMs with DS and DN benchmarks were retrieved
from Hugging Face Open Medical LLM [14] and Open
LLM [13] leaderboards on January 2025. While Hugging
Face features several contributions from the AI open-source
community, it is important to note that these are voluntary
efforts. Since there were instances of sparse documentation
across LLMs by individual contributors, the present study
excluded LLMs by individual contributors, resulting in 33
medical LLMs whose DS and DN performance benchmarks

were available. Abbreviations and size of the 33 LLMs are
enclosed in Table 2. LLM taxonomies were generated using
hierarchical clustering [29] of the DS and DN multivariate
performance benchmarks. As each performance benchmark
interrogates specific characteristic of the LLM, they were
scaled to zero-mean and unit variance prior to clustering to
minimize the impact of potential variations in the magnitude
across the different benchmarks. Subsequently, the Manhattan
distance was used to assess the similarity between the LLMs,
as it is robust to outliers. Other measures of similarity such
as cosine distance can also be used as alternatives [29]. This
study uses complete linkage that merges clusters based on the
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distance between the most dissimilar members (ie, farthest
distance) [29]. While complete linkage is robust to outliers
resulting in stable and well-formed clusters, other linkage
approaches for merging the clusters can also be explored [29].

The DS taxonomy was based on the nine performance
benchmarks, whereas the DN taxonomy was generated based
on the six performance benchmarks, as shown in Table 1.
Color-coded dendrograms were subsequently used to generate
visualizations of the performance benchmark profiles of the
respective taxonomies. Statistically significant differential
changes in performance benchmark profiles between clusters
for the DS and DN taxonomy were investigated using the
Wilcoxon rank-sum test (α=.01), a non-parametric statistical
test that does not impose normality assumptions on their
distribution. Subsequently, Pearson correlation and scatter

plots were used to elucidate potential redundancies between
the performance benchmarks for the DS and DN taxonomies.
Pearson correlation can provide insights into linear depend-
ency (a=0.01) between variables. However, its estimates can
be deceptive under sparse distribution of data points about
the linear trend. Therefore, scatter plots of the pair-wise
performance benchmarks are provided in addition to the
statistical test for visualization. As differential changes in the
performance benchmarks and the test for correlation involved
multiple statistical tests, multiple testing correction (Bonfer-
roni correction) [30] was used to control for the family-wise
error rate, with the adjusted significance level α* given by
α*= α/M, where M represents the total number of statistical
tests.

Table 2. Open-source large language models (LLMs; n=33) from Hugging Face with their abbreviations.

Open-source LLM (Hugging Face) Abbreviation Open-source LLM (contd.)
Abbreviation
(contd.)

mistralai/Mistral-7B-Instruct-v0.1 MISI-7Ba VAGOsolutions/SauerkrautLM-Gemma-7b GEMS-7B
mistralai/Mistral-7B-v0.1 MIS-7B VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct LM3SI-8B
EleutherAI/pythia-2.8b PYT-2.8B openai-community/gpt2-xl GPTL-1.5B
EleutherAI/gpt-neo-2.7B GPTN-2.7B openai-community/gpt2 GPT2-1.5B
lmsys/vicuna-7b-v1.5 VIC-7B HuggingFaceH4/zephyr-7b-beta ZEP-7B
abacusai/Llama-3-Smaug-8B LM3S-8B tiiuae/falcon-7b-instruct FALI-7B
abacusai/Liberated-Qwen1.5-14B QWN-14B tiiuae/falcon-7b FAL-7B
HPAI-BSC/Llama3-Aloe-8B-Alpha LM3A-8B NousResearch/Nous-Hermes-2-Mistral-7B-DPO MISD-7B
google/gemma-2b GEM-2B NousResearch/Hermes-2-Pro-Mistral-7B MISH-7B
google/gemma-1.1-7b-it GEMI-7B CohereForAI/aya-23-8B AYA-8B
google/recurrentgemma-2b GEMR-2B upstage/SOLAR-10.7B-Instruct-v1.0 SL-10.7B
google/gemma-7b GEM-7B 01-ai/Yi-1.5-9B-32K YIK-9B
microsoft/phi-1_5 PHI-1.3B 01-ai/Yi-1.5-9B YI-9B
TinyLlama/TinyLlama-1.1B-intermediate-
step-1431k-3T

TLM-1.1B lightblue/suzume-llama-3-8B-multilingual LM3Z-8B

Qwen/Qwen1.5-7B QWN-7B meta-llama/Meta-Llama-3-8B-Instruct LMMI-8B
Qwen/Qwen1.5-7B-Chat QWNC-7B meta-llama/Meta-Llama-3-8B LMM-8B
stabilityai/stablelm-2‐1_6b STA-6B

aThe suffix (B) represents billions of parameters.

Results
The DS and DN taxonomies of the 33 medical LLMs
generated by hierarchical clustering (Figure 1) revealed
two well-separated clusters of high (H) and low (L) with
markedly different median benchmark profiles (Figure 2).
For the DS taxonomy, the H cluster comprised 22 LLMs,
whereas the L cluster had 11 LLMs. The Wilcoxon rank-sum
tests were used to assess statistically significant differen-
ces between these clusters across the nine benchmarks
at the adjusted significance level controlling for family-
wise error rate (α*=α/M=.01/9~.001). The corresponding
P values were MCQA (P<.001), MQA (P<.001), ANAT
(P<.001), CLIN (P<.001), BIOL (P<.001), CMED (P<.001),
GEN (P<.001), PMED (P<.001), and PUBM (P<.001),

revealing statistically significant differential changes in the
nine benchmarks between the H and L clusters. LLMs in
the H cluster were MISI-7B, MIS-7B, VIC-7B, LM3S-8B,
QWN-14B, LM3A-8B, GEMI-7B, GEM-7B, QWN-7B,
QWNC-7B, GEMS-7B, LM3SI-8B, ZEP-7B, MISD-7B,
MISP-7B, AYA-8B, SL-10.7B, YIK-9B, YI-9B, LM3Z-8B,
LMMI-8B, and LMM-8B, whereas those in the L clus-
ter were PYT-2.8B, GPTN-2.7B, GEM-2B, GEMR-2B,
PHI-1.3B, LMT-1.1B, STA-6B, GPTL-1.5B, GPT2-1.5B,
FALI-7B, and FAL-7B. The L cluster with a relatively lower
median performance profile consisted primarily of LLMs
with relatively smaller numbers of parameters. While earlier
studies [31,32] emphasized the impact of parameters on LLM
performance, the present findings reiterated these empirical
findings from a DS standpoint.
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Figure 1. Dendrogram representing the domain-specific (DS; left) and domain non-specific (DN; right) taxonomy portraits from hierarchical
clustering of scaled multivariate performance benchmark profiles of 33 medical LLMs. The magnitude of the scaled performance benchmark profiles
increases from green (low) to red (high).

For the DN taxonomy, the H and the L clusters com-
prised 20 LLMs and 13 LLMs, respectively (Figure 1).
The Wilcoxon rank-sum tests of differential change between
the H and L clusters across the six benchmarks at the
adjusted significance level controlling for family-wise error
rate (α*=α/M=0.01/6~0.002) resulted in IFEV (P<.001),
BBH (P<.001), MATH (P<.001), GPQA (P<.001), and
MPRO (P<.001), indicating significant differential change
across these benchmarks. However, the differential change
for MUSR (P=.036) was not statistically significant. The
corresponding boxplots are shown in Figure 2. LLMs
in the H cluster were MIS-7B, LM3S-8B, QWN-14B,
LM3A-8B, GEMI-7B, GEM-7B, QWN-7B, QWNC-7B,
GEMS-7B, LM3SI-8B, ZEP-7B, MISD-7B, MISP-7B,
AYA-8B, SL-10.7B, YIK-9B, YI-9B, LM3Z-8B, LMMI-8B,

and LMM-8B, whereas those in the L cluster were MISI-7B,
PYT-2.8B, GPTN-2.7B, VIC-7B, GEM-2B, GEMR-2B,
PHI-1.3B, LMT-1.1B, STA-6B, GPTL-1.5B, GPT2-1.5B,
FALI-7B, and FAL-7B. In line with earlier empirical
observations, LLMs in the L cluster with relatively lower
median performance benchmarks were predominantly smaller
in size. There were also marked consensus in the distribu-
tion of the LLMs between the L (11 LLMs) and H (20
LLMs) clusters of the DS and DN taxonomies, revealing the
robustness of the LLMs across generic as well as domain-spe-
cific tasks. The variance for a majority of the performance
benchmarks was markedly higher for the H cluster as opposed
to the L cluster across DS and DN taxonomies, indicating
considerable heterogeneity in the performance of the LLMs in
the H cluster (Figure 2).
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Figure 2. Box-whisker plots of the scaled performance benchmark profiles corresponding to high (H; gray) and low (L; white) clusters of the
domain-specific (DS; left) and the domain non-specific (DN; right) taxonomies. Outliers are not shown for clarity.

The Pearson correlation was used to assess statistically
significant correlations between pair-wise performance
benchmarks of the DS and DN taxonomies (Figure 3). The
nine DS performance benchmarks resulted in 9(9‐1)/2=36
independent tests for correlation. Therefore, the adjusted
significance level was chosen as (α*=0.01/36~0.0002) to
control for the family-wise error rate. The correlation for
all pairs other than PMED-PUBM (P=.00028>α*) were
statistically significant (ie, P<α*). The linear trend was
especially pronounced between MCQA, MQA, and MMLU
for various subjects. A possible explanation is LLMs that
perform well on the different medically related MMLU
subject-wise benchmarks (ANAT, CLIN, BIOL, CMED,
GEN, and PMED) may also perform well on comprehen-
sive medical exams (MCQA and MQA). While the linear
correlation between the MMLU subject-wise benchmarks was
statistically significant, the scatter plots revealed instances
of sparse distribution of points along the linear trend line
for some of these pairs (eg, BIOL and PMED), challeng-
ing reliable correlation estimates (Figure 3). The clustering
of points about the linear trend line may in fact align
with earlier observations of statistical differences (Figure 2)
between two broad groups of LLMs within the DS taxonomy

(Figures 1 and 2). The magnitude of performance bench-
mark (PUBM), which assesses the LLMs ability to com-
prehend and reason biomedical literature, did not exhibit
a strong correlation with others, as reflected by lack of
a clear linear trend in the scatter plots (Figure 3). In con-
trast to DS taxonomy, the correlation structures between
the performance benchmarks was noisy in the case of DN
taxonomy, as reflected by the scatter plots in Figure 3. The
six DS performance benchmarks resulted in 6(6‐1)/2=15
independent tests for correlation. Therefore, the adjusted
significance level was chosen as (α*=0.01/15~0.0007) to
control for the family-wise error rate. While there were
instances of DN performance benchmark pairs with signifi-
cant correlation, the redundancy was markedly lower than
that observed in the case of DS taxonomy. Pairs that did not
exhibit significant correlation (P<α*) included IFEV-MATH
(P=.022), IFEV-GPQA (P=.336), IFEV-MUSR (P=.379),
BBH-MUSR (P=.022), MATH-MUSR (P=0.049), GPQA-
MUSR (P=.007), and MUSR-MPRO (P=.021). Since the
correlation structure across DN performance benchmarks was
much lower than that of DS performance benchmarks, DN
performance benchmarks may assess the LLMs complemen-
tary characteristics of the LLM.
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Figure 3. Scatter plots (gray panels) of the correlation structure between the performance benchmarks corresponding to domain-specific (DS; left)
and domain non-specific (DN; right) taxonomies are shown. The pair-wise linear correlation (white panels) of the corresponding (row, column) pairs
of performance benchmarks are shown in the upper triangle. The diagonals represent auto-correlation, and are hence not presented.

Discussion
The present study investigated taxonomies of LLMs whose
DS and DN performance benchmarks were available from
Open MedLLM and Open LLM initiatives at Hugging Face.
As noted, LLM ranks estimated from aggregated benchmarks
have been featured by leaderboards, impacting their adoption.
However, similarity in these aggregated univariate scores and
ranks may not necessarily imply similarity in the underlying
multivariate performance profiles, making the study relevant.
The DS and DN taxonomies revealed inherent subgroups and
two broad clusters with statistically significant differences
in performance. Overlap of the cluster members between
the DS and DN taxonomies also indicated robustness of
these LLMs across diverse tasks. As with some of the
earlier empirical studies on LLM scaling laws, clusters with
lower performance consisted predominantly of LLMs with
relatively smaller size. The results also revealed redundan-
cies in the performance benchmarks that was especially
pronounced in the case of DS performance benchmarks.

Practical relevance of these taxonomies include their
ability to assist in selecting LLMs with comparable perform-
ance while controlling costs. This is especially critical in
low-profit margins industry such as health care that is in its
initial phases of adopting AI tools for improved efficiency
and outcomes. Taxonomies can also assist in choosing a
combination of LLMs, perhaps across distinct clusters with
diverse performance characteristics [33,34] as opposed to
a single LLM. However, unlike performance benchmarks,
the lack of transparency with regards to costs and LLM
economics [35] discourages concerted analysis of costs and
performance benchmarks. Moreover, several factors can
impact LLM economics including digital readiness, infra-
structure, workforce, and cloud-based implementations [9].
While faithful cost estimation can be challenging, econom-
ics of LLM training, fine-tuning, and inference is gener-
ally agreed to be proportional to the LLM size. Thus, the
size of the LLM can serve as a surrogate for costs. The
DS and DN taxonomies revealed considerable consensus

and two broad clusters (H, L). For the H cluster, LLMs
QWN-14B and YIK-9B were proximal across the DS and
DN taxonomy. However, the size of QWN-14B (~14 billion
parameters) was considerably larger than that of YIK-9B
(~9 billion parameters). Based on the DS and DN taxon-
omies, YIK-9B is preferred over QWN-14B. On a rela-
ted note, the L cluster also comprised LLMs of markedly
different sizes with comparable performance. For instance,
FALI-7B (~7 billion parameters) was proximal to GPTL-1.5B
(~2.8 billion parameters) recommending GPTL-1.5B over
FALI-7B. Pair-wise correlation profiles revealed marked
association between the DS performance benchmarks. While
performance benchmarks are expected to ideally interrogate
complementary characteristics of an LLM, the presence of
correlations indicated inherent redundancies between the DS
benchmarks. As LLM ranks are generally estimated as the
weighted average of the performance benchmarks, eliminat-
ing redundancies may be critical for generating unbiased rank
estimates. Eliminating redundant benchmarks can also assist
in minimizing the overall evaluation cost [36].

There are several limitations of the present study. The
study focused primarily on medium-sized LLMs (n=33) with
around tens of billions of parameters. Generating comprehen-
sive taxonomy portraits with a larger pool of LLMs span-
ning a wider range of sizes (large, ~100 billion parameters;
medium, ~10 billion parameters; and small, ~millions of
parameters) can reveal universal patterns characteristic of
medical LLMs. Such an analysis may also assist in select-
ing LLM ensembles with varying sizes and complementary
performance benchmark profiles, as opposed to the popular
practice of selecting a single LLM. While the present study
focused on standardized performance benchmarks, it may
have limited usefulness in assessing capabilities [37] such
as summarization, used routinely by health care conversa-
tional AI agents (eg, Chatbots and Ambient Listening Tools).
The non-deterministic nature of the LLM response can also
pose challenges in assessing such summaries, especially
when these tools are deployed in clinical workflows [38].
While performance benchmarks used in generating the DS
and DN taxonomies interrogate certain unique characteristics
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of the LLMs, they are by no means exhaustive. The
rapid evolution of LLMs and their health care applications
might demand incorporating novel benchmarks. Assessment
may also explore relative benchmarking strategies, where
characteristics, such as factual accuracy of information, time
to retrieve information, and ease of use, are compared to
tools that are currently in place using randomized controlled
designs. While the size of the LLMs were used as sur-
rogates for costs in the present study, e enhanced trans-
parency on LLM economics across training, fine-tuning,
and inference could assist in tailored recommendations for

strategic decision making in health care settings. As noted
earlier, several factors can dictate the economics of imple-
mentation, deployment, and operationalization of LLMs in
health care workflows. This includes digital and analytics
maturity, infrastructure, workforce across a spectrum of areas,
choice of the LLM onboarding pathways, and the needs of the
health system. While the focus of the present study has been
primarily on open-source LLMs, enhanced transparency of
closed-source LLMs can facilitate unbiased comparisons for
equitable and strategic adoption of these tools across health
care enterprises.
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