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Abstract

Background: Delayed extubation after general anesthesia increases complications and can lead to longer hospital stays and
higher mortality. Current risk assessments often rely on subjective judgment or simple tools, whereas machine learning offers
potential for real-time evaluation, though research is limited and typically uses single-algorithm models.

Objective: The aims of this study were to identify risk factors for delayed extubation after general anesthesia in the sample
and to construct a risk prediction model for delayed extubation in this population.

Methods: Data from 4779 patients admitted to the postanesthesia care unit between September 2023 and May 2024 were
used to develop prediction models for delayed extubation using k-nearest neighbor, decision tree, extreme gradient boosting,
random forest, a light gradient boosting machine, and an artificial neural network. Model performance was assessed by
calculating the area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, Fi-score, and Brier
score. Calibration performance was evaluated using calibration curves generated with 100-bin quantile calibration and Loess
smoothing to provide bias-corrected and smoothed visual assessment. Additionally, the Hosmer-Lemeshow goodness-of-fit test
was performed to quantitatively evaluate calibration, with P values >.05 indicating good calibration.

Results: Among the 6 models evaluated, the extreme gradient boosting model demonstrated the best performance, with
an area under the receiver operating characteristic curve of 0.750 (95% CI 0.703-0.796), a sensitivity of 0.734 (95% CI
0.635-0.827), and a specificity of 0.647 (95% CI 0.623-0.673). The model calibration was acceptable, with a Brier score of
0.0505 and a nonsignificant Hosmer-Lemeshow goodness-of-fit test (y26=7.3; P=.287), indicating good calibration. Shapley
additive explanations were used to rank feature importance.

Conclusions: These machine learning models enable early identification of delayed extubation risk, supporting personalized
clinical decisions and optimizing postanesthesia care unit resource allocation.

Trial Registration: ChiCTR ChiCTR2400090247; https://www chictr.org.cn/showproj.html?proj=242602
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Introduction

Background

Extubation is a critical step in the recovery process following
general anesthesia. More than 20% of major airway man-
agement-related complications occur immediately before or
after extubation, with severe consequences such as hypoxia
and mortality [1,2]. Prolonged intubation offers no bene-
fit; delayed extubation may adversely affect the patient’s
cardiovascular and respiratory systems, resulting in compli-
cations such as ventilator-associated pneumonia, pulmonary
fibrosis, ventilator dependency, and arrhythmias [3]. Delayed
extubation after general anesthesia not only reduces the
efficiency of the transition from the postanesthesia care unit
(PACU) to the ward but also slows functional recovery,
exacerbates physiological and psychological stress respon-
ses, and diminishes the quality of the patient’s resuscitation
period. This increases the mental and economic burden on
the patient and family and raises the incidence of medical
disputes [4].

Screening and predicting patients with a high risk for
delayed extubation is crucial for optimizing PACU opera-
tions and patient care. Several demographic features have
been identified as significant predictors, including advanced
age [5,6] and the presence of comorbidities such as
chronic obstructive pulmonary disease (COPD), cardiovascu-
lar diseases, and diabetes [7]. Additionally, a high BMI has
been linked to increased respiratory complications, potentially
prolonging the need for ventilatory support [8,9]. Further-
more, the nature of the surgical procedure itself significantly
influences the likelihood of delayed extubation. Complex and
prolonged surgeries, particularly those involving the thoracic
or cardiovascular systems, can lead to increased physio-
logic stress and a higher risk of postoperative complications
that may necessitate extended intubation [10]. Significant
hemorrhage can result in hemodynamic instability, which can
affect the patient’s ability to maintain adequate oxygenation
and ventilation postoperatively [11-13]. In clinical practice,
extubation following general anesthesia is predominantly
executed by medical and nursing professionals within the
PACU. However, current research provides limited infor-
mation on the impact of nursing-related monitoring and
management variables within the PACU on the extubation
time.

There are increasing studies on building machine learning
predictive models for delayed extubation. Previous studies
have suggested that machine learning algorithms, includ-
ing extreme gradient boosting (XGBoost), gradient boosting
machine, and artificial neural networks, have advantages
in constructing predictive models for delayed extubation in
the intensive care unit [14,15]. However, for postoperative
delayed extubation, most studies used logistic regression for
developing a nomogram model or a single machine learning
algorithm for constructing a predictive model [9]. Fewer
studies use multiple machine learning algorithms to build a
postoperative delayed extubation prediction model following
general anesthesia in the PACU.
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Therefore, this study aimed to explore perioperative
features, including monitoring and management variables in
the PACU, associated with delayed extubation after general
anesthesia and to develop prediction models for delayed
extubation using machine learning algorithms. It is hypothe-
sized that machine learning models incorporating PACU
monitoring and management variables can be developed to
predict delayed extubation, enabling early assessment and
prevention of this adverse event following general anesthesia.

Delayed extubation after general anesthesia is a common
postoperative complication associated with increased adverse
events, such as prolonged hospital stays, higher intensive
care needs, and elevated mortality rates. Identifying patients
with high risk and optimizing recovery care is crucial.
Current risk assessments often rely on subjective judgment
or simplistic tools, which may overlook the complex patient
profiles and intraoperative dynamics. Machine learning, with
its robust data mining and predictive capabilities, offers
real-time evaluation and intervention potential. However,
research specifically addressing delayed extubation remains
limited, with most studies relying on traditional single-algo-
rithm models.

Aims

The aims of this study were to identify the risk factors for
delayed extubation after general anesthesia in the sample and
to construct a risk prediction model for delayed extubation in
this population.

Methods

Machine Learning Model Selection

The data extracted from electronic medical records in this
retrospective cohort study can be used to substantially predict
the risk of delayed extubation after general anesthesia.
In line with our research objectives, we selected 6 predic-
tive modeling methods for analysis: random forest (RF),
XGBoost, k-nearest neighbor (KNN), decision tree, light
gradient boosting machine (LightGBM), and artificial neural
networks.

Data Collection

Patient consent was waived due to the retrospective nature
of the study. Patients transferred to the PACU after general
anesthesia at Shenshan Medical Center in Shanwei, China,
from September 2023 to May 2024 were retrospectively
enrolled.

Variables
Demographic information included sex, age, American
Society of Anesthesiologists (ASA) classification, BMI,
smoke history, and comorbidities (including cerebral
infarction and COPD).

Preoperative examinations included red blood cell

distribution width; alanine and aspartate aminotransferase
levels; serum sodium concentration, serum concentrations
of sodium, potassium, calcium, hemoglobin, and creatinine;
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and chest x-ray findings. Preoperative examinations were
performed within 7 days preoperatively, and the latest result
was included in case the same test was conducted multiple
times.

Surgery-related  parameters included intraoperative
infusion volume, intraoperative blood loss, duration of
surgery, case condition (usual, urgent, difficult, and criti-
cal), site, and level of surgery. Intraoperative infusions were
determined by the anesthesiologist based on the patient’s
intraoperative vital signs, urine output, or hemodynamic
monitoring.

PACU monitoring and management indicators included
tympanic temperature following PACU admission, time to
extubation in PACU, and the sufentanil administered before
extubation in the PACU. The supplemental dose of sufentanil
was administered at 0.1 ug/kg per dose, with adjustments
made based on the patient’s specific resuscitation process and
the severity of postoperative pain.

Study Population and Data Extraction
Eligibility Criteria

The inclusion criteria were patients who underwent tracheal
intubation under general anesthesia and were transferred
to the PACU postoperatively. The exclusion criteria were
as follows: (1) extubation before admission to the anes-
thesia recovery room, (2) preoperative coma, (3) presence
of severe mental illness or psychiatric disorders, and (4)
missing data exceeding 30% of the required information.
Patients’ demographic information, comorbidities, preopera-
tive examinations, surgery-related parameters, and PACU

monitoring and management indicators were retrieved from
the institutional database.

Anesthesia Method

No premedication was used for any patients. Induction
was administered by intravenous injection of sufentanil
(0.3-0.5 pg/kg), propofol (1.5-2.5 mg/kg), and rocuronium
(0.6 mg/kg). Alternatively, mivacurium (0.07-0.25 mg/kg)
or cisatracurium (0.2 mg/kg) was used for muscle relaxa-
tion. After achieving the appropriate anesthesia depth and
muscle relaxation, intubation was performed for mechanical
ventilation (Tidal Volume 6-8 ml/kg, Respiratory Rate 10-12
breaths/min). Intraoperative parameters were managed, and
patients were transferred to the PACU within 5 minutes after
surgery.

Data Analysis

Statistical analyses were performed using Python (version
3.12.4; Python Software Foundation). Variables with =30%
missing data were excluded from the analysis, while those
with <30% missing data were imputed using the KNN
classification algorithm. Continuous variables were assessed
for normality and compared using the independent 2-tailed
t test or the Mann-Whitney U test, as appropriate. Catego-
rical variables were compared using the chi-square test or
the Fisher exact test, depending on expected cell counts.
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All statistical tests were 2-sided, and a P value <.05 was
considered statistically significant.

Feature selection was conducted on the training set using
the least absolute shrinkage and selection operator (LASSO)
to identify the most predictive variables. During the evalua-
tion phase, a threshold optimization strategy was applied to
determine clinically meaningful cut-off points. Specifically,
thresholds were selected under dual constraints, requiring
both sensitivity and specificity to be =0.60, to ensure that
the model achieved a balance between correctly identifying
positive cases and minimizing false positives. When no
threshold met these dual criteria, the Youden index was
used as an alternative to identify the optimal threshold. This
approach ensured that the final model outputs had practical
applicability for clinical risk stratification.

Model discrimination performance was evaluated in the
test set by calculating the area under the receiver oper-
ating characteristic curve (AUROC), alongside sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV). ClIs for these metrics were estimated
using 1000 bootstrap resampling iterations to enhance the
robustness of performance assessment.

Calibration performance was evaluated using calibration
curves generated with 100-bin quantile calibration and
LOESS smoothing; in the LOESS procedure, the parame-
ter frac=0.3 indicates that 30% of the data were used for
each local fit to control the degree of smoothing. The
Hosmer-Lemeshow goodness-of-fit test was also performed
to quantitatively assess calibration, with P values >.05
indicating good calibration.

Data Processing and Feature Selection

Delayed extubation after general anesthesia has been defined
as the removal of the tracheal tube 60 minutes or more after
general anesthesia [16]. This study defined delayed extuba-
tion as removal of the tracheal tube over the same time frame
following PACU admission, while removal in less than 60
minutes was categorized as nondelayed extubation.

Continuous variables were presented as mean with SD
or median with IQR according to normality for the varia-
bles. Categorical variables were expressed as frequencies
with percentages. Missing values were filled in using the
KNN classification algorithm, which estimates missing values
based on the values of patients with similar features. Patients
ultimately enrolled in this study were randomized in a 7:3
ratio into primary and test cohorts. We used the optimal
thresholds from receiver operating characteristic (ROC) curve
analysis to convert continuous variables, such as intraopera-
tive infusion volume and duration of surgery from the training
set, into categorical variables [17].

The LASSO was used to identify key features associ-
ated with delayed extubation after general anesthesia for the
construction of the machine learning models. The machine
learning algorithms used in this study included KNN,
decision tree, XGBoost, RF, LightGBM, and artificial neural
networks. To enhance model performance, parameter tuning
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was conducted on the training set using a 10-fold cross-vali-
dation approach.

Model Evaluation

The AUROC, sensitivity, specificity, PPV, NPV, accu-
racy, and Fj-score were chosen as primary metrics for
model evaluation. To enhance the robustness of perform-
ance assessment, 1000 bootstrap resampling iterations were
performed to estimate the ClIs for these metrics. Model
calibration was evaluated using calibration curves gener-
ated with 100-bin quantile calibration and Loess smoothing
(frac=0.3) to provide bias-corrected and smoothed visual
assessment, and the Hosmer-Lemeshow goodness-of-fit test
was performed to quantitatively assess calibration, with P
values >.05 indicating good calibration. Additionally, Brier
scores were calculated to assess overall calibration accuracy.

Ethical Considerations

This study was approved by the institutional review board of
Shenshan Medical Center, Memorial Hospital of Sun Yat-sen
University (2024-SSKY-113-01). The trial was registered in
the Chinese Clinical Trial Registry (ChiCTR2400090247).
Because this was a retrospective study using deidenti-
fied clinical data and posed minimal risk to participants,
the institutional review board waived the requirement for
informed consent. Participant privacy and data confidential-
ity were strictly protected; all data were anonymized before
analysis and used only for research purposes. No financial
compensation was provided to participants.

Results

A total of 4793 patients were initially included in the study.
On the basis of the exclusion criteria, 8 (0.16%) patients
were excluded due to having more than 30% missing data,
2 (0.04%) patients were excluded because their tracheal
tube had been removed before admission to the PACU,
and 4 (0.08%) patients were excluded due to preoperative
unconsciousness or severe psychiatric disorders. Therefore,
4779 patients were finally enrolled in the analysis, of whom
6% (287/4793) experienced delayed extubation, defined as
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extubation time of 60 minutes or more after admission to the
PACU, and 93.72% (4492/4793) of patients did not experi-
ence delayed extubation. The dataset was randomly divided
into primary and test cohorts in a 7:3 ratio, resulting in
70.01% (3346/4779) of patients being placed in the primary
cohort and 29.99% (1433/4779) being placed in the test
cohort. In the primary cohort, 6.21% (208/3346) of patients
were assigned to the delayed extubation group and 93.78%
(3138/3346) of patients were assigned to the nondelayed
extubation group. The patient recruitment flowchart is shown
in Figure 1.

No statistically significant differences were found in the
univariate comparisons between the primary and test cohorts
(Multimedia Appendix 1). The optimal parameter (A) in
the LASSO model was selected using 10-fold cross-valida-
tion. Dashed lines were drawn at the optimal value using
the minimum criterion. A vertical line was drawn at the
value chosen by 10-fold cross-validation, where the optimal
A resulted in 13 nonzero coefficient features (Figure 2).
LASSO regression generated 13 nonzero coefficient variables
at the value of A (minimum)=0.0037 for building a machine
learning prediction model, including age, sex, BMI, ASA
classification, cerebral stroke history, intraoperative infusion
volume, duration of surgery, history of COPD, case condition,
surgical site, surgical level, tympanic temperature follow-
ing PACU admission, and sufentanil administered before
extubation in the PACU.

On the basis of the test cohort, ROC (Figure 3) was
drawn for different machine learning prediction models
(KNN, decision tree, XGBoost, RF, LightGBM, and artificial
neural networks). The XGBoost model demonstrated the
highest overall performance among all models tested. In the
test cohort, the XGBoost model achieved an AUROC of
0.750 (95% CI 0.703-0.796), a sensitivity of 0.734 (95% CI
0.634-0.827), a specificity of 0.647 (95%CI 0.622-0.673), a
PPV of 0.108 (95% CI 0.083-0.134), a NPV of 0.976 (95%CI
0.966-0.985; Table 1), an Fi-score of 0.188, and accuracy
of 0.652 (Table 2). The Brier score was 0.0505, indicating a
low mean squared difference between predicted probabilities
and actual outcomes and suggesting good model calibration
(Table 2).
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Figure 1. Patient recruitment flowchart
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Figure 2. (A) Least absolute shrinkage and selection operator (LASSO) cross-validation curves and (B) coefficient path plot for LASSO regression
analysis. MSE: mean square error.
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Figure 3. Receiver operating characteristic (ROC) curves for numerous machine learning delayed extubation prediction models. ANN: artificial
neural network; AUC: area under the curve; KNN: k-nearest neighbor; LightGBM: light gradient boosting machine; RF: random forest; XGBoost:
extreme gradient boosting.
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Table 1. Comparative performance of candidate models on the hold-out test dataset.

Model AUROC? (95%CI)  Sensitivity (95%CT) Specificity (95%CI) PPV® (95%CI) NPV€ (95%CT)

RF4 0.737 (0.684-0.787)  0.696 (0.5976-0.7945) 0.648 (0.6224-0.6738) 0.103 (0.0790-0.1295) 0.9734 (0.9628-0.9836)
DT® 0.567 (0.493-0.643) 0.316 (0.2208-0.4211) 0.886 (0.8686-0.9022) 0.139 (0.0913-0.1894) 0.9569 (0.9455-0.9679)
KNNf 0.620 (0.409-0.630) 0.519 (0.4096-0.6302) 0.706 (0.6825-0.7311) 0.093 (0.0668-0.1212) 0.9618 (0.9504-0.9732)
LightGBM?2 0.725 (0.671-0.779)  0.734 (0.6375-0.8261) 0.614 (0.5876-0.6397) 0.100 (0.0769-0.1254) 0.9754 (0.9651-0.9851)
XGBoost? 0.750 (0.703-0.796)  0.734 (0.6349-0.8272)  0.647 (0.6227-0.6733) 0.108 (0.0833-0.1349) 0.9766 (0.9666-0.9857)
Artificial neural 0.719 (0.661-0.775)  0.632 (0.5316-0.7381) 0.672 (0.6468-0.6966) 0.101 (0.0763-0.1283) 0.9691 (0.9581-0.9799)
network

4AUROC: area under the receiver operating characteristic curve.
bppy: positive predictive value.
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Model AUROC? (95%CI)  Sensitivity (95%CI)  Specificity (95%CI) PPV (95%CI) NPV (95%CT)

°NPV: negative predictive value.

dRF: random forest.

°DT: decision tree.

fKNN: k-nearest neighbor.

8LightGBM: light gradient boosting machine.
"X GBoost: extreme gradient boosting.

Table 2. Performance metrics, calibration assessment, and goodness-of-fit statistics for each machine learning model predicting delayed extubation.

Model Accuracy F1-score Brier score Hosmer-Lemeshow X2 (df) P value
KNN? 0.695 0.158 0.0576 31.53 (6) <.001
REFP 0.651 0.180 0.0516 17.16 (6) 009
DT® 0.854 0.193 0.0629 2097.51 (6) <.001
LightGBMY 0.621 0.176 0.0515 23.87 (6) 001
XGBoost® 0.652 0.188 0.0505 7.38 (6) 29
ANNf 0.669 0.174 0.0503 4.27 (6) 64

4KNN: k-nearest neighbor.

YRF: random forest.

°DT: decision tree.

dLightGBM: light gradient boosting machine.
€XGBoost: extreme gradient boosting.
fANN: artificial neural network.

The calibration curve (Figure 4) showed good agreement Similar trends were observed in the other models
between predicted probabilities and observed outcomes for tested, although their overall discrimination performance and
the XGBoost model, with a Hosmer-Lemeshow goodness- calibration were lower compared to XGBoost (Table 1 and
of-fit test y2¢=7.38 and P=.287 (Table 2), indicating no Figure 3).

significant lack of fit. These results suggest that the XGBoost

model may serve as a reliable tool for predicting the risk of

delayed extubation following general anesthesia in the PACU.

Figure 4. Calibration curve. ANN: artificial neural network; KNN: k-nearest neighbor; LightGBM: light gradient boosting machine; RF: random
forest; XGBoost: extreme gradient boosting.
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Given the difficulty clinical practitioners face in interpreting
unexplained predictive models, this study used the Shap-
ley additive explanations (SHAP) method to elucidate the
XGBoost model by calculating the contribution of each
feature variable to the predicted outcome (Figure 5). The
variables showing the contribution to delayed extubation after
general anesthesia in the SHAP plot of the XGBoost model

Luo et al

were as follows: age, BMI, ASA classification, tympanic
temperature following PACU admission, sex, intraoperative
infusion volume, duration of surgery, surgical site, surgi-
cal level, case condition, cerebral stroke history, sufentanil
administered before extubation in the PACU, and history of
COPD (Figure 6).

Figure 5. Bar chart of Shapley additive explanations (SHAP) for important features in the extreme gradient boosting (XGBoost) model. ASA:
American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease; PACU: postanesthesia care unit.
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Figure 6. Global Shapley additive explanations (SHAP) summary for the extreme gradient boosting (XGBoost) model. Positive SHAP values
increase the predicted probability of delayed extubation. Point color encodes the numeric feature code listed in Multimedia Appendix 2. Risk
directions should be interpreted from SHAP values together with the coding scheme. ASA: American Society of Anesthesiologists; COPD: chronic

obstructive pulmonary disease; PACU: postanesthesia care unit.
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Discussion

Principal Findings

This study collected perioperative assessment and manage-
ment data, including nursing management indicators in the
PACU, and attempted to construct predictive models for
delayed extubation in the PACU using various machine
learning algorithms. The results showed that the XGBoost-
based model achieved the highest predictive performance.
The SHAP interpretation in the XGBoost model identified
features with high predictive value, providing a basis for early
risk assessment of delayed extubation and optimal nursing
intervention strategies within the PACU.

The SHAP summary plot demonstrated that age, BMI,
ASA classification, and tympanic temperature were the
top 4 features in predicting delayed extubation risk. Age
showed the strongest positive contribution to model predic-
tions, indicating that patients aged =65 years were more
likely to experience delayed extubation. This finding aligns
with previous studies showing that older patients are at
higher risk for delayed extubation due to decreased res-
piratory reserve, altered drug metabolism, and delayed
muscle strength recovery [18,19]. PACU nurses should
implement individualized monitoring and interventions for
older adults or patients at risk of respiratory dysfunction
(eg, obesity, obstructive sleep apnea, and COPD), includ-
ing close monitoring of respiratory rate, oxygen saturation,
and partial pressure of end-tidal carbon dioxide to detect
hypoventilation, hypoxemia, or airway obstruction early,
as well as extending awakening time to ensure full con-
sciousness and respiratory recovery before extubation [20,
21]. Diaphragm ultrasound can effectively assess diaphrag-
matic thickness, thickening fraction, and mobility, reflecting
diaphragm contractility, and is a powerful tool to predict the
recovery of spontaneous breathing and extubation success
[22]. In the PACU, particularly for older patients or those
with impaired respiratory function (eg, COPD or chronic
respiratory failure), diaphragmatic function assessment helps
nurses determine whether the patient has sufficient respi-
ratory drive and muscle strength to maintain ventilation
after extubation [23]. If the thickening fraction is <20% or
diaphragmatic movement is significantly reduced, it indicates
diaphragmatic dysfunction and suggests that the patient may
not yet be ready for extubation [24]. Conversely, normal
diaphragmatic movement indicates good respiratory muscle
recovery and extubation safety, reducing reintubation risks.

BMI was the second most important predictor. SHAP
interpretation showed that underweight (BMI <18.5 kg/m?)
contributed more to delayed extubation predictions than
obesity. This contrasts with most studies focusing on
obesity as a risk factor for delayed extubation. Previous
studies indicated that patients with obesity have impaired
lung function, characterized by decreased lung compliance
and reduced functional residual capacity, which is further
exacerbated by general anesthesia and mechanical ventila-
tion, leading to delayed recovery of spontaneous breathing
and increased risk of extubation delay [25,26]. However,
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patients who are underweight may also experience delayed
extubation due to potential mechanisms such as malnutri-
tion-induced respiratory muscle weakness, reduced adipose
tissue affecting the distribution volume and metabolism of
lipophilic anesthetics, and poor overall recovery capacity
[27]. Therefore, preoperative nutritional risk screening
(eg, Nutritional Risk Screening 2002 or Patient Gener-
ated Subjective Global Assessment) should be routinely
performed to identify potential malnutrition [28]. During
PACU recovery, nurses should closely assess muscle strength
recovery, including respiratory and limb muscle strength, to
evaluate readiness for extubation. Patients with respiratory
muscle weakness, hypoventilation, or delayed awakening may
require prolonged mechanical ventilation support to ensure
sufficient respiratory capacity and consciousness before
extubation, thus ensuring safety and reducing postoperative
complications. ASA classification also contributed signifi-
cantly to the model, with patients classified as ASA III
or above having a higher likelihood of delayed extubation,
suggesting that baseline comorbidities and overall health
status play crucial roles in postoperative recovery [29].
PACU nurses should integrate comprehensive preoperative
functional assessments with ASA classification to develop
graded nursing plans, optimize resource allocation, and
strengthen cardiopulmonary monitoring and support [30].
Tympanic temperature was also an important predictor, with
lower temperatures associated with increased risk of delayed
extubation. Previous studies have shown that hypothermia
reduces hepatic and renal blood flow, slowing anesthetic drug
metabolism and clearance and prolonging awakening and
spontaneous breathing recovery [18,31]. PACU nurses should
measure tympanic temperature immediately upon admission
and initiate active warming using forced-air warming blankets
and prewarmed infusions if the temperature is <36 °C.
Temperature should be remeasured every 15 minutes during
anesthesia recovery to ensure a stable warming trend, and
a standardized hypothermia management protocol should be
implemented to ensure continuity of care [32].

Furthermore, intraoperative infusion volume =1135 ml,
anesthesia duration =230.5 minutes, neurosurgery, and
higher surgical levels contributed moderately to predictions,
suggesting that intraoperative fluid management, anesthe-
sia duration, and surgical complexity should be comprehen-
sively considered to optimize extubation timing. Increased
intraoperative fluid volume may lead to interstitial fluid
retention, edema, and decreased lung compliance, adversely
affecting respiratory function and delaying recovery of
spontaneous breathing and readiness for extubation [33].
Previous studies have shown that excessive fluid management
is associated with increased risk of postoperative pulmo-
nary complications [34]; thus, rational intraoperative fluid
management is essential to avoid volume overload.

Finally, although a history of cerebral infarction,
additional sufentanil administration in the PACU, and
COPD showed relatively low SHAP contributions, they
remain clinically important predictors. A history of cer-
ebral infarction indicates potential central nervous sys-
tem dysfunction, including altered consciousness, impaired
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swallowing, and weakened cough reflex, increasing extuba-
tion risks [35,36]. Previous studies have shown that indi-
viduals who have sustained a stroke are prone to delayed
extubation and insufficient airway protection due to intra-
cranial pressure changes, impaired autonomic regulation,
and reduced respiratory center control [37,38]. Additional
sufentanil administration in the PACU reflects increased
postoperative analgesic requirements. While sufentanil is
a potent lipophilic p-opioid receptor agonist providing
excellent analgesia, high doses may suppress respiratory drive
and delay spontaneous breathing recovery [39]. Therefore,
postoperative analgesia should aim to achieve effective pain
control while minimizing the risk of respiratory depres-
sion. For older patients or those with compromised respira-
tory function, sufentanil dosing should follow recommended
ranges (0.1-0.5 pg/kg), with close monitoring of respiratory
status and consciousness to ensure effective analgesia without
prolonging extubation time [40]. Patients with COPD are
prone to airway secretion retention, ventilation-perfusion
mismatch, and weakened respiratory effort due to abnor-
mal airway function and increased resistance. They may
experience respiratory muscle fatigue and hypoxemia after
extubation, necessitating reintubation. PACU staff typically
delay extubation until oxygenation improves, necessitating
careful assessment of respiratory function recovery and
extubation timing, thus increasing the risk of delayed
extubation [41].

Strengths and Limitations

This study found that among all models compared, XGBoost
achieved the best performance. Previous models were mainly
developed based on logistic regression and presented as
nomograms [9]. However, XGBoost outperforms logistic
regression in capturing complex nonlinear interactions among
variables, resulting in higher predictive accuracy. Compared
with other machine learning algorithms, XGBoost offers
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advantages such as superior performance with high-dimen-
sional sparse data, built-in LASSO and ridge regularization,
cross-validation to prevent overfitting and enhance generaliz-
ability, and native handling of missing data without prior
imputation [29].

This study also had limitations. First, as a retrospective
study, it was subject to unavoidable biases and lacked
external validation. Additionally, some variables potentially
affecting extubation time were not included, and only patients
with ASA < III were enrolled, limiting generalizability.
Future multicenter prospective studies with larger samples are
needed to develop and validate delayed extubation predic-
tion models in the PACU. Furthermore, despite the obvi-
ous class imbalance in this study, no resampling techniques
(eg, Synthetic Minority Over-sampling Technique) or class
weighting strategies were used during model training. To
reduce the risk of majority class bias, we incorporated a
threshold adjustment mechanism in the evaluation stage by
imposing dual constraints on sensitivity and specificity (eg,
sensitivity =0.60 and specificity =0.60) to select clinically
meaningful thresholds. Although this post hoc adjustment
does not address imbalance during training, it partially
mitigates the majority class overfitting. Future studies will
incorporate integrated balancing strategies to further improve
model robustness and generalizability.

Conclusions

The machine learning—based predictive model for delayed
extubation risk after general anesthesia has significant clinical
implications. It allows for early identification of patients
with high risk, enabling personalized management and timely
interventions to reduce complications. PACU nurses can
consider integrating the model into routine postoperative care,
especially in PACU settings, to improve decision-making and
optimize resource allocation.
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