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Abstract

Background: Acute kidney injury (AKI) frequently occurs in critically ill patients with coronary heart disease (CHD), and its
development markedly elevates mortality rates and prolongs hospitalization duration. Early AKI prediction is crucial for timely
intervention and amelioration of patient outcomes.

Objective: This study aimed to develop and verify a clinical prediction model for the occurrence of AKI upon admission in the
critically ill population with CHD through machine learning (ML).

Methods: Data from the MIMIC-IV (Medical Information Mart for Intensive Care IV) version 2.2 database were gathered and
included information about critically ill individuals with CHD in the intensive care unit (ICU). The dataset was randomized into
a training set (70%) and a testing set (30%). Least absolute shrinkage and selection operator (LASSO) regression was used for
feature variable selection. ML models, including logistic regression (LR), decision tree (DT), naive Bayes (NB), random forest
(RF), extreme gradient boosting (XGBoost), and support vector machine (SVM), were constructed using 13 variables in the
training set. The 6 models were compared in the testing set to identify the best-performing model. Subsequently, the model was
assessed using calibration curve analysis and decision curve analysis (DCA). External validation was conducted using data from
the Second Affiliated Hospital of Zhengzhou University. Ultimately, the predictive model was interpreted via Shapley Additive
Explanation (SHAP) values.

Results: In total, 2711 patients with CHD admitted to the ICU were selected, with 1809 (66.7%) having AKI. XGBoost exhibited
the best performance regarding discrimination (area under the receiver operating characteristic curve [AUROC]=0.765, 95% CI
0.731-0.800), accuracy (0.725), and sensitivity (0.759). External validation using a cohort of 226 patients confirmed the strong
generalizability of the XGBoost model (AUROC=0.835, 95% CI 0.782-0.887). Feature importance analyses derived from SHAP
values, DT, RF, and XGBoost consistently identified 5 key predictors associated with the development of AKI: mechanical
ventilation, use of antiplatelet agents, age, N-terminal pro–B-type natriuretic peptide (NT-proBNP) levels, and acute physiology
score III (APSIII).

Conclusions: ML models can serve as reliable tools for forecasting AKI in the critically ill population with CHD. The XGBoost
model is highly accurate and may aid doctors in identifying high-risk individuals for early intervention to lower mortality.

(JMIR Med Inform 2025;13:e72349) doi: 10.2196/72349
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Introduction

Acute kidney injury (AKI) is a frequent complication in people
admitted to the intensive care unit (ICU), particularly in the
coronary care unit (CCU). The incidence of AKI in the CCU is
28.5% [1]. In patients in the ICU, the onset of AKI is linked to
significantly longer hospital stays and higher in-hospital death
rates in contrast to the population without AKI, resulting in a
worse overall prognosis [2]. However, with timely intervention
and effective treatment, AKI can be reversed early, thereby
reducing mortality related to AKI [3]. Therefore, early AKI
identification is essential for critically ill individuals with
coronary heart disease (CHD) in the ICU. To better manage
critically ill patients with CHD, an accurate predictive model
is required to find high-risk individuals, enabling early
intervention to ameliorate their prognosis.

In recent years, several cardiac disease–related AKI prediction
models have been created. For instance, Ma et al [4] used
nomograms to develop a prediction model for contrast-induced
AKI in individuals with non–ST elevation acute coronary
syndrome (ACS), and Peng et al [5] developed a machine
learning (ML)-based predictive model for AKI in patients with
congestive heart failure. Existing predictive models are primarily
designed for patients with isolated risk factors, such as acute
myocardial infarction (AMI) or those undergoing percutaneous
coronary intervention (PCI). However, critically ill patients
admitted to the ICU often present with complex conditions and
multiple comorbidities, rendering current models less applicable
to this population. Therefore, it is important to establish a more
widely applicable predictive model for AKI in the critically ill
cohort with CHD. As statistical theory and computational
technologies advance, artificial intelligence (AI) is beginning
to play a vital role in medicine. AI can learn to recognize large
datasets from databases, enabling precise disease prediction,
which helps clinicians develop appropriate treatment plans [6,7].
ML approaches have been extensively used in the construction
of predictive models for multiple illnesses, exhibiting higher
performance in comparison to conventional models, such as
logistic regression (LR) or Cox regression analysis [8,9].

This study endeavored to assess the incidence of AKI following
hospital admission in critically ill patients with CHD, as well
as to identify potential influencing factors. Using a range of ML
algorithms, we aimed to develop a generalizable predictive
model for postadmission AKI in this patient population, identify
the model with the best predictive performance, evaluate its
accuracy and generalizability, and conduct interpretability
analyses. Our model is designed to operate within an electronic
health record (EHR) system to continuously monitor and analyze
patient data in real time, automatically calculate the risk score
for AKI, and issue early warnings in high-risk cases. This
approach may assist clinicians in implementing timely
preventive measures or initiating early interventions.

Methods

Study Design and Population
The Medical Information Mart for Intensive Care IV
(MIMIC-IV) database, a single-center ICU dataset of the

Laboratory for Computational Physiology at the Massachusetts
Institute of Technology (MIT), has gained approval from the
Institutional Review Boards (IRBs) of MIT and the Beth Israel
Deaconess Medical Center (BIDMC). The patient information
within the database is anonymized, obviating the need for
informed consent from patients [10,11]. MIMIC-IV version 2.2
includes medical data from 73,181 patients in the ICU from
2008 to 2019 [12]. Our study cohort consisted of patients
diagnosed with CHD upon admission. The inclusion criteria
were (1) age of 18 years or more; (2) hospitalization duration
exceeding 24 hours; (3) patients diagnosed with CHD according
to the International Classification of Diseases, 9th Revision
(ICD-9: 41401, 41402, 41404, 41405, 41407) and International
Classification of Diseases, 10th Revision (ICD-10: I2101, I2102,
I2109, I2111, I2119, I2121, I240, I251). In total, 30,136 patients
with CHD were found in the MIMIC-IV database. Patients were
excluded if they (1) were not admitted to the ICU (n=13,461);
(2) had missing outcome variables (n=1); (3) had missing
categorical variables, such as gender, marital status, and
ethnicity (n=2420); (4) had missing N-terminal pro–B-type
natriuretic peptide (NT-proBNP) or neutrophil count data
(n=11,430); (5) had a history of pre-existing renal disease
(n=99); or (6) had a lymphocyte count of 0 (n=14).

Additionally, clinical data were collected from 226 critically ill
patients with CHD admitted to the Second Affiliated Hospital
of Zhengzhou University from January 1, 2021, to August 1,
2024, as an external validation cohort. A retrospective analysis
was performed using the hospital’s EHR system. The eligibility
criteria were consistent with those for the training and internal
validation cohorts.

Outcome
Our research team was granted access to the MIMIC-IV database
on July 12, 2024, and subsequently extracted data on 2711
critically ill patients with CHD admitted to the ICU. As of
March 30, 2025, we had also collected external validation data
from 226 patients at the Second Affiliated Hospital of
Zhengzhou University. A total of 7 investigators participated
in this study.

Data Extraction and Processing
Data extraction was completed via structured query language
(SQL) and the PostgreSQL tool (version 16.0). The extracted
data consisted of the first recorded vital signs and laboratory
parameters following ICU admission, as well as medications
administered within the first 7 days of hospitalization. The study
extracted the following variables:

• Demographic characteristics: gender, age, race, blood
pressure, and BMI

• Comorbidities: AMI, history of previous myocardial
infarction (MI), diabetes mellitus, hypertension, heart
failure, and atrial fibrillation

• Vital signs: systolic blood pressure, diastolic blood pressure,
heart rate, and respiratory rate

• Laboratory parameters: white blood cells (WBCs), red blood
cells (RBCs), platelets, albumin, hemoglobin, aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
lymphocyte percentage, lymphocyte count, neutrophil
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percentage, neutrophil count, neutrophil-to-lymphocyte
ratio (NLR), anion gap, bicarbonate, total bilirubin, serum
potassium, serum sodium, NT-proBNP, blood urea nitrogen
(BUN), serum chloride, creatine kinase isoenzymes
(CKMB), international normalized ratio (INR), lactate
dehydrogenase (LDH), prothrombin time (PT), activated
partial thromboplastin time (PTT), RBC distribution width
(RDW), and serum creatinine (SCr)

• Medication use and treatment: antiplatelet agents,
antihypertensive drugs, statins, vasopressors, heparin,
diuretics, coronary angiography (CAG), or PCI

• Simplified acute physiology score III (APSIII) and
sequential organ failure assessment (SOFA)

Variables having more than 20% missing values were eliminated
from the final cohort in order to reduce bias brought on by
missing data. Other variables with missing data were imputed
via multiple imputation, a widely used and effective technique
to handle missing data [13] estimating multiple plausible values
for each missing entry [14]. Additionally, to enhance the
accuracy and reliability of data and models, outliers were
identified using box plots [15], and extreme values were
mitigated through winsorization [16], wherein data points above
the 99th percentile were substituted with the value at the 99th
percentile and those below the 1st percentile were replaced with
the value at the 1st percentile.

Outcome Variables
Our study cohort comprised adult patients diagnosed with AKI
following hospital admission. The diagnosis of AKI was based
on the guidelines published in 2012 by the organization called
Kidney Disease: Improving Global Outcomes (KDIGO) [17].
AKI was defined by the presence of any one of the following
criteria: (1) an increase in SCr by ≥26.5 μmol/L (≥0.3 mg/dL)
within 48 hours; (2) an increase in SCr to >1.5 times the baseline
value, which is known or presumed to have occurred within the
prior 7 days; or (3) a urine output of <0.5 mL/kg/hour for more
than 6 hours.

Variable Selection
To minimize the potential bias of multicollinearity and model
overfitting, we used the least absolute shrinkage and selection
operator (LASSO) regression to select and filter variables in
the training dataset. LASSO is a regression-based method that
reduces model complexity through the construction of a penalty
function. The optimal regularization parameter (λ) was
determined using tenfold cross-validation, and variables with
nonzero coefficients were retained as the final predictors.
Following LASSO regression, the variance inflation factor (VIF)
was calculated for the included variables to assess
multicollinearity. The VIF values for all predictors are presented
in Table S1 in Multimedia Appendix 1.

Model Development and Evaluation
The sample was randomized into a training set and a testing set
in a 7:3 ratio. Six ML models were established in the training
set: LR, decision tree (DT), naive Bayes (NB), random
forest(RF), extreme gradient boosting (XGBoost), and support
vector machine (SVM). To minimize overfitting and achieve
optimal model performance, the hyperparameters of the ML

models were tuned using a grid search. In contrast, the LR model
was implemented using its conventional parameter settings.
Detailed parameter configurations for each model are presented
in Table S2 in Multimedia Appendix 1.

The models’ predictive performances were evaluated on the
testing dataset by comparing the area under the receiver
operating characteristic curve (AUROC), accuracy, precision,
sensitivity, and specificity. Among these, AUROC was
considered the primary performance metric. The model
demonstrating the highest predictive performance was selected
as the optimal model for this study. A calibration curve was
subsequently plotted to assess the agreement between observed
outcomes and predicted probabilities. In addition, decision curve
analysis (DCA) was conducted to evaluate the clinical utility
of the model. Finally, external validation was performed using
data from the Second Affiliated Hospital of Zhengzhou
University to assess the model’s generalizability and
applicability in an independent cohort.

Model Interpretation
To interpret the predictive models, feature importance was
visualized for 3 tree-based models (DT, RF, and XGBoost) and
interpreted using Shapley Additive Explanation (SHAP) values.
Feature importance, quantified through each model’s intrinsic
evaluation mechanism, directly reflects the contribution of
individual input variables to the model’s predictive output,
thereby elucidating the practical relevance of each feature in
the decision-making process. SHAP has been widely leveraged
to explain the contribution of predictive variables [18,19] to
model output by offering consistent, locally accurate attribution
values for every characteristic in the model. Higher values would
suggest an elevated likelihood of AKI. SHAP dependence plots
for the top 5 feature variables were generated to illustrate the
relationship between the SHAP values and feature values, as
well as to demonstrate feature interactions. In addition, to
visually illustrate the decision-making logic of the model, a
SHAP force plot for individual samples was generated to
demonstrate the contribution of each variable to the model’s
prediction.

Statistical Analysis
All analyses were conducted in R version 4.3.1 (R Foundation
for Statistical Computing). For continuous variables, the
Shapiro-Wilk test was performed to evaluate the normality of
the data. The mean (SD) was used for expressing variables
having a normal distribution, and the independent samples t test
was performed for comparison. The Wilcoxon rank-sum test
was applied to compare non-normally distributed variables,
which were displayed as medians (IQRs). The chi-square or the
Fisher exact test was carried out to compare categorical
variables, which were presented as numbers and percentages.
P<.05 suggested statistical significance.

Ethical Considerations
The MIMIC-IV database was approved by the IRBs of the
MIT(0403000206) and the BIDMC(2011-P-001418). As all
patient data contained within the database are deidentified,
individual informed consent was not required. This study has
obtained access authorization to the MIMIC-IV database through
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PhysioNet approval (ID: 13470927). In addition, the study
protocol was approved by the Ethics Committee of the Second
Affiliated Hospital of Zhengzhou University (approval numer:
KY2024215). Informed consent was obtained from all patients
enrolled at this institution, and all data were fully deidentified.
Given that the study did not involve direct interaction with
participants, no compensation was provided.

Results

Patient Characteristics
The inclusion process is illustrated in Figure 1. Of the 2711
patients included whose median age was 71 years, 1629 (60.1%)

were males, 1985 (73.2%) White, and 1809 (66.7%) cases of
AKI. After randomly splitting the dataset into a 7:3 ratio, the
training group had 1897 (70%) patients, with a median age of
71 years, 1139 (60%) males, 1386 (73.1%) White, and 1254
(66.1%) cases of AKI. The testing group comprised 814 (30%)
patients, with a median age of 71 years, 490 (60.2%) males,
599 (73.6%) White, and 555 (68.2%) cases of AKI. In the
training set, 37 variables, including age, race, mechanical
ventilation, albumin, and potassium levels, were statistically
significant (P<.05). Table 1 presents the baseline characteristics
of the patients in the training set, while the baseline
characteristics of the testing set can be found in Table S3 in
Multimedia Appendix 2.

Figure 1. Participant-screening process diagram. AKI: acute kidney injury; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive
Care IV.

JMIR Med Inform 2025 | vol. 13 | e72349 | p. 4https://medinform.jmir.org/2025/1/e72349
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Baseline characteristics of the training cohort (n=1897).

Training set (n=1897)Total patients (N=2711)Characteristics

P valueAKI (n=1254)Non-AKIa (n=643)

.0271.0 (62.0-78.0)69.0 (60.0-79.0)71.0 (62.0-79.0)Age (years), median (IQR)

.9629.0 (25.4-34.0)29.0 (25.2-34.4)29.1 (25.5-34.0)BMI (kg/m2), median (IQR)

.08Gender, n (%)

—b785 (62.6)354 (55.1)1629 (60.1)Male

—469 (37.4)289 (44.9)1082 (39.9)Female

.45Marital status, n (%)

—307 (24.5)170 (26.4)661 (24.4)Single

—281 (22.4)151 (23.5)615 (22.7)Divorced/widowed

—666 (53.1)322 (50.1)1435 (52.9)Married

.02Race, n (%)

—938 (74.8)448 (69.7)1985 (73.2)White

—316 (25.2)195 (30.3)726 (26.8)Non-White

.3582.5 (73.0-95.0)83.0 (73.0-97.0)83.0 (73.0-96.0)Heart rate (beats/minute), median (IQR)

<.001809 (64.5)263 (40.9)1517 (55.9)Mechanical ventilation, n (%)

.0518.0 (15.0-22.0)19.0 (15.0-23.0)18.0 (15.0-22.0)Respiratory rate (beats/minute), median (IQR)

Laboratory values, median (IQR)

.0013.45 (3.00-3.90)3.60 (3.10-4.10)3.50 (3.00-4.00)Albumin (g/dL)

.4422.0 (14.0-37.0)23.0 (14.0-38.0)22.0 (14.0-38.0)ALTc (IU/L)

.3214.0 (12.0-17.0)14.0 (12.0-17.0)14.0 (12.0-170)Anion gap (mmol/L)

.0829.0 (20.0-54.0)27.0 (19.5-47.0)29.0 (20.0-51.0)ASTd (IU/L)

.0123.0 (20.0-25.0)23.0 (21.0-26.0)23.0 (21.0-26.0)Bicarbonate (mmol/L)

.120.5 (0.4-0.8)0.5 (0.3-0.8)0.5 (0.3-0.9)Bilirubin total (mg/dL)

.014.2 (3.9-4.7)4.1 (3.8-4.6)4.2 (3.8-4.6)Potassium (mEq/L)

.50138 (135-141)138 (136-141)138 (136-141)Sodium (mEq/L)

<.0013096 (936-8121)1612 (470-4696)2422 (720-6896)NT-proBNPe (pg/mL)

<.00123.0 (16.0-37.0)21.0 (14.0-32.0)22.0 (15.0-35.0)BUNf (mg/dL)

.63103 (99.0-108)104 (99.0-107)103 (100-108)Chloride (mEq/L)

<.0014.0 (2.0-8.0)3.00 (2.0-6.0)4.0 (2.0-7.0)CKMBg (ng/mL)

.4310.3 (8.70-11.8)10.4 (8.70-12.1)10.3 (8.70-11.9)Hemoglobin (g/dL)

.131.3 (1.1-1.5)1.2 (1.1-1.5)1.3 (1.1-1.5)INRh

.261.6 (1.2-2.4)1.7 (1.2-2.4)1.6 (1.2-2.4)Lactate (mmol/L)

.141.30 (0.83-1.89)1.32 (0.90-1.94)1.28 (0.84-1.88)Lymphocyte count (109/L)

.00213.6 (8.30-21.2)15.5 (9.45-22.8)14.1 (8.60-21.7)Lymphocytes (%)

<.0016.58 (4.51-10.1)5.94 (4.09-8.94)6.41 (4.34-9.74)Neutrophil count (109/L)

.00376.1 (67.5-83.2)73.8 (65.8-81.7)75.6 (67.0-83.1)Neutrophils (%)

.79185 (137-239)187 (136-246)185 (138-240)Platelets (K/uL)

<.0015.20 (2.90-9.57)4.50 (2.70-7.30)4.90 (2.90-9.10)NLRi

.1613.9 (12.4-16.5)13.8 (12.2-16.3)13.9 (12.3-16.5)PTj (seconds)
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Training set (n=1897)Total patients (N=2711)Characteristics

P valueAKI (n=1254)Non-AKIa (n=643)

.0931.5 (27.7-39.7)30.9 (27.5-37.8)31.3 (27.6-38.5)PTTk (seconds)

.183.46 (2.96-4.01)3.53 (3.01-4.08)3.50 (2.97-4.03)RBCl (m/uL)

.2814.4 (13.5-15.9)14.6 (13.6-15.9)14.6 (13.6-15.9)RDWm (%)

<.0011.1 (0.9-1.7)1.0 (0.8-1.5)1.1 (0.8-1.6)SCrn (mg/dL)

<.00110.5 (7.70-14.2)9.50 (7.00-13.4)10.1 (7.40-14.0)WBCo (K/uL)

Comorbidities, n (%)

<.001590 (47)169 (26.3)1105 (40.8)AMIp

<.001747 (59.6)315 (49)1538 (56.7)Atrial fibrillation

.006759 (60.5)346 (53.8)1561 (57.6)Diabetes

<.0011078 (86)497 (77.3)2252 (83.1)Heart failure

.931185 (94.5%)609 (94.7)2558 (94.4)Hypertension

<.001656 (52.3)213 (33.1)1254 (46.3)Old MIq

Drugs, n (%)

.04611 (48.7)281 (43.7)1262 (46.6)Angiotensin-converting enzyme (ACE) in-
hibitor–angiotensin receptor blocker (ACEI-ARB)

<.001935 (74.6)388 (60.3)1928 (71.1)Antibiotic

<.0011087 (86.7)407 (63.3)2148 (79.2)Antiplatelet drug

<.001894 (71.3)319 (49.6)1747 (64.4)Aspirin

<.001350 (27.9)78 (12.1)602 (22.2)Clopidogrel

<.001293 (23.4)64 (10)504 (18.6)Dual-antiplatelet therapy

.00274 (5.9)17 (2.6)121 (4.5)Dobutamine

.2078 (6.2)30 (4.7)144 (5.31)Dopamine

<.001189 (15.1)44 (6.8)332 (12.2)Epinephrine

<.001519 (41.4)149 (23.2)947 (34.9)Heparin

<.0011065 (84.9)451 (70.1)2172 (80.1)Hydragogue

<.001476 (38)132 (20.5)865 (31.9)Noradrenaline

<.001140 (11.2)32 (5)258 (9.5)Two vasoactive drugs

.00542 (3.3)7 (1.1)63 (2.3)Three vasoactive drugs

<.0011064 (84.8)429 (66.7)2138 (78.9)Tatin

.2078 (6.2)30 (4.7)152 (5.6)CAGr, n (%)

.00148 (3.8)7 (1.1)76 (2.8)PCIs, n (%)

<.00145.2 (17.4)40.3 (16.1)43.5 (17.0)APSIIIt, mean (SD)
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Training set (n=1897)Total patients (N=2711)Characteristics

P valueAKI (n=1254)Non-AKIa (n=643)

<.0014.00 (2.00-7.00)4.00 (2.00-6.00)4.00 (2.00-6.00)SOFAu, median (IQR)

aAKI: acute kidney injury.
bNot applicable.
cALT: alanine aminotransferase.
dAST: aspartate aminotransferase.
eNT-proBNP: N-terminal pro–B-type natriuretic peptide.
fBUN: blood urea nitrogen.
gCKMB: creatine kinase isoenzymes.
hINR: international normalized ratio.
iNLR: neutrophil-to-lymphocyte ratio.
jPT: prothrombin time.
kPTT: partial thromboplastin time.
lRBC: red blood cell.
mRDW: red blood cell distribution width.
nSCr: serum creatinine.
oWBC: white blood cell.
pAMI: acute myocardial infarction.
qMI: myocardial infarction.
rCAG: coronary angiography.
sPCI: percutaneous coronary intervention.
tAPSIII: acute physiology score III.
uSOFA: sequential organ failure assessment.

Variable Selection
Based on the feature selection results from the LASSO
regression (Figure S1 in Multimedia Appendix 3), 13 features
were included: age, mechanical ventilation, NT-proBNP, NLR,
AMI, history of prior MI, antiplatelet therapy, dual-antiplatelet
therapy, heparin, diuretics, norepinephrine, statins, and APSIII.

ML Model Performance
Six ML models were created to forecast AKI occurrence. Figure
2 illustrates the ROC performance of these models in both

training and testing cohorts. In the testing cohort, the XGBoost
model (AUROC=0.765) demonstrated the best forecasting
performance, followed by LR (AUROC=0.758), NB
(AUROC=0.754), RF (AUROC=0.759), SVM (AUROC=0.731),
and DT (AUROC=0.692). Table 2 presents detailed performance
metrics for all 6 models. The XGBoost model demonstrated
superior discriminative ability, with accuracy (0.725) and
sensitivity (0.759) higher than those of the other 5 models,
indicating that XGBoost is the optimal model.

Figure 2. Comparison of AUC values across 6 models: (a) training set and (b) testing set. AUC: area under the curve; KNB: kernel naive Bayes; SVM:
support vector machine; XGBoost: extreme gradient boosting.

JMIR Med Inform 2025 | vol. 13 | e72349 | p. 7https://medinform.jmir.org/2025/1/e72349
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Performance indicators of 6 models.

SpecificitySensitivityPrecisionAccuracyAUROCaModel and datasets

LRb

0.7030.6790.8170.6870.761Training set

0.8400.5370.7950.7200.758Testing set

0.8160.7820.7750.8010.823External validation set

NBc

0.7220.6580.8220.6790.747Training set

0.6910.7140.8320.7060.754Testing set

0.8160.6930.7530.7610.780External validation set

SVMd

0.9240.6990.9470.7750.862Training set

0.7450.6220.8390.6610.731Testing set

0.7840.7330.7330.7610.786External validation set

DTe

0.7640.6810.8490.7090.792Training set

0.5480.7500.7800.6860.692Testing set

0.8000.7330.7470.7700.771External validation set

RFf

0.7110.7940.8430.7660.843Training set

0.7340.7100.8510.7170.759Testing set

0.8160.6730.7470.7520.771External validation set

XGBoostg

0.7150.7960.8450.7690.821Training set

0.6530.7590.8240.7250.765Testing set

0.8000.7720.7570.7880.835External validation set

aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cNB: naive Bayes.
dSVM: support vector machine.
eDT: decision tree.
fRF: random forest.
gXGBoost: extreme gradient boosting.

Calibration curves and DCA were used to further assess the
ideal model (Figure 3). The calibration curve is an important
tool for assessing the performance of predictive models, as it
compares the predicted probabilities with actual observed
outcomes to measure accuracy and reliability. Clinical DCA
evaluates the practical value of a clinical prediction model by

comparing the net benefit of different decision thresholds. Based
on the results, the calibration curve of the testing set
demonstrated excellent calibration of the model, while DCA
indicated that the model provides clinical net benefit across a
threshold probability range of 0.20-0.95, suggesting that the
model has outstanding clinical applicability.
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Figure 3. Calibration curve of the XGBoost model: (a) training set and (b) testing set. DCA of the XGBoost model: (c) training set and (d) testing set.
DCA: decision curve analysis; XGBoost: extreme gradient boosting.

External Validation
Clinical data from 226 critically ill individuals with CHD,
admitted to the Second Affiliated Hospital of Zhengzhou
University between January 1, 2021, and August 1, 2024, were
collected and the patients included in the external validation
group. Their baseline characteristics are provided in Table S4
in Multimedia Appendix 2. As shown in Figure 4a, the XGBoost

model in the external validation set exhibited the highest
AUROC of 0.835, similar to its performance in the testing
cohort. Furthermore, the calibration curve demonstrated good
calibration (Figure 4b), and the DCA curve indicated net benefit
at threshold probabilities lower than 0.9 (Figure 4c), indicating
that the XGBoost model has superior generalizability and can
be reliably applied to external data.
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Figure 4. (a) Comparison of AUC values of the 6 models in the external validation set and (b) the calibration curve and (c) the DCA curve of the
XGBoost model. AUC: area under the curve; DCA: decision curve analysis; KNB: kernel naive Bayes; SVM: support vector machine; XGBoost:
extreme gradient boosting.

Model Interpretation
Our study compared the feature importance rankings of
XGBoost (Figure 5a), DT (Figure 5b), and RF (Figure 5c)
models, and provided global and local explanations of the
predictions using SHAP values (Figure 5d), to comprehensively
assess the contribution of each clinical feature to the risk of
AKI. NT-proBNP ranked among the top 3 predictors in
XGBoost, RF, and DT models, and its global contribution was
also significant according to SHAP analysis. The SHAP
dependence plot (Figure S2 in Multimedia Appendix 3) shows
that as the NT-proBNP value increased, the incidence of AKI
also rose, which is highly consistent with the clinical
significance of NT-proBNP as a biomarker for heart failure and
renal dysfunction, thereby confirming its predictive value for
AKI. Age ranked high in XGBoost (fourth in gain importance)
and RF models, with SHAP values indicating a positive

contribution to the prediction, aligning with the clinical
consensus that elderly patients are at a higher risk for AKI.
Antiplatelet drugs ranked first in gain importance in the
XGBoost model and in Gini impurity in the DT model; the
SHAP value for high feature importance was 0.05, the SHAP
value for low feature importance reached –0.2. This suggests
that the use of antiplatelet drugs has a limited contribution to
the promotion of AKI, while patients not using them have a
lower risk of AKI. Mechanical ventilation ranked third in the
XGBoost model, with its global SHAP contribution indicating
a significant positive correlation with AKI risk, which supports
the potential mechanisms of iatrogenic renal injury in critically
ill patients. APSIII ranked third in both RF and DT models, and
its SHAP dependence plot (Multimedia Appendix 3) suggests
that when APSIII exceeds 40, the incidence of AKI significantly
increases, reflecting the stable predictive value of composite
physiological indices in AKI risk prediction.
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Figure 5. Feature importance derived from (a) XGBoost, (b) DT, and (c) RF models, along with (d) SHAP analysis summary diagram based on
XGBoost. Each row represents a feature; a point represents a sample; yellow represents a high feature value; and purple represents a low feature value.
A further distance from a point to the baseline SHAP value of 0 indicates a greater impact on the output. AMI: acute myocardial infarction; APSIII:
acute physiology score III; NLR: neutrophil-to-lymphocyte ratio; NT-proBNP: N-terminal pro–B-type natriuretic peptide.

To intuitively demonstrate the consistency between the model’s
decision logic and clinical-pathological mechanisms, this study
selected 2 typical AKI risk prediction cases for SHAP force
plot analysis (Figure 6). The SHAP analysis of individual
samples reveals how each variable influences the model’s
decision-making. As shown in Figure 6a, age, NT-proBNP, and
mechanical ventilation usage contributed the highest positive

predictive values, while the absence of AMI and old MI reduced
the risk of AKI. In Figure 6b, the age of 75 years increased the
risk of AKI, and the absence of antiplatelet drugs and
mechanical ventilation usage significantly reduced the risk of
AKI. These variables are all among the top 6 predictive features
for AKI in the XGBoost model.

Figure 6. SHAP force plot of (a) a patient with AKI and (b) a patient without AKI. Features contributing to an increase in the predicted value are shown
in yellow, whereas those contributing to a decrease are shown in red. The length of the arrows represents the magnitude of each feature’s influence on
the model output. The scale on the x-axis indicates the extent to which each feature increases or decreases the predicted value. AKI: acute kidney injury;
AMI: acute myocardial infarction; NT-proBNP: N-terminal pro–B-type natriuretic peptide; SHAP: Shapley Additive Explanation.
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Discussion

Principal Findings
This study, based on data from the MIMIC-IV database and the
Second Affiliated Hospital of Zhengzhou University, is the first
to develop and externally validate an ML model for predicting
AKI in critically ill patients with CHD. By incorporating 13
clinical variables, 6 ML algorithms were systematically
compared. The results demonstrated that the XGBoost model
exhibited superior predictive performance in both the internal
testing set (AUROC=0.765, 95% CI 0.731-0.800) and the
external validation cohort (AUROC=0.850, 95% CI
0.731-0.800). Calibration curve analysis and DCA further
confirmed the model’s excellent calibration and wide range of
clinically beneficial threshold probabilities (0.20-0.95). External
validation also confirmed the model’s net clinical benefit across
threshold probabilities below 0.9, underscoring its strong
generalizability.

In model development, we used a feature selection strategy that
combined LASSO regression with VIF analysis, consistent with
methodologies adopted in previous studies [20]. We ultimately
included13 variables and applied tree-based feature importance
rankings, along with SHAP analysis, to enhance model
interpretability. Our findings identified antiplatelet therapy,
NT-proBNP, age, mechanical ventilation, and APSIII as the 5
most influential predictors, all of which were clinically plausible.
Notably, NT-proBNP ranked among the top 3 variables in
importance across the XGBoost, RF, and DT models and
contributed significantly to AKI prediction, as indicated by
SHAP values—an observation well aligned with its known
pathophysiological role. As a sensitive biomarker of cardiorenal
syndrome, NT-proBNP is cleared by glomerular filtration and
can reflect early declines in the glomerular filtration rate (GFR)
during the initial stages of AKI [21,22]. This finding supports
the mechanistic evidence reported by Wang et al [23], who
observed elevated NT-proBNP levels in patients with
postoperative AKI following cardiac surgery. In addition, Liu
et al [24] reported that preoperative NT-proBNP levels can more
effectively predict postoperative AKI in patients undergoing
noncardiac surgery, further corroborating the prognostic utility
of NT-proBNP.

Given that our study cohort consisted of patients with CHD, we
included relevant pharmacological agents in the predictive
model. Results revealed that antiplatelet therapy ranks first in
importance in both the XGBoost and DT models. SHAP analysis
indicated that the risk of AKI is lowest among patients not
receiving antiplatelet agents. Although monotherapy did not
significantly increase AKI risk, dual-antiplatelet therapy was
associated with a markedly elevated probability of AKI.
Concerning how antiplatelet medications affect renal function,
a Cochrane systematic review [25] showed that the risk of renal
dysfunction in users of antiplatelet drugs is not high. Another
systematic review indicated that in patients with chronic kidney
disease (CKD), antiplatelet medication did not reduce the eGFR
drop rate (−0.15 mL/1.73m²/year, 95% CI −0.89 to 1.20,
I²=40.8%) and affected renal failure events (odds ratio [OR]
0.87, 95% CI 0.32-1.55) [26]. However, retrospective

case-control research by Fored et al [27] on the correlation of
analgesic use with renal function revealed that in subjects who
rarely used acetaminophen, frequent aspirin use was linked to
a 2.5-fold increase in the likelihood of chronic renal failure
compared to nonusers, with the relative risk increasing as the
cumulative lifetime dose increased. Similarly, Bonet-Monné et
al [28] noted a decrease in renal function associated with the
use of nonsteroidal anti-inflammatory drugs (NSAIDs),
analgesics, and antiplatelet drugs, which aligns with our
findings.

As a core indicator for assessing disease severity in critically
ill patients, APSIII systematically quantifies the extent of
systemic pathophysiological derangements by integrating 12
acute physiological parameters, thereby revealing its close
association with the risk of AKI. In this study, the SHAP
dependence plot demonstrated a marked increase in AKI
incidence when the APSIII exceeded 40. This threshold effect
may be attributable to the severe hemodynamic instability
reflected by high APSIII values [29]. In addition, the SOFA
score, a commonly used tool in ICUs, has also been widely
applied for predicting AKI in critically ill patients [30].
Although originally developed for sepsis, the SOFA score has
been adopted by numerous cardiovascular studies as a
quantitative measure of organ dysfunction [31-33]. In our cohort,
the median SOFA score was 4.00 (IQR 2.00-6.00), suggesting
that a considerable proportion of patients may have been at risk
for infection. Notably, although the SOFA score was not selected
as a feature variable in the modeling process, NLR, an
established inflammatory marker, was selected by LASSO
regression and incorporated into the model. This highlights the
potential role of infection in the development of AKI among
critically ill patients. For example, systemic inflammatory
responses may lead to tubular epithelial injury and hemodynamic
disturbances that impair renal perfusion, thereby triggering the
onset of AKI.

Furthermore, our study revealed that advancing age and the use
of mechanical ventilation also contribute to a higher incidence
of AKI. Elderly adults represent a particularly vulnerable
population for AKI, as the GFR naturally declines with age and
the renal functional reserve diminishes, rendering them more
susceptible to AKI under stress conditions. According to the
SHAP dependence plot, patients between the ages of 70 and 80
years are at the highest risk for developing AKI. Retrospective
studies have shown that younger females are less likely to
develop postoperative AKI; however, the incidence increases
progressively with age [34]. An ML model designed for
predicting postoperative AKI similarly identified age as a critical
predictor [35]. The use of mechanical ventilation has likewise
been associated with an elevated risk of AKI, a finding
consistently supported by many studies. Patients who need
invasive mechanical ventilation have a threefold higher risk of
AKI, according to a high-quality systematic review and
meta-analysis, with no decrease in risk despite adjustments in
the tidal volume or positive end-expiratory pressure (PEEP)
settings [36].
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Comparison With Previous Work
Forecasting AKI in individuals in the ICU has long been a focus
in intensive care medicine. In recent years, multiple studies
have developed ML models for AKI prediction. For example,
Yue et al [37] developed a predictive model for AKI in patients
with sepsis, Cho et al [38] established an AKI prediction model
applicable to patients in general wards, and Zhou et al [39]
established a forecasting model for AKI in the cohort with acute
respiratory distress syndrome (ARDS) [39], incorporating 12
predictive variables, with XGBoost emerging as the ideal model,
which aligns with our findings. Tseng et al [40] used 94
preoperative and intraoperative features to create a prediction
model for cardiac surgery–associated AKI (CSA-AKI), where
the RF model realized the highest AUROC (0.839, 95% CI
0.772-0.898) and was identified as the best model. They also
used SHAP summary and dependence plots to explain the
model, a similar approach to ours. Some AKI-forecasting models
have been constructed for cardiovascular disease, but these
primarily focus on predicting AKI following cardiac surgery.
For instance, Kuno et al [41] built one for AKI after PCI [41],
and Sun et al [42] predicted contrast-induced kidney injury in
patients with AMI. However, patients with severe CHD in the
ICU typically receive conservative treatment rather than surgical
intervention. Thus, existing predictive models do not apply to
these patients. At present, no forecasting models are designed
for AKI in the patients with CHD in the ICU. Accordingly, we
developed a dedicated predictive model for AKI among patients
with CHD in the ICU, using the MIMIC-IV database. To the
best of our knowledge, this is the first model specifically
designed for the entire population of critically ill patients with
CHD. Compared with previously established models limited to
single clinical scenarios, our tool offers improved support for
clinicians in identifying high-risk patients within complex
clinical settings.

Strengths
The strength of ML is in integrating diverse data types and
providing personalized treatment recommendations for patients.
This study included data from 2 centers: the BIDMC and the
Second Affiliated Hospital of Zhengzhou University. The data
were rich and multidimensional, providing a meaningful
representation of real-world clinical practice. Additionally, new
variables not included in previous models, such as NT-proBNP
and NLR, along with additional categorical variables, were
incorporated with the aim of improving the model’s
performance. Moreover, the feature variables in our study differ
from those in previous research. We used 13 feature variables
to construct the model, including 4 continuous variables and 9
categorical variables. Categorical variables predominated in our
model; however, in existing AKI prediction models, most
selected variables are continuous. This discrepancy may be
attributed to the fact that in addition to laboratory indicators,
25 binary categorical variables were incorporated, whereas
previous studies have predominantly focused on laboratory
indicators and other continuous variables, often lacking detailed
data on comorbidities and medication use. Our results suggest
that these categorical variables may have higher predictive
value, indicating that future predictive models incorporating

more categorical variables could potentially enhance predictive
performance.

Limitations
First, as a retrospective study based on the MIMIC-IV database,
the substantial missing data for several key variables, such as
contrast agent dosage, infection markers (eg, procalcitonin and
C-reactive protein), and cardiac biomarkers, may have led to
the loss of potentially valuable predictive information related
to contrast-induced nephropathy, AMI, and sepsis-associated
AKI. This feature selection bias could have adversely impacted
the model’s ability to accurately identify AKI. Second, although
hyperparameters were optimized using a grid search approach,
the inclusion of 13 feature variables may have contributed to
overfitting in certain models, such as the SVM and DT
classifiers. Third, the external validation dataset was small,
which may impact the external validity of the model. Therefore,
further research involving larger sample sizes and multiple
centers is necessary. Fourth, multiple imputation was used to
estimate variables with less than 20% missing data, which may
have introduced deviations from the true values. Additionally,
this study aimed to provide a broadly applicable AKI risk
assessment model for all critically ill patients with CHD—a
clinical context in which the etiology of AKI is often initially
unclear. However, due to the limited size of the external
validation cohort, we did not perform more refined subgroup
analyses to develop prediction models tailored to patients with
specific comorbidities, which may have obscured potential
heterogeneity across subpopulations with CHD.

Future Work
This study established the first predictive model for AKI
encompassing the entire population of critically ill patients with
CHD. However, its generalizability requires further confirmation
through external validation in multicenter settings. We plan to
integrate multicenter data from both CCUs and general ICUs
to expand the sample size of the external validation cohort,
thereby providing adequate statistical power for subsequent
subgroup analyses. In the future, we intend to conduct
collaborative multicenter studies and perform more granular
stratification of the target population, for instance, critically ill
patients with CHD complicated by MI and those undergoing
PCI. These efforts aim to develop tailored AKI prediction
models specific to different comorbid conditions, further
addressing current gaps in our research. Moreover, we will
develop an interactive explanatory interface to enable a
closed-loop decision support system—from risk alerting to
intervention recommendations. In parallel, we will design a
user-friendly interface, formulate detailed implementation
guidelines, and initiate pilot projects to evaluate the model’s
practical performance and user experience.

Conclusion
In conclusion, ML models can be a trustworthy tool for
forecasting AKI in individuals with severe CHD. Across tested
models, the XGBoost model demonstrated the best performance.
It can help physicians identify patients with CHD who are at
risk of AKI early, allowing for prompt therapies to lower
mortality and enhance prognosis.
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RDW: red blood cell distribution width
RF: random forest
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SVM: support vector machine
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WBC: white blood cell
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