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Abstract

Background: Patients with diabetes are at higher risk of developing liver cancer. Nevertheless, risk factors and their
interaction patterns have rarely been compared between patients with and those without diabetes, nor have their interactions
been incorporated into scoring system development.

Objective: This study aims to compare risk factors, their interaction patterns, and resulting scoring systems for liver cancer
risk according to diabetes and liver disease status using tree-structured algorithms.

Methods: A retrospective cohort study was conducted using electronic health records in Hong Kong. Patients who had used
public health care services between 1997 and 2021 without cancer history were identified and followed up until December 31,
2021. Scoring systems were developed based on aggregate results from individual survival trees in random survival forest, and
interaction patterns among factors were separately examined using conditional inference survival tree.

Results: Of the 190,971 patients included, 1275 developed liver cancer during follow-up (median 6.25 y). Across 4 scoring
systems, alanine aminotransferase (ALT) levels, age, sex, and triglycerides were commonly chosen as predictors irrespective
of diabetes and liver disease status. In the overall systems, liver cirrhosis was additionally selected as a predictor, with chronic
viral hepatitis uniquely chosen in diabetes. In the absence of liver disease, fasting glucose and smoking were uniquely selected
for diabetes and nondiabetes, respectively. Chronic viral hepatitis appeared as the strongest risk factor in diabetes but not in
nondiabetes. Among people with diabetes, in the absence of chronic viral hepatitis, sex became the most important factor,
followed by age, statin use, and ALT levels. Among people without diabetes, age became the most dominant risk factor. For
older patients (>55 y), uncontrolled lipids and male sex became key risk factors in statin and nonstatin users, respectively,
when the ALT level was higher (>43.4 U/L), while smoking became a key risk factor when the ALT level was lower (<434
U/L). For younger patients (<55 y), sex remained the most significant factor.

Conclusions: Patients with and those without diabetes exhibit distinctive interaction patterns among key factors on liver
cancer risk. The resulting scoring systems reflect interaction patterns among predictors in individual survival trees. This study
may help identify targets for public health interventions and provide clinical cancer risk prediction according to diabetes status.
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Introduction

Liver cancer is the third leading cause of cancer death
worldwide [1]. Previous research has shown that diabetes is
associated with an increased risk of cancer at several sites,
including the liver [2,3]. Nevertheless, there is a lack of
systematic comparison on the interaction patterns among key
factors between patients with and those without diabetes. Nor
have scoring systems been developed separately according to
diabetes status.

While most risk prediction models for liver cancer focus
on patients with known risk factors such as liver cirrhosis,
chronic viral hepatitis, hepatic steatosis, and heavy alcohol
use [4,5], several risk scoring systems developed among
patients with [6,7] and those without known risk factors [8]
have incorporated diabetes as a predictor. Nevertheless, only
a few risk scoring systems have been developed specifically
for diabetes population [9,10]. Si et al [9] has developed
a scoring system for liver cancer prediction among people
with diabetes without chronic viral hepatitis or alcoholic
cirrhosis from South Korea with only 3 predictors, namely
age, triglycerides, and gamma-glutamyl transferase (GGT),
where lower triglyceride levels were found to be predictive
of an elevated risk of liver cancer. On the other hand,
Li et al [10] have incorporated a number of predictors,
including age, sex, smoking, alanine aminotransferase (ALT)
levels, glycated hemoglobin, liver cirrhosis, chronic viral
hepatitis, and lipid profile into a scoring system for liver
cancer prediction developed among people with diabetes from
Taiwan. However, these diabetes-specific scoring systems
lack comparison with people without diabetes, nor were
interaction patterns among covariates examined.

Existing scoring systems rarely incorporate interaction
patterns into variable selection. Nevertheless, previous
research suggests that factors associated with liver cancer are
often interrelated. For example, while both chronic hepatitis
B or C [11] and diabetes [3] are independent risk factors for
liver cancer, previous studies have also shown that hepati-
tis B or C infection could be linked to an elevated risk of
type 2 diabetes development [12,13]. Also, while sex-specific
elevated ALT thresholds are available [8], the potential age
dependence of ALT [14-16] has rarely been incorporated.
Furthermore, despite the common coconsumption of alcohol
and smoking, and heavy alcohol use as known cause for liver
damage [11], the role of smoking in liver injury is less clear
[17,18].

While Cox proportional hazards regression is convention-
ally applied to examine a time-to-event outcome, tree-struc-
tured (or recursive partitioning) algorithms are more suitable
to handle interactions among covariates and nonlinearity
between a set of covariates and an outcome. On one hand,
single tree-structured algorithms are intuitively interpreta-
ble and could be visually illustrated to demonstrate the
interaction patterns [19,20] among split variables. Unlike
traditional tree-structured algorithms which often lack a
theoretical foundation, conditional inference survival tree [21]
is embedded with statistical theory of conditional inference.
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On the other hand, tree-structured ensemble algorithms tend
to be more stable and their aggregate results have lower
variance than results from individual trees. Recently, Xie et al
[22] have proposed a framework to develop clinical scoring
system by integrating random survival forest in variable
selection and retaining the use of beta coefficients from
Cox regression in generating a final scoring system, where
interaction patterns among covariates are taken into account
in scoring system development, and clinical interpretability is
ensured in the final scoring system.

The objective of the study is to compare risk factors, their
interaction patterns, and resulting scoring systems for liver
cancer risk according to diabetes and liver disease status
using tree-structured algorithms.

Methods

Study Design and Study Population

This is a retrospective cohort study performed using territory-
wide electronic health records in Hong Kong. The Hospital
Authority (HA) is a statutory body responsible for manag-
ing public health care services and maintains a centralized
clinical data repository, which stores information on patient
demographics (sex and year of birth), disease diagnoses,
prescription records, laboratory measurements, clinical notes,
and radiology reports. Data used in this study were linked
to death records from the Immigration Department. Individ-
ual-level data across datasets were linked via pseudonymous
identifiers. Disease diagnoses were coded according to the
ICD-10 (International Statistical Classification of Diseases,
Tenth Revision), or the International Classification of Primary
Care, 2nd Edition (ICPC-2). Data were accessed via HA Data
Collaboration Lab.

Patients

Patients who had used public health care services between
1997 and 2021 were initially identified. Laboratory records
on (1) ALT levels, (2) fasting glucose, (3) low-density
lipoprotein (LDL) cholesterol, (4) high-density lipoprotein
(HDL) cholesterol, and (5) triglycerides were extracted.
Patients with at least one record on each of the above
laboratory measurements were selected. Prescription records
on antidiabetic drugs were extracted to determine diabetes
status of patients. Those who were prescribed any antidiabetic
drugs during the study period were identified as patients with
diabetes, while those who did not receive any antidiabetic
drugs during the study period were identified as patients
without diabetes. Patients with diabetes who had at least
2 records on each selected laboratory measurement within
1 year of initiation of antidiabetic drugs or diabetes onset
were further selected (n=161,790). Patients without diabe-
tes who had at least 2 records on each selected laboratory
measurement within 1 year of the earliest record of the
above measurement were further selected (n=67,777). For
each laboratory measurement, the mean value of at least 2
records closest to the baseline within 1 year was taken as
baseline measurement. The index dates for patients with and
those without diabetes were initiation of antidiabetic drugs
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and earliest selected laboratory record, respectively. For both
patients with and those without diabetes, those with a cancer
history at baseline were excluded. To exclude possible cases
of type 1 diabetes, patients who were diagnosed with diabetes
younger than 30 years [23], or those diagnosed with diabetes
younger than 60 years and received insulin treatment within
1 year of diabetes onset [23] (but did not receive any other
antidiabetic drugs during the study period) were excluded. In
addition, exclusion of early insulin users may help remove
more severe diabetes cases, since we intend to capture an
incident diabetes cohort. Patients without diabetes younger
than 30 years at baseline were also excluded. For both
patients with and those without diabetes, to minimize reverse
causality, those with less than 6 months of follow-up were
excluded [24]. In addition, since the diagnosis of one cancer
may influence the diagnosis of another cancer [24], those
who were diagnosed with cancer types other than liver cancer
during follow-up were also excluded. In other words, only
patients who developed liver cancer or remained cancer-free
during follow-up were included. Finally, a total of 132,221
patients with diabetes and 58,750 patients without diabetes
were included.

Outcome

The outcome of interest was diagnosis of liver cancer
(ICD-10: C22) during follow-up.

Input Variables

The set of input variables included demographics (sex and
age at baseline), disease history, lifestyle behavior (smok-
ing), laboratory measurements, and medication use. Disease
history included liver cirrhosis [11], chronic viral hepati-
tis [11], fatty liver [11], and common comorbidities (ische-
mic heart disease, cerebrovascular disease, heart failure,
chronic obstructive pulmonary disease, pneumonia, tuber-
culosis, hematuria, and cystitis). Disease diagnoses were
extracted from both inpatient and outpatient diagnosis codes.
The presence of fatty liver was determined from diagno-
sis codes or radiology reports (ultrasonography, computed
tomography, and magnetic resonance imaging). Smoking
habits were extracted from clinical notes, and patients
were categorized as ever versus never smokers. Laboratory
measurements included fasting glucose, LDL cholesterol,
HDL cholesterol, triglycerides, and ALT levels. Medication
included antidiabetic drugs (metformin, sulfonylurea, insulin,
dipeptidyl peptidase-4 inhibitors, acarbose, meglitinide,
glitazone, sodium-glucose cotransporter-2 inhibitors, and
glucagon-like peptide-1 receptor agonists), aspirin, nonster-
oidal anti-inflammatory drugs, anticoagulants, antiplatelets,
statins, antihypertensive drugs (alpha-blockers, angiotensin-
converting enzyme inhibitors, angiotensin receptor block-
ers, beta-blockers, calcium channel blockers, and diuretics).
Medication use was defined as whether patients had taken a
drug at baseline.
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Data Analysis

Conditional Inference Survival Tree

Conditional inference survival tree [21] was applied to
examine the interaction patterns among the set of candidate
predictors. At each split, a global null hypothesis of independ-
ence between a set of covariates and an outcome is tested
at a prespecified o level. If rejected, a set of partial null
hypotheses of independence between each covariate and an
outcome is then tested at the same o level. The covariate with
the minimum Bonferroni-corrected P value smaller than a is
then selected as the split variable. Partitioning is recursively
conducted until the global null hypothesis cannot be rejected.
For continuous variables, the cutoff point is the optimal
value to maximize the between-group differences in survival
probability. Each path from the root node to a terminal node
represents an interaction pattern [20]. Two separate survival
trees, which are independent of the random survival forest
used in scoring, were generated according to diabetes status.
The a and maximum depth of the survival trees were set at
01 and 4 respectively.

Advantages of this algorithm include (1) incorporat-
ing conditional inference framework into the partitioning
procedures, (2) avoiding overfitting, (3) minimizing bias
toward selecting covariates with many possible values, and
(4) not requiring explicit pruning.

Scoring System Guided by Random Survival
Forest

The scoring system development followed a previously
proposed framework [22]. For each scoring system, patients
were first split into 70% train, 10% validation, and 20%
test sets by default. Variable importance was first ranked by
random survival forest using the train set. Random survival
forest is a tree-structured ensemble algorithm to produce
aggregated results from a predetermined number of decorrela-
ted individual survival trees. There are 2 random components
in random survival forest, namely bootstrapping in sampling
and random selection in feature selection. To build each tree,
a bootstrapped train set is selected. At each split, a set of k
number of predictors is selected from a full set of m number
of predictors, where k is equal to the square root of m by
convention. Considering computing time, the number of trees
in the survival forest was set at 10. Each variable was then
added to a Cox regression model sequentially according to
their ranking in variable importance in the random survival
forest. The performance of the model was then evaluated on
the validation set using area under the curve as a metric.
Variables for the final scoring system were then selected
using model improvement and parsimony as criteria. For
continuous variables, the cutoff points were determined by
default quantiles. Fine-tuning of variable selection and cutoff
points was conducted according to domain knowledge and
existing literature. The chosen set of variables was then added
into a final scoring system, where score assignment was
based on beta coefficients in the Cox regression model and
model performance was evaluated on the unseen test set using
Harrell’s concordance index (C-index) and integrated Brier
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score as metrics. In total, 4 scoring systems were separately
developed according to diabetes and liver disease (presence or
absence of liver cirrhosis or chronic viral hepatitis) status.

Advantages of this approach include (1) tree-structured
algorithms have higher interpretability than other machine
learning algorithms, (2) aggregate results from a tree
ensemble may have lower variance than results from
individual trees, (3) interactions among covariates on an
outcome in single trees are taken into account in a tree
ensemble, (4) adopting a more objective way to incorporat-
ing less established risk factors as predictors in variable
selection process, (5) categorizing continuous variables in
deriving scoring systems may help address nonlinearity, and
(6) converting risk prediction models into point-based scores
could be more clinically useful.

Ethical Considerations

Ethics approval for secondary data analysis was provided by
the Chinese University of Hong Kong — Survey and Behavio-
ral Research Ethics Committee (reference number: SBRE-22-
0386). Patient consent was waived since individuals were not
identifiable in this study.
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Results

Overview

A total of 190,971 patients were included. Among patients
with (n=132,221) and those without (n=58,750) diabetes, 954
and 321 developed liver cancer during follow-up (median
6.25 y), respectively. The corresponding incidence rates were
1.04 and 0.61 per 1000 person-years. Among 129,609 patients
with diabetes and 58,635 patients without diabetes in the
absence of liver disease, 792 and 310 developed liver cancer
during follow-up, respectively.

Interaction Patterns—Diabetes

Chronic hepatitis B or C status emerged as primary factor
in differentiating the risk of liver cancer. In the presence of
chronic viral hepatitis, the most dominant risk factor was liver
cirrhosis. On the other hand, in the absence of chronic viral
hepatitis, sex became the most significant factor. In males,
statin use and age were key factors. In females, age and ALT
levels became key factors (Figure 1).

Figure 1. Conditional inference survival tree illustrating the interaction patterns among factors associated with the risk of liver cancer among patients
with diabetes. NSAID: nonsteroidal anti-inflammatory drugs; PYs: person-years; U/L: unit per liter.
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Absence of Chronic Viral Hepatitis, Male Sex,
Statin Use, and Age

Among males in the absence of chronic viral hepatitis, statin
use became the dominant factor in differentiating the risk of
liver cancer. Across statin users and nonstatin users, an age
of 51 years was symmetrically identified as optimal cutoff for
differentiating liver cancer risk (Figure 1).
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Absence of Chronic Viral Hepatitis, Female
Sex, Age, and ALT Levels

Among females in the absence of chronic viral hepatitis,
age became the subsequent dominant factor in differentiating
the risk of liver cancer. Among older (>54 y) and younger
(=54 y) females, elevated ALT was identified as the most
important risk factor at differential optimal cutoffs (41.99 and
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50.45 U/L for older and younger females, respectively; Figure
1).

Interaction Patterns—No Diabetes

Age emerged as the primary factor in differentiating the risk
of liver cancer. Among older patients (>55 y), ALT level

Yau et al

became the dominant factor. For those with higher ALT
levels, statin use, LDL cholesterol, and sex became key
factors. For those with lower ALT levels, smoking became
the dominant risk factor. Among younger patients (<55 y),
male sex became the most significant risk factor (Figure 2).

Figure 2. Conditional inference survival tree illustrating the interaction patterns among factors associated with the risk of liver cancer among patients

without diabetes. PY's: person-years.
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Older Age, Higher ALT Levels, Statin Use, and
LDL Cholesterol or Sex

Among older patients (>55 y) with higher ALT levels (>43.4
U/L), uncontrolled LDL cholesterol (>5.29 mmol/L) and male

sex became dominant risk factors in statin users and nonstatin
users respectively (Figure 2).

Older Age, Lower ALT, and Smoking

Among older patients (>55 y) with lower ALT levels (<434
U/L), smoking became the most important risk factor.

Overall Scoring Systems by Diabetes
Status

In the overall scoring systems, liver cirrhosis, ALT levels,
age, sex, and serum triglycerides were commonly included

Node 11
(n=1429)
No. of events=12
Incidence=1.06
per1000PYs

Node 12
(r=18)
No. of events=1
Incidence=5.70
per1000 FYs

Neode 14
[n=1278)
Na of events=20
Incidence=1.98
per1000 FYs

Node 15
(n=1858)
Mo of events=77
Incidence=5.45
per1000 FYs

as predictors regardless of diabetes status. Chronic hepati-
tis B or C status was uniquely included in diabetes but
not in nondiabetes (Table 1). Comparing to the overall
scoring system for diabetes-only (Dg), generally, there was
an increase in relative contribution of liver cirrhosis and
triglycerides in the overall scoring system for nondiabetes-
only (Np). Nevertheless, triglycerides exhibited an inverse
association with the risk of liver cancer across diabetes (Do)
and nondiabetes (Np) models (Table 2).

Table 1. Variable selection in scoring systems for liver cancer prediction among patients with and those without diabetes.

Overall No liver disease
Variable DM? (Dy) Non-DM (N) DM (D)) Non-DM (N)
Chronic hepatitis B or C v
Liver cirrhosis v v

https://medinform jmir.org/2025/1/e72239
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Overall No liver disease
Variable DM (D) Non-DM (Np) DM (D)) Non-DM (N1)
Alanine aminotransferase v v v v
Age v v v v
Sex v v v v
Triglycerides v v v v
Fasting glucose v
Smoking v

4DM: diabetes mellitus.

Table 2. Scoring systems for liver cancer prediction among patients with and those without diabetes.

DM? (D) Non-DM (Ng)

Value Point Value Point
Chronic hepatitis B or C

None 0 b —

Chronic hepatitis B-only 13 — —

Chronic hepatitis C-only 19 — —

Coinfection of chronic hepatitis B and C 9 — —
Alanine aminotransferase
(U/L)

<115 0 <11

[11.5,17) 3 [11,15.5)

[17,44.1) 9 [15.5,38) 4

[44.1,83.1) 19 [38,76) 16

>83.1 21 =76 20
Age (years)

<42 0 <40 0

[42,51) 12 [40, 50) 14

[51,72) 24 [50,71) 22

=72 27 =71 30
Liver cirrhosis

Absent 0 Absent 0

Present 16 Present 24
Sex

Female 0 Female 0

Male Male 8
Triglycerides (mmol/L)

<0.73 11 <0.875 18

[0.73,1.02) 9 [0.875,1.88) 16

[1.02,2.26) 5 [1.88,2.82) 14

[2.26,3.58) 0 =2.82 0

=358 1 — —

4DM: diabetes mellitus.
bNot applicable.

Scoring Systems by Diabetes Status in
the Absence of Liver Disease

In the absence of liver disease, ALT levels, age, sex, and
triglycerides were commonly included as predictors irrespec-

tive of diabetes status. Baseline fasting glucose and smoking
status were unique predictors in the scoring systems for

https://medinform jmir.org/2025/1/e72239

diabetes (D) and nondiabetes (N;), respectively (Table 1).
The relative contributions of common predictors appeared
comparable across 2 models (D; and Nj). In addition,
triglycerides consistently demonstrated a negative relation-
ship with the risk of liver cancer across diabetes (D) and
nondiabetes (N;) models (Table 3).
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Table 3. Scoring systems for liver cancer prediction among patients with and those without diabetes in the absence of liver disease.

DM? (Dy) Non-DM (N;)
Variable Value Point Value Point
Alanine aminotransferase (U/L)
<115 <11 0
[11.5,17) [11,15.5) 3
[17,44.4) [15.5,38) 6
[44.4,82.5) 24 [38,76.3) 23
=82.5 29 =763 29
Age (years)
<42 0 <39 0
[42,52) 12 [39, 50) 19
[52,72) 28 [50,71) 29
>72 34 =71 39
Sex
Female 0 Female 0
Male 10 Male
Triglycerides (mmol/L)
0.735 18 <0.875 19
[0.735,1.03) 13 [0.875,1.87) 13
[1.03,2.28) [1.87,2.83) 10
=228 0 =2.83 0
Fasting glucose (mmol/L)
<64 0 b —
[6.4,9.55) 1 _ _
[9.55,12.8) 3 — —
=128 8 - —
Smoking
— — Never smoker 0
— — Ever smoker 6

4DM: diabetes mellitus.
bNot applicable.

Model Performance

The C-indexes of Dg, Ng, D;, and N; on unseen test sets
were 0.80 (95% CI 0.76-0.83), 0.80 (95% CI 0.74-0.86), 0.75
(95% CI 0.71-0.79), and 0.82 (95% CI 0.77-0.88), respec-
tively. The corresponding integrated Brier scores were 0.011,
0.006,0.011, and 0.006, respectively.

Discussion

Principal Findings

This study compared risk factors, their interactions, and
resulting scoring systems for liver cancer risk between
patients with and those without diabetes. The resulting
scoring systems took into account interaction patterns among
the set of candidate predictors. Across four scoring systems
stratified by diabetes and liver disease status, ALT levels, age,
sex, and triglycerides were commonly chosen as predictors.
Chronic viral hepatitis was uniquely selected in the overall
system for diabetes. On the other hand, in the absence of liver

https://medinform jmir.org/2025/1/e72239

disease, fasting glucose and smoking were uniquely chosen
for diabetes and nondiabetes, respectively. Across all systems,
triglycerides uniformly exhibited an inverse association with
the risk of liver cancer. Among people with diabetes, chronic
viral hepatitis remained the dominant risk factor for liver
cancer. In the absence of chronic viral hepatitis, sex was
identified as a subsequent key factor, followed by age, statin
use, and ALT levels. Among people without diabetes, age
became the primary factor. For older patients, statin use, LDL
cholesterol, and sex became key factors when the ALT level
was higher. On the other hand, smoking became a key risk
factor when the ALT level was lower.

Comparison to Previous Work

Overall scoring systems developed in this study included liver
cirrhosis, ALT levels, age, and sex as common predictors
across the diabetes-only and nondiabetes-only models. These
variables have been commonly used as predictors of liver
cancer [4,5]. Nevertheless, chronic hepatitis B or C status
was uniquely chosen as a predictor for diabetes but not for
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nondiabetes. In the individual trees, chronic viral hepatitis
only emerged as a primary factor for differentiating the risk
of liver cancer in diabetes, but not in nondiabetes. Previous
research suggests that hepatitis B or C infection [12,13]
or hepatitis B virus (HBV)-induced cirrhosis [25] could
be potentially associated with an increased risk of type 2
diabetes. Possible mechanisms include disturbances of insulin
signaling pathways [12,13], alterations in glucose [12,13] and
lipid metabolism [26], as well as induction of inflammation in
promoting type 2 diabetes development [27]. These provide
possible explanations for the more important role of chronic
viral hepatitis in liver cancer development in diabetes found
in this study.

In the absence of chronic viral hepatitis in diabetes,
elevated ALT appeared as a key risk factor for liver cancer
in females, with a higher cutoff for the younger group but
a lower cutoff for the older group. While ALT is a marker
for liver function [28] and a common predictor of liver
cancer risk [4,5], a number of previous studies have found
that ALT tends to decline with aging [14,15,29], possibly
with stronger effects in males than females [16,30]. However,
in this study, statin use was observed to be a more impor-
tant factor in influencing the risk of liver cancer in their
male counterparts. There are several possible explanations
for the potential association between aging and reduced ALT
thresholds for elevated liver cancer risk. In animal studies, the
liver demonstrates slower and weakened regenerative ability,
as well as reduced inflammatory response during aging [31].
Furthermore, in human studies, the liver appears to shrink its
volume and have less blood flow during aging [32].

Moreover, in the absence of chronic viral hepatitis in
diabetes, statin use emerged as a subsequent key factor in
differentiating the risk of liver cancer in males, followed
by age (with 51 y being symmetrically identified as opti-
mal cutoff across statin users and non-statin users). Past
observational studies have shown that statin use is potentially
associated with a lower risk of liver disease [33] and liver
cancer [33-35], particularly in Asian populations [34,35].
However, no effects of statin use on cancer risk have been
demonstrated in randomized controlled trials [36].

Furthermore, in the presence of elevated ALT among older
patients without diabetes, statin use emerged as a subsequent
key factor in differentiating the risk of liver cancer, where
uncontrolled LDL cholesterol and male sex were identi-
fied as dominant risk factors in statin users and nonstatin
users, respectively. Previous research suggests altered lipid
metabolism in carcinogenesis of the liver [26]. It is possible
that under a state of potential liver dysfunction, as indicated
by elevated ALT, statin use may confer protective effects
against liver cancer development. Possible mechanisms of
statins use against liver cancer include inhibition of tumor
growth via downregulating the mevalonate pathway [37]. It
has also been suggested that statins may exercise antagonistic
effects against carcinogenic effects of HBV [34], potentially
via suppressing cholesterol synthesis and HBV replication
[38].
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On the other hand, circulating triglycerides were selec-
ted as predictors and exhibited an inverse association with
the risk of liver cancer across the 4 scoring systems regard-
less of diabetes and liver disease status. Epidemiological
studies on the associations between circulating lipids and
liver cancer risk remain conflicting [26,39]. Several studies
found that lower levels of triglycerides [9] or total cholesterol
[8,40,41] are predictive of elevated liver cancer risk in the
presence [40-42] or absence [8,9] of chronic viral hepatitis.
While lipids were not directly identified as a key factor in
the diabetes-only individual tree, statin use emerged as a
dominant factor among subgroups of patients across diabetes
and nondiabetes subpopulations. Possible mechanisms linking
low lipids to elevated liver cancer risk include higher lipids
as indicator of preserved liver function [43], suppression of
liver tumor growth via activating effector functions in natural
killer cells [44], as well as uptake of circulating lipids by
underlying liver tumor cells to meet their demand for lipids
[39].

In addition, fasting glucose and smoking were chosen as
unique predictors of liver cancer risk among patients with
and those without diabetes in the absence of liver disease,
respectively. The variation in baseline fasting glucose at
the time of initiation of antidiabetic drugs among patients
with diabetes may reflect their differential levels of diabetes
severity. Previous studies have shown that fasting glucose
could be individually associated with the risk of liver cancer
[45]. The exact mechanism remains unknown. Possible
mechanisms include upregulation of insulin-like growth
factor-1 (which has a higher mitogenic and antiapoptotic
potency than insulin) via hyperglycemia and hyperinsuline-
mia, as well as higher levels of proinflammatory factors under
chronic inflammation [2,45]. On the other hand, smoking
has been shown to be a carcinogenic agent to the liver in
humans [46]. Several previously developed scoring systems
for liver cancer risk [8,10] have also incorporated smok-
ing as predictors. Possible mechanisms include conversion
of chemicals in tobacco smoke into reactive carcinogenic
metabolites in the liver, concurrent consumption of alcohol
along with tobacco smoking, chronic inflammation, immuno-
suppression, and accelerated telomere dysfunction [47,48].

Furthermore, in the absence of diabetes, smoking emerged
as a dominant risk factor for liver cancer among older patients
with lower ALT. Previous research [17,18,49] suggests that
smoking exposure does not directly induce liver damage, but
may exacerbate liver injury caused by heavy alcohol use.
Smoking was only shown to be positively associated with
GGT in heavy alcohol users [17,18]. On the other hand,
smoking was inversely linked to ALT and aspartate amino-
transferase [17,49]. One possible explanation for elevated
specific liver enzyme is that concurrent consumption of
smoking and alcohol intensifies oxidative stress [50], since
GGT is an oxidative stress marker [51]. In addition, previ-
ous research [52] has shown that smoking is only associated
with increased ALT levels in patients who are seropositive
for hepatitis C virus, but not in those who are seropositive
for HBV. This may help partially explain the dominance of
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smoking as a risk factor among older nondiabetes patients
with lower ALT from a HBV-endemic region.

Implications

There are several public health and clinical implications of
this study. First, chronic viral hepatitis appears to be a more
dominant risk factor for liver cancer among patients with
diabetes than those without diabetes. Second, while eleva-
ted triglycerides are one of the components of metabolic
syndrome [53] and associated with adverse cardiovascular
outcomes, they appear to be inversely associated with the risk
of liver cancer in this study cohort. Third, in the absence
of liver disease, several modifiable factors such as fasting
glucose and smoking become more dominant in liver cancer
risk prediction. Fourth, lipid control appears to be important
to liver cancer prevention across diabetes and nondiabetes
subpopulations. Fifth, the resulting linear scoring systems
developed from ensemble tree-structured models reflect the
interaction patterns among the set of candidate predictors
in individual tree-structured models. Sixth, the risk scoring
systems may help predict the risk of liver cancer in the
presence or absence of liver disease across people with and
those without diabetes. Further studies are needed to establish
clinical thresholds to stratify patients into different levels
of risk to potentially provide prioritization for public health
strategies and guide clinical decision-making.

Limitations and Future Directions

Several limitations are potentially present in this study.
First, diabetes status was defined by use of antidiabetic
medication. Undiagnosed diabetes or nonuse of antidiabetic
medications for diagnosed diabetes is potentially present.
Fasting glucose or hemoglobin A records were not checked
for potential undiagnosed diabetes cases since it was not
feasible. Second, while we intend to capture an incident
diabetes cohort, some patients may have received a diagnosis
of diabetes before the available prescription records period.
Nevertheless, delayed diagnosis and treatment initiation is
likely to be partially reflected in the presence of liver disease
and levels of liver enzyme and fasting glucose in the risk
scoring systems. Third, the possibility of reverse causality
cannot be fully eliminated. Some risk factors such as fasting
glucose and triglycerides could be influenced by subclini-
cal liver dysfunction. Altered lipid and glucose metabolism
may occur under liver dysfunction [26,54]. Fourth, some
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potential confounders such as adiposity indicators or alcohol
use were not available in this study. Fifth, current and former
smoking status was not differentiated since smokers may
report inconsistent status between clinical visits. Differentiat-
ing current and former smokers may further subcategorize
ever smokers into 2 different risk levels in the risk scor-
ing system for patients without diabetes in the absence of
liver disease (N7p). Sixth, information on serological tests
for hepatitis virus was not available in this study. Seventh,
further studies are warranted to evaluate generalizability to
hepatitis C virus-endemic regions. Eighth, different popula-
tions may vary in prevalence [55], screening, diagnosis, and
treatment of diabetes. Future research is warranted to examine
generalizability to other populations with different diabetes
management practices. Ninth, medication use and laboratory
measurements were taken at baseline. However, these may
change during follow-up. Tenth, the number of liver cancer
cases in certain terminal nodes in the individual trees was
low and may restrict generalizability of the identified optimal
cutoffs beyond the study population. Eleventh, the optimal
cutoffs in the scoring systems were defined by quantiles,
and the values may vary across populations. Nevertheless,
the optimal cutoffs could be fine-tuned [22] according
to domain knowledge. Lastly, while variable selection in
scoring development involves fine-tuning processes based on
domain knowledge, split variable selection in separately built
individual trees is automatic. Future research may consider
undiagnosed diabetes, incorporate a broader list of candi-
date variables such as adiposity indicators and alcohol use,
subcategorize current and former smoking status, evaluate
serological status for hepatitis virus if available, establish
clinical thresholds for risk scoring systems, and examine
generalizability to other populations.

Conclusions

This study compared risk factors, their interaction patterns,
and resulting scoring systems for liver cancer risk accord-
ing to diabetes and liver disease status using tree-struc-
tured algorithms. Patients with and those without diabetes
demonstrate distinctive interaction patterns among key factors
on liver cancer risk. The resulting scoring systems reflect
interaction patterns among the set of candidate predictors.
Findings of the study may help identify targets for public
health interventions and provide clinical cancer risk predic-
tion for patients with and those without diabetes.
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