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Abstract
Background: Insulin resistance (IR), a precursor to type 2 diabetes and a major risk factor for various chronic diseases, is
becoming increasingly prevalent in China due to population aging and unhealthy lifestyles. Current methods like the gold-
standard hyperinsulinemic-euglycemic clamp has limitations in practical application. The development of more convenient and
efficient methods to predict and manage IR in nondiabetic populations will have prevention and control value.
Objective: This study aimed to develop and validate a machine learning prediction model for IR in a nondiabetic population,
using low-cost diagnostic indicators and questionnaire surveys.
Methods: A cross-sectional study was conducted for model development, and a retrospective cohort study was used for
validation. Data from 17,287 adults with normal fasting blood glucose who underwent physical exams and completed surveys
at the Health Management Center of Xiangya Third Hospital, Central South University, from January 2018 to August 2022,
were analyzed. IR was assessed using the Homeostasis Model Assessment (HOMA-IR) method. The dataset was split into
80% (13,128/16,411) training and 20% (32,83/16,411) testing. A total of 5 machine learning algorithms, namely random forest,
Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting, Gradient Boosting Machine, and CatBoost were
used. Model optimization included resampling, feature selection, and hyperparameter tuning. Performance was evaluated using
F1-score, accuracy, sensitivity, specificity, area under the curve (AUC), and Kappa value. Shapley Additive Explanations
analysis was used to assess feature importance. For clinical implication investigation, a different retrospective cohort of 20,369
nondiabetic participants (from the Xiangya Third Hospital database between January 2017 and January 2019) was used for
time-to-event analysis with Kaplan-Meier survival curves.
Results: Data from 16,411 nondiabetic individuals were analyzed. We randomly selected 13,128 participants for the training
group, and 3283 participants for the validation group. The final model included 34 lifestyle-related questionnaire features
and 17 biochemical markers. In the validation group, their AUC were all greater than 0.90. In the test group, all AUC
were also greater than 0.80. The LightGBM model showed the best IR prediction performance with an accuracy of 0.7542,
sensitivity of 0.6639, specificity of 0.7642, F1-score of 0.6748, Kappa value of 0.3741, and AUC of 0.8456. Top 10 features
included BMI, fasting blood glucose, high-density lipoprotein cholesterol, triglycerides, creatinine, alanine aminotransferase,
sex, total bilirubin, age, and albumin/globulin ratio. In the validation queue, all participants were separated into the high-risk
IR group and the low-risk IR group according to the LightGBM algorithm. Out of 5101 high-risk IR participants, 235 (4.6%)
developed diabetes, while 137 (0.9%) of 15,268 low-risk IR participants did. This resulted in a hazard ratio of 5.1, indicating a
significantly higher risk for the high-risk IR group.
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Conclusion: By leveraging low-cost laboratory indicators and questionnaire data, the LightGBM model effectively predicts
IR status in nondiabetic individuals, aiding in large-scale IR screening and diabetes prevention, and it may potentially become
an efficient and practical tool for insulin sensitivity assessment in these settings.
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Introduction
Insulin resistance (IR) refers to the reduced sensitivity or
responsiveness of target organs such as the liver, skeletal
muscles, or adipose tissue to insulin. In order to maintain
normal blood glucose levels, the body compensates by
secreting increased amounts of insulin [1]. As a condition
that can exist before the onset of type 2 diabetes, IR is not
only one of the key mechanisms underlying the development
of diabetes but also a major risk factor for various disea-
ses [2]. According to the International Diabetes Federation,
it is estimated that by 2045, there will be 783.2 million
people affected globally, with the vast majority having type
2 diabetes [3]. Furthermore, IR is even more common. Data
from the National Health and Nutrition Examination Survey
in the United States show that approximately 40% of adults
aged 18‐44 years have IR [4]. A study in China revealed that
the standardized prevalence of IR in adults aged 25 years or
older is 29.22% [5]. By scientifically assessing and managing
IR, it is theoretically possible to effectively control the onset
of diabetes. The first step is to identify IR. The high insulin
clamp with normal blood glucose levels is considered the
gold standard for assessing insulin sensitivity [6]. However,
in practice, this method is time-consuming, expensive, and
difficult to apply widely. The Homeostasis Model Assessment
of Insulin Resistance (HOMA-IR; fasting glucose [mmol/L]
×fasting insulin [μU/ml]/22.5) is regarded as an acceptable
method for evaluating IR [7]. However, fasting insulin, one
of its components, is not a routine test, making it difficult
to obtain in community and grassroots settings. Based on
laboratory indicators and lifestyle characteristics that are
correlated with the occurrence of IR and are easily accessible,
it is crucial to explore more convenient ways to predict the
previous probability of IR in individuals. This approach could
guide more precise IR screening and has the potential for
prevention and control within the large population of China.

Machine learning (ML), with its data-driven methods,
has already shown good predictive value in health issues
such as arteriosclerosis [8], fatty liver [9], diabetes [10], and
hypertension [11] . Obesity, dyslipidemia, lack of exercise,
and sedentary lifestyles are considered risk factors for
metabolic homeostasis [12]. By applying daily habits, basic
information, and simple blood tests as features, we can
build machine learning models in health check-up popu-
lations that are representative of the general population.
The model of the ensemble learning algorithms based on
decision trees, such as random forest (RF), Light Gradient
Boosting Machine (LightGBM), Extreme Gradient Boost-
ing (XGBoost), Gradient Boosting Machine (GBDT), and
CatBoost, using multiple decision trees for predictions. They
are capable of capturing complex nonlinear relationships,

handling high-dimensional data, performing automatic feature
selection, and mitigating the risk of overfitting through
various mechanisms. In addition, these models offer strong
scalability and are suitable for large-scale datasets, with
most models having built-in overfitting prevention capabili-
ties. These models can effectively predict IR and identify
key predictive factors that are crucial for individual interven-
tion. In addition, a retrospective cohort study can be used to
determine the accuracy and practical value of these model
results in distinguishing the onset of diabetes.

Methods
Study Population and Data Sources
The data used in this study were sourced from the electronic
medical records of the Health Management Center at Xiangya
Third Hospital, Central South University. The dataset
includes participants who underwent physical examinations
and questionnaire surveys at the Health Management Center
between January 2018 and August 2022. A total of 17,287
adults with normal fasting blood glucose (FBG) were
included, while individuals with FBG ≥6.1mmol/L or those
with a history of abnormal glucose tolerance or diabetes were
excluded.

The subsequent retrospective cohort consisted of individu-
als who completed their first health check-up at the Health
Management Center of Xiangya Third Hospital between
January 2017 and January 2019. These participants were
followed for 5 years, with those diagnosed with diabetes
at external hospitals or those who had completed ≥2 times
FBG tests at the hospital during the follow-up period being
included. Participants were required to be aged 18 years or
older and have FBG <6.1mmol/L at the time of their first
check-up. They also had to complete baseline assessments
and surveys. Exclusion criteria included a history of abnormal
glucose tolerance, diabetes, or gestational diabetes, as well
as a history of tumors, pregnancy, or autoimmune diseases;
and those who had used glucocorticoids or other relevant
medications within the past month.

Using an IR prediction model, individuals in the cohort
were classified as low-risk or high-risk based on their
baseline data. Changes in FBG were then monitored. A
FBG ≥7 mmol/L within 5 years or a diagnosis of diabetes
at an external hospital was considered a positive result. A
negative result was defined as maintaining normal FBG levels
without a diabetes diagnosis at an external hospital over the
5-year follow-up period. Furthermore, by matching the ID
card numbers, we excluded the participants who repeatedly
appeared in the training set and the test set. Ensure this cohort
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was the different from the dataset used for model develop-
ment.
Characteristics and Definitions
The dataset includes a total of 102 features, which encom-
pass physical examination measurements such as age, height,
weight, BMI, waist circumference (WC), systolic blood
pressure (SBP), and diastolic blood pressure (DBP). Blood
test indicators include FBG, liver function markers (alanine
aminotransferase [ALT], aspartate aminotransferase [AST],
total bilirubin [TBIL], direct bilirubin [DBIL], serum albumin
[ALB], serum globulin [GLO], albumin/globulin ratio [A/G],
total proteintotal [TP], bile acids [TBA]), kidney function
markers (serum creatinine [Sr], blood urea nitrogen [BUN],
uric acid [UA], and lipid profile markers (total cholesterol
[TC], triglycerides (TG], high-density lipoprotein cholesterol
[HDL-C], low-density lipoprotein cholesterol [LDL-C]. In
addition, information from questionnaires was collected,
including past disease diagnoses, lifestyle factors (dietary
preferences, smoking status, alcohol consumption, exercise
habits, and work status), psychological status, sleep patterns,
and health literacy related to basic medical knowledge.
Insulin sensitivity was assessed using HOMA-IR=fasting
glucose (mmol/L)×fasting insulin (μU/ml) / 22.5. A cut-off
value of 2.69 was used, with a value ≥2.69 considered
indicative of IR status [5].
Data Processing and Statistical Analysis
We excluded features with more than 30% missing data.
For features with less than 30% missing data, continuous
variables were imputed using the mean, while categorical
variables were imputed using the mode. Ultimately, 90
features and 16,411 samples were retained. The entire dataset
was randomly split into a training set (13,128/16411, 80%
samples) and a test set (3283/16411, 20% samples), with
2782 samples categorized as IR.

For statistical analysis, continuous data that conform to a
normal distribution were reported as means (SDs), otherwise,
were reported as quartiles. Chi-square tests were conducted
on categorical variables to assess the significant association
between categorical features and the dependent variable.
P<.05 was considered statistically significant.
Feature Engineering

Resampling
In this study, 3 resampling techniques, namely random
undersampling, synthetic minority oversampling technique
(SMOTE) oversampling, and SMOTE-Tomek combined
sampling were experimentally compared during the dataset
preprocessing phase. It was found that random undersam-
pling performed best in improving the prediction accuracy
for the minority class. Therefore, random undersampling was
applied to the training set, where a portion of the majority
class samples were randomly removed to reduce the majority
class sample size. This approach helped mitigate model bias
toward the majority class and improved overall classification
performance.

Feature Processing and Algorithm Selection
To enhance model accuracy and efficiency, reduce com-
putational costs, and avoid overfitting, feature selection
was conducted. Before feature selection, Pearson correla-
tion analysis was conducted for continuous features, while
Kendall correlation analysis was used for discrete features.
By examining the correlation matrix of the features, pairs of
highly correlated features (with correlation coefficients >0.6)
were identified, and perform dimensionality reduction on
these highly relevant features. A total of 5 machine learning
algorithms, including RF, LightGBM, XGBoost, GBDT, and
CatBoost were used to construct predictive models on the
training dataset. The model demonstrating the best perform-
ance across various evaluation metrics was selected from the
baseline models (CatBoost was chosen based on experimen-
tal results). The CatBoost model was then trained, and the
importance scores for each feature were determined. Features
were added to the model in descending order of importance
until the AUC score stabilized at its highest value with a
specific number of features. At this point, no further features
were added, and the model was constructed using the selected
features.
Parameter Optimization and Model
Evaluation
In addition to addressing class imbalance through resampling
techniques, the model parameters were adjusted to assign
different weights to each class, thereby balancing the class
distribution. For the RF, GBDT, and CatBoost models, the
parameter class_weight = “balanced” was set, while for the
LightGBM and XGBoost models, scale_pos_weight = “ratio
of majority and minority class” was used. Bayesian optimi-
zation was used for parameter tuning. Bayesian optimiza-
tion is a global optimization algorithm based on Bayesian
inference, which iteratively updates the posterior distribution
of the parameters to identify the optimal configuration and
optimize the objective function. To evaluate the optimiza-
tion effects and improve the model’s generalization ability,
10-fold cross-validation was performed. The experiments
were repeated 10 times, and metrics such as area under
the receiver operating characteristic curve were averaged to
assess model performance. In addition, model performance
was evaluated using the F1-score, accuracy, sensitivity, and
specificity, while the receiver operating characteristic (ROC)
curve and the area under the curve (AUC) were used to assess
the model’s discriminatory ability. The Kappa value was also
computed to evaluate the predictive capability of the model.

This research used several Python libraries and frame-
works for data processing, feature engineering, model
building, and hyperparameter tuning. The main tools used
in the study are Python (version 3.6.4), NumPy (version
1.18.5), Pandas (version 1.1.5), SciPy (version 1.5.2),
scikit-learn (version 0.24.2), LightGBM (version 4.3.0)
XGBoost (version 1.5.2), CatBoost (version 1.1.1), and
bayes_opt (version 1.4.0).
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Feature Importance Ranking
Shapley Additive Explanations (SHAP) values are a method
used to interpret machine learning model predictions. SHAP
assigns a value to each feature, quantifying its contribution
to the model’s output. Positive SHAP values indicate that
the feature has a beneficial impact on the prediction, while
negative SHAP values suggest a detrimental effect. The
absolute magnitude of a SHAP value reflects the extent of the
feature’s influence on the model’s decision. In this study, we
used SHAP (version 0.45.0) for explainable machine learning
to enhance interpretability.
Retrospective Cohort Validation of Model
Application
Retrospective cohort data from a nondiabetic population were
used as input to the aforementioned algorithms. The model
outputs predicted the IR values for each participant, where a
value of 1 was classified as high-risk IR and 0 as low-risk IR.
Kaplan-Meier survival curves were used to conduct time-
to-event analysis, comparing the 5-year diabetes incidence
between the high-risk and low-risk IR groups. This approach
further validated the model’s ability to accurately distinguish
the onset of diabetes based on predicted IR levels.
Ethical Considerations
This study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee of

Xiangya Third Hospital, Central South University (approval
no. 22206). All participants provided informed consent. The
data were deidentified to ensure privacy protection.

Results
Characteristics of the Study Population
The study flow chart is presented in Figure 1. A total
of 16,411 nondiabetic individuals who underwent health
screenings were included in this study, with an average age
of 42.74 (SD 11.36) years. The sample comprised 8205
males and 8206 females. Overall, 17% of participants were
diagnosed with IR, with a higher prevalence observed in
males compared with females. In the IR group, levels of
weight, WC, BMI, SBP, UA, ALT, AST, TG, and TC
were significantly elevated compared with the non-IR group.
Conversely, the average HDL-C level was significantly lower
in the IR group (P<.05). In addition, lifestyle factors such as
diet, physical activity, and health literacy exhibited significant
differences between the 2 groups (Tables 1 and 2).
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Figure 1. Flow diagram of the study. The flow diagram of the study shows the entire research process, from data collection, preprocessing, model
training and testing to final model evaluation and validation. AUC: area under the curve; GBDT: Gradient Boosting Machine; LightGBM: Light
Gradient Boosting Machine; RF: random forest; SHAP: Shapley Additive Explanations; XGBoost: Extreme Gradient Boosting.

Table 1. Continuous characteristics of participants, including age, height, weight, waist circumference, BMI, blood pressure, and blood biochemical
indicators, and a comparison of the means and SDs between the insulin resistance and non–insulin resistance groups, along with the corresponding P
values to evaluate the association of each characteristic with insulin resistance.

All (n=16,411), mean (SD)
IRa (HOMAb-IR <2.69; n=13,629),
mean (SD)

Non-IR (HOMA-IR ≥2.5; n=2782),
mean (SD) P value

Age (years) 42.74 (11.36) 42.84 (11.37) 42.23 (11.30) .01
Height (cm) 163.50 (8.00) 163.14 (7.93) 165.29 (8.21) <.001
Weight (kg) 63.80 (11.70) 62.21 (11.10) 71.48 (11.59) <.001
WC (cm)c 81.30 (10.40) 79.82 (9.81) 88.53 (9.67) <.001
BMI (kg/m2)d 23.85 (3.37) 23.30 (3.07) 26.54 (3.48) <.001
SBP (mmHg)e 120.39 (14.83) 119.49 (14.7) 124.75 (14.62) <.001
DBP (mmHg)f 73.80 (10.80) 73.08 (10.71) 77.02 (11.04) <.001
BUN (mmol/L)g 4.72 (1.22) 4.71 (1.23) 4.79 (1.19) <.001
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All (n=16,411), mean (SD)
IRa (HOMAb-IR <2.69; n=13,629),
mean (SD)

Non-IR (HOMA-IR ≥2.5; n=2782),
mean (SD) P value

Sr (umol/L)h 70.31 (18.15) 69.99 (18.52) 71.85 (16.12) <.001
UA (umol/L)i 339.53 (92.01) 331.13 (89.53) 380.70 (92.91) <.001
TBA (umol/L)j 4.22 (4.80) 4.18 (4.82) 4.44 (4.69) .01
ALT (u/L)k 26.46 (25.62) 23.30 (24.73) 36.09 (27.21) <.001
AST (u/L)l 24.89 (18.88) 24.50 (20.07) 26.83 (11.17) <.001
ALB (g/L)m 46.62 (2.91) 46.63 (2.91) 46.60 (2.93) .56
GLO (g/L)n 27.09 (3.68) 26.93 (3.65) 27.88 (3.71) <.001
A/Go 1.73 (0.24) 1.74 (0.24) 1.70 (0.25) <.001
TP (g/L)p 73.72 (4.22) 73.56 (4.19) 74.47 (4.30) <.001
DBIL (umol/L)q 3.78 (1.34) 3.83 (1.35) 3.54 (1.26) <.001
TBIL (umol/L)r 13.02 (5.06) 13.21 (5.11) 12.05 (4.70) <.001
FBG (mmol/L)s 5.24 (0.42) 5.20 (0.42) 5.45 (0.40) <.001
TG (mmol/L)t 1.70 (1.53) 1.55 (1.36) 2.44 (2.01) <.001
TC (mmol/L)u 5.01 (0.94) 4.98 (0.93) 5.16 (1.00) <.001
HDL-C (mmol/L)v 1.33 (0.30) 1.36 (0.29) 1.17 (0.24) <.001
LDL-C (mmol/L)w 2.89 (0.79) 2.88 (0.78) 2.93 (0.84) <.001

a IR: Insulin resistance.
bHOMA: Homeostasis Model Assessment.
c WC: waist circumference.
d BMI: body mass index.
e SBP: systolic blood pressure.
f DBP: diastolic blood pressure.
g BUN: blood urea nitrogen.
h Sr: serum creatinine.
i UA: uric acid.
j TBA: total bile acids.
k ALT: alanine aminotransferase.
l AST: aspartate aminotransferase.
m ALB: serum albumin.
n GLO: serum globulin.
o A/G: albumin/globulin ratio.
p TP: total protein.
q DBIL: direct bilirubin.
r TBIL: total bilirubin.
s FBG: fasting blood glucose.
t TG: triglycerides.
u TC: total cholesterol.
v HDL-C: high-density lipoprotein cholesterol.
w LDL-C: low-density lipoprotein cholesterol.

Table 2. Questionnaire characteristics of participants, including dietary habits, exercise, lifestyle, psychological status, and health literacy, and an
assessment of the association of each characteristic with insulin resistance using the chi-square test, listing the chi-square values and P values.
Type and feature Chi-square (df) value P value
Diet
  Dietary preference 137.86 (13) <.001
  Daily meat intake 123.43 (4) <.001
  Fruit consumption 29.81 (4) <.001
  Coffee consumption 21.22 (4) <.001
  Nighttime snacking 54.97 (2) <.001
  Social dining 90.56 (3) <.001
  Legume and soy product consumption 13.40 (4) .01
  Fish or seafood consumption 7.24 (4) .12
  Sugary drink consumption 106.32 (4) <.001
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Type and feature Chi-square (df) value P value
  Dietary taste 125.78 (2) <.001
  Fat meat consumption 88.97 (4) <.001
  Animal organ consumption 25.31 (3) <.001
  Staple food structure 33.95 (4) <.001
  Binge eating 73.63 (1) <.001
  Daily vegetable intake 23.77 (4) <.001
  Milk consumption 13.20 (4) .01
  Egg consumption 1.83 (3) .61
Exercise
  Physical exercise 56.60 (2) <.001
  Weekly exercise frequency 59.24 (3) <.001
  Exercise duration per session 54.73 (3) <.001
  Exercise type 122.97 (31) <.001
  Years of consistent exercise 60.50 (4) <.001
Lifestyle
  Alcohol consumption 29.25 (3) <.001
  Alcohol frequency per week 25.38 (3) <.001
  Years of alcohol use 36.00 (4) <.001
  Alcohol quantity per session 57.59 (4) <.001
  Type of alcohol 13.95 (6) .03
  Time since quitting drinking 6.65 (4) .16
  Work physical demands 95.25 (4) <.001
  Workdays per week 3.85 (3) .28
  Working hours per week 3.36 (4) .50
  Smoking habits 42.55 (3) <.001
  Cigarettes per day 38.48 (4) <.001
  Years of smoking 56.12 (4) <.001
  Exposure to Harmful Substances 47.16 (18) <.001
  Sedentary time outside work 36.27 (3) <.001
  Regular meals 9.12 (3) .03
  Sleep quality 1.01 (2) .60
  Reasons for sleep disturbance 22.03 (12) .04
  Sleep duration 3.52 (3) .32
  Main symptoms of sleep disturbance 15.448 (12) .22
Psychology
  Depression 0.10 (2) .95
  Difficulty concentrating 8.45 (3) .04
  Increased anxiety 1.57 (2) .46
  Burnout 1.89 (2) .39
  Depressed 3.19 (3) .36
  Anxious 0.18 (2) .91
  Anxiety and restlessness 0.56 (2) .76
  Irritable 0.76 (2) .68
  Impatience 2.07 (2) .36
Health literacy
  Normal WCa 25.37 (3) <.001
  Active medical knowledge acquisition 22.63 (2) <.001
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Type and feature Chi-square (df) value P value
  Self-Monitoring of blood pressure and heart rate 20.81 (2) <.001
  Normal BPb 7.82 (1) .01
  Normal BMI 6.71 (1) .01
  Normal FBGc 1.71 (1) .19
  Normal Td 1.02 (1) .31
  Normal HRe 1.07 (1) .30
  Normal TGf 0.72 (1) .39
  Normal TCg 2.66 (1) .10
  Normal Salt intake 78.68 <.001
  History of hypertension 127.39 (2) <.001
  Family history medicine 791.80 (509) <.001
  Observe urination and defecation 13.10 (2) <.001
  Bask 13.10 (3) <.001
  Seat belt usage 7.09 (2) .03
  Carrying emergency medication 3.35 (2) .19
  Health check-up interval 12.46 (5) .03
  Personal history disease 1.25 (1) .26
  FH: DMh 4.00 (1) .05
  Sex 151.26 (1) <.001

aWC: waist circumference
bBP: blood pressure
cFBG: fasting blood glucose
dT: temperature
eHR: heart rate
fTG: triglycerides
gTC: total cholesterol
hFH: DM: family history of diabetes.

Feature Engineering
In the training set, random undersampling was applied to the
majority class. Among the “physiological features,” 4 highly
correlated features: “BMI,” “height,” “weight,” and “WC”
were subjected to dimensionality reduction, with “BMI”
retained. Similarly, for the 2 highly correlated features “SBP”
and “DBP,” only “SBP” was retained.

Feature importance scores were computed for 55 lifestyle-
related questionnaire features using the CatBoost algorithm.
These features were ranked from high to low based on
their importance scores and then sequentially input into the
CatBoost model. After each addition, the model’s AUC score
on the test set was recorded. As shown in Figure 2, the AUC
score dropped significantly after adding 35 features, leading
to the exclusion of 21 noncontributory questionnaire features.
The 34 retained features, which showed significant contribu-
tions, include BMI, SBP, age, sex, family history medicine,
exercise type, years of consistent exercise, exercise duration

per session, weekly exercise frequency, dietary preferen-
ces, staple food structure, dietary taste, sleep duration,
reasons for sleep disturbance, exposure to harmful substan-
ces, work physical demands, sedentary duration outside of
work, consumption frequency of fruits, milk, meat, coffee,
legume and soy products, sugary drink and fatty meats, daily
vegetable intake, health check-up interval , self-monitoring of
blood pressure and heart rate, observe urination and defeca-
tion, carrying emergency medications, regular meals, seat belt
usage, bask, and awareness of normal salt intake and hazard
ratio (HR).

In addition, the addition of 17 biochemical markers,
BUN, Cr, UA, TC, TG, HDL-C, LDL-C, FBG, ALT, AST,
TBIL, DBIL, TSP, ALB, GLO, A/G ratio, and TBA further
improved the model’s accuracy, sensitivity, and specificity.
Thus, the final feature selection for the model included the
34 lifestyle-related questionnaire features and 17 biochemical
markers.
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Figure 2. The model’s area under the curve (AUC) score on the test set. This figure shows how the AUC score on the test set changes with the
number of features included in the model. After adding 34 features, the AUC score drops significantly, indicating that these additional features no
longer contribute to model performance improvement.

Model Performance Evaluation and
Feature Importance Ranking
Based on the 51 selected features (34 questionnaire features
and 17 biochemical markers), 5 ML algorithms were applied,
RF, LightGBM, XGBoost, GBDT, and CatBoost to build
and evaluate models using both the training and testing
datasets. The performance metrics of the 5 ML models are
summarized in Table 3. The LightGBM model demonstrated
the best performance across all metrics, including accuracy
(0.7542), sensitivity (0.6639), specificity (0.7642), F1-score
(0.6748), and κ (0.3741). Although the AUC (0.8456) of the
LightGBM model was slightly lower than that of CatBoost,

LightGBM was determined to be the best model overall
for predicting IR. The ROC curve for the best-performing
LightGBM model is shown in Figure 3.

SHAP values were used to rank feature importance in
the LightGBM model, as shown in Figure 4A. The top 10
features influencing IR were: BMI, FBG, HDL-C, TG, Cr,
ALT, sex, TBIL, age, and A/G ratio. Figure 4B provides
a visual representation of the SHAP values for the top 10
features, where BMI, FBG, TG, ALT, and sex were positively
correlated with IR, while HDL-C, Cr, TBIL, age, and A/G
ratio were negatively correlated with IR.

Table 3. Performances of the 5 machine learning models using 51 selected features for participants.
Model Accuracy_train Accuracy_test Sensitivity Specificity F1-score AUC_train AUC_test κ value
RFa 0.8807 0.7344 0.6522 0.7516 0.6571 0.9552 0.8354 0.3451
LightGBMb 0.8503 0.7542 0.6639 0.7642 0.6748 0.9285 0.8456 0.3741
XGBoostc 0.9689 0.7460 0.6575 0.7556 0.6662 0.9966 0.8375 0.3588
GBDTd 0.9237 0.7505 0.6608 0.7598 0.6708 0.9799 0.8372 0.3668
CatBoost 0.8632 0.7493 0.6594 0.7576 0.6692 0.9445 0.8471 0.3637

aRF: random forest.
bLightGBM: Light Gradient Boosting Machine.
cXGBoost: Extreme Gradient Boosting.
dGBDT: Gradient Boosting Machine.
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Figure 3. Prediction of insulin resistance in patients with insulin resistance by Light Gradient Boosting Machine, ROC in test set. The area under the
curve is 0.8456, indicating that the model has good discriminant ability. ROC: receiver operating characteristic.

Figure 4. Detailed feature importance. (A) Feature importance by Light Gradient Boosting Machine. It shows the importance ranking of various
features in the Light Gradient Boosting Machine model. The vertical coordinate (y-axis) shows the top 20 features and (B) shows the explanation of
each feature impact on insulin resistance in the prediction model by the Shapley Additive Explanations (SHAP) values in the Light Gradient Boosting
Machine algorithm. A/G: albumin/globulin ratio; ALT: alanine aminotransferase; Cr: creatinine; FBG: fasting blood glucose; HDL-C: high-density
lipoprotein cholesterol; SG: serum glutamic; TBA: bile acids; TBIL: total bilirubin; TG: triglycerides; UA: uric acid.

Retrospective Cohort for Validation and
Clinical Significance Assessment
The retrospective cohort dataset was used to validate the
differential occurrence of diabetes in populations stratified by
the model. A total of 20,369 nondiabetic participants were
continuously monitored (5101 individuals classified as IR
high risk by LightGBM and 15,268 individuals classified
as IR low risk), with the incidence of diabetes compared
from baseline to 5 years. Out of 5101 high-risk IR partici-
pants, 235 (4.6%) developed diabetes, while 137 (0.9%) of

15,268 low-risk IR participants did. This resulted in a HR
of 5.1, indicating a significantly higher risk for the IR high
risk group compared with the IR Low Risk group. Figure
5A clearly illustrates the relationship between the cumula-
tive incidence of diabetes in the high- and low-risk insulin
resistance groups. The high-risk group exhibited a signifi-
cantly higher cumulative incidence of diabetes compared
with the low-risk group, particularly after the second year
of follow-up, when the rate of increase accelerated. This
suggests that individuals in the high-risk group have a higher
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likelihood of developing diabetes, and the cumulative effect
of this risk becomes more pronounced over time.

The curve for the low-risk group starts at 1 (indicating
that 100% of individuals were free of diabetes) and gradu-
ally declines over time, although the decrease is relatively
small. In contrast, the high-risk group shows a much more
rapid decline, especially after the second year, with a more
noticeable downward trend (Figure 5B). The line chart

depicting the diabetes incidence rates across different IR risk
groups (Figure 5C) shows that the growth rate of incidence in
the high-risk group is significantly higher than in the low-risk
group. The incidence in the high-risk group rises sharply after
the second year, reaching its peak by the fifth year. These
findings suggest that individuals with high insulin resistance
are more likely to develop diabetes within a shorter time
frame.

Figure 5. Clinical implication (incidence of diabetes) predicted by Light Gradient Boosting Machine algorithm from a retrospective cohort by the
health management center. (A) Kaplan–Meier curve of cumulative incidence of diabetes in different states of insulin resistance. The high-risk insulin
resistance group has a significantly higher cumulative incidence of diabetes than the low-risk insulin resistance group. (B) Kaplan–Meier curve of
nonincidence of diabetes in different states of insulin resistance. The low-risk insulin resistance group has a significantly higher probability of not
developing diabetes than the high-risk insulin resistance group. (C) Incidence of diabetes in different states of insulin resistance. The incidence in the
high-risk insulin resistance group is significantly higher than that in the low-risk insulin resistance group, with a sharp increase after the second year.

Discussion
Principal Findings
This study applied multiple machine learning methods using
a health check-up database from southern China. Based on
questionnaire data and easily accessible, low-cost laboratory
measurements, a highly effective predictive model for IR
was developed in a population with normal FBG. This
ensures that the data required for model implementation is
readily available, without the need for additional, expensive
diagnostic procedures. This model holds significant value
for precision screening of IR and for targeting interventions
aimed at managing individual risk factors associated with
IR. Compared with other models, LightGBM demonstrated a
clear overall advantage in terms of its parameters. LightGBM
is a gradient boosting framework that uses decision tree-
based learning algorithms. It offers several benefits, including
faster training efficiency, lower memory usage, and higher
accuracy. In addition, it supports parallel learning and is
capable of handling large-scale datasets [13].

Comparison With Previous Work
The previous studies have developed insulin resistance
prediction models targeting different ethnic groups and
populations, which proves that researchers recognize the
necessity of conducting IR prediction. Tsai integrated the
National Health and Nutrition Examination Survey public
database in the United States and the MAJOR database
in Taiwan, China, and established the HOMA-IR ML
(XGBoost) prediction model for adults in the two regions.
The AUC reached 0.87, the important feature spectrum
revealed by SHAP analysis was similar to our results,
confirming the determinative roles of factors such as BMI,
FBG,TG, HDL-C, and sex [14]. Before this, the team also
developed an IR model using samples from 1,229 chronic
kidney disease patients sourced from the National Health and
Nutrition Examination Survey database. The model inclu-
ded various nutritional and micronutrient indicators, and the
overall evaluation metric showed that the XGBoost model
achieved an AUC of 0.78 [15]. Zhang et al [16] developed
a LightGBM model for IR in a cohort of nearly 10,000
adults aged 40 years or older from certain communities
in Hubei, China, with an ROC score of 0.794. The most
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significant features included FBG, BMI, WC, TG, and sex. In
a South Korean study involving 8842 residents, in addition
to measurement and laboratory indicators, high-cost, high-
quality features such as genetic risk scores, food frequency
questionnaires, and nutrients were included, the best-per-
forming model, XGBoost, achieved an AUC of 0.86 [17].
However, these studies either use expensive features or fail
to address multicollinearity issues between features. For
example, physiological knowledge and typical data support
a strong correlation between BMI and waist circumference
[18], but these studies did not account for multicollinearity,
which could lead to overfitting.

In our preliminary model, using only low-cost question-
naire features did not yield the expected results. However,
when laboratory indicators of liver function and blood
lipids were added, the performance improved significantly.
Both feature importance rankings based on LightGBM and
SHAP value calculations showed that BMI, FBG, HDL-C,
and TG were among the top 4 most important features.
In fact, a 2003 consensus from the American College of
Clinical Endocrinology [19] formally defined IR syndrome
as a multisystem disease centered around IR, with key
elements including IR or hyperinsulinemia, with or with-
out related cardiovascular-endocrine metabolic abnormalities.
These elements include overweight BMI, abnormal glucose
tolerance, hypertension, elevated TG, or reduced HDL-C,
based on the established epidemiological correlation between
IR and these indicators [20,21]. From a pathophysiologi-
cal perspective, IR and these metabolic indicators have
an explainable causal relationship. For example, adipokines
secreted by adipose tissue, such as adiponectin [22], tumor
necrosis factor alpha [23] can modulate insulin sensitivity
through the insulin signaling pathway. In addition, hydrolysis
products of elevated triglycerides, such as free fatty acids,
can induce insulin resistance by inhibiting insulin signal
transduction and reducing the number of insulin receptors
on target cells [24]. Low HDL-C improves insulin resistance
through reverse cholesterol transport and anti-inflammatory
effects [25]. We also found that liver function indicators, such
as ALT, bilirubin, and the A/G ratio, play a significant role
in IR prediction, with fatty liver being closely linked to IR
[26]. These 3 abnormal indicators are common in individuals
with fatty liver disease [27], which may indirectly reflect IR.
In addition, kidney function indicators showed correlations,
which could be related to factors such as physical inactivity,
chronic inflammation, oxidative stress, vitamin deficiencies,
adipose factor imbalances, and changes in the gut microbiota
in populations with kidney damage [28]. Finally, we applied

the best LightGBM model results to baseline IR stratification
in a retrospective cohort, further validating the significant
impact of IR prediction on diabetes incidence. This aims to
clarify the practical value of such models. By comparing the
incidence of diabetes in low-risk and high-risk IR groups,
we observed that individuals at high risk for IR were more
likely to develop diabetes in a shorter period, confirming the
model’s value in assessing blood glucose metabolism.
Limitations and Future Directions
Despite the promising results in IR prediction, our study has
several limitations. First, the data source is relatively limited
in terms of geographical diversity. Our data came from a
health check-up database from the Han Chinese population
in Hunan Province in Central Southern China, which may
impact the generalizability of the model to other regions or
ethnic groups. Future studies could address this by incorpo-
rating data from different regions and ethnic populations to
further validate the model’s generalizability. We would try
to develop these ML models into user-friendly web pages
or applications that are accessible to the general public
and primary care providers, getting more input information
and feedback to optimize our models, which is virtually a
significant advantage of ML. Second, we tested the clinical
implications of this trained model with a retrospective cohort,
and have not yet explored the predictive efficiency of the
model in prospective research, and we plan to perform it in
a follow-up study in the near future. Third, the diagnosis
of diabetes in the cohort was based only on the results of
FBG, rather than oral glucose tolerance test or combined with
postprandial blood glucose or glycated hemoglobin. However,
we hope to base diagnoses on the latter as well in further
research in the near future. Finally, although 5 ML algo-
rithms were used in this study, there may be other algorithms
with better performance that are currently available or soon
to be developed. It would be necessary for us to further
iterate models with more promising algorithms to improve
the predictive performance of the models in the future.
Conclusions
In conclusion, the ML models using the LightGBM algorithm
are efficient in predicting IR status in nondiabetic individuals.
By leveraging low-cost laboratory indicators and question-
naire data, the model can accurately assess the current
IR status in individuals with normal blood glucose levels,
helping identify those at high risk of progressing to diabetes
within large-scale populations.
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