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Abstract
Background: In hospitals, Code Blue is an emergency that refers to a patient requiring immediate resuscitation. Over 85% of
patients with cardiopulmonary arrest exhibit abnormal vital sign trends prior to the event. Continuous monitoring and accurate
interpretation of clinical data through artificial intelligence (AI) models can contribute to preventing critical events.
Objective: This study aims to evaluate changes in clinical outcomes following the use of VitalCare (Major Adverse Event
Score and Mortality Score), which is an AI-based early warning system, and to validate the performance of the algorithm.
Methods: A retrospective analysis was conducted by extracting electronic health record data, using a total of 30,785 inpatient
cases from general wards and intensive care units. A comparative analysis was performed by setting a 3-month period before
and after the system implementation. For clinical evaluation, we measured the incidence rates of Code Blue and adverse
events, the proportion of prolonged hospitalization, and the frequency of early interventions. The area under the receiver
operating characteristic curve (AUROC) was calculated to assess the performance of the algorithm.
Results: This study demonstrated that, following the implementation of VitalCare, there was a 24.97% reduction in major
events such as Code Blue (P=.004) and the proportion of prolonged hospitalization in general wards (P<.05), along with a
significant increase in the rate of early interventions. The model performance exhibited superior outcomes compared with
traditional scoring systems, with a Major Adverse Event Score AUROC of 0.865 (95% CI 0.857‐0.873) and Mortality Score
AUROC of 0.937 (95% CI 0.931‐0.944).
Conclusions: A well-developed AI-based model that provides high predictive power can contribute to the prevention of major
in-hospital events by providing early predictive information to clinicians. Additionally, it plays a crucial role in effectively
addressing unmet needs and challenges in terms of human resources and practical procedures.
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Introduction
Code Blue is an emergency code used in hospital settings
to indicate a patient experiencing cardiopulmonary arrest
(CA), necessitating immediate resuscitative intervention [1].
This represents a critical and resource-intensive process in
which health care providers must respond promptly and
initiate action as soon as Code Blue is activated. Despite
intensive and concerted efforts by medical staff, the survival
rate of patients who experience a Code Blue event remains
below 20% [1,2]. It is not only directly associated with a
poor prognosis and high mortality rate of patients, but also
contributes significantly to their economic burden.

Nevertheless, the early identification and prediction of CA
or clinical deterioration can be achieved through a compre-
hensive analysis of patients’ vital signs and blood test results.
A previous study demonstrated that over 85% of patients who
experience in-hospital CA exhibit abnormal vital signs 6 to 24
hours before adverse events (AEs) [3]. Implementing timely
interventions based on these predictions may help delay or
prevent mortality. The effective management of Code Blue
events depends on the timeliness and quality of interventions
[4]. In this context, artificial intelligence (AI)–based early
warning systems (EWSs) can facilitate preparedness and
support timely intervention by providing advanced alerts. The
ability to predict the risk of critical AEs in advance enables
hospitals to allocate the necessary resources and establish
timely medical treatment plans proactively [1,5].

Numerous studies have demonstrated the positive
outcomes of using AI-EWS, underscoring the value of
continuous patient monitoring for the early detection of
critical events [6-9]. However, most AI-EWS studies have
predominantly focused on developing models that predict
individual clinical events, such as CA or death, thereby
providing limited information. To enhance the early detection
of patient deterioration, training algorithms with broadly
defined indications are essential. Accordingly, we devel-
oped a multilabel algorithm that is designed to recognize
the deterioration of patient conditions, including unplanned
ward-to-intensive care unit (ICU) transfer (UIT), cardiopul-
monary resuscitation, and mortality.

Despite advancements in AI-EWSs, insufficient evidence
is available regarding their clinical utility when they are
implemented in real-world hospital settings, particularly in
terms of reducing in-hospital Code Blue events. Compre-
hensive validation across multiple domains is essential for
the successful implementation and integration of AI-EWS
technologies in clinical practice. Therefore, the primary
objective of this study was to evaluate the effectiveness of
applying an AI-EWS on clinical outcomes, including Code
Blue events in hospitals, prolonged length of stay (pLOS),
and the frequency of ordering new codes, such as early
interventions or assessments for AEs, compared with a silent
period using real-world electronic medical record (EMR)
data. The secondary objective was to assess the performance
in a hospital environment with different characteristics from

those of the development data to verify the generalization of
the model.

Methods
Study Design and Participants
This retrospective study was conducted at the Presbyterian
Medical Center in the Republic of Korea, where a rapid
response system (RRS) had not yet been established. Instead,
the condition of each patient was monitored by an assigned
registered nurse for potential clinical deterioration. In March
2023, the hospital introduced an AI solution named VitalCare
(VC) for continuous patient monitoring in the general ward
(GW) and ICU to predict patient deterioration. The study
population consisted of patients aged 19 years and older
who were admitted to the GW or ICU over a 17-month
period from December 2022 to May 2024. A “silent period”
was designated from December 2022 to February 2023 to
establish control settings, during which health care providers
did not use VC. Excluding the first 1-month adaptation period
following the introduction of the system, data from April
2023 to May 2024 were set as the “entire alert period.”
We classified and analyzed the intervention period into two
categories. To control for seasonal bias, the alert period was
defined as the winter months between December 2023 and
February 2024 to match the control period, which was also
confined to the winter months. Winter was associated with a
higher incidence of AEs and mortality. Therefore, this study
was designed to focus on comparative analyses specific to
winter. To evaluate the overall trend in Code Blue occurren-
ces, a comparative analysis was conducted using 5 years of
event data. This analysis compared the 4-year average before
the implementation of VC with data from the first year after
implementation.
Ethical Considerations
The Institutional Review Board of the Presbyterian Med-
ical Center approved this study on December 12, 2023,
and waived the requirement for informed consent given the
specific nature of the retrospective study (2023-12-051). This
study was conducted in accordance with the principles of
the 1975 Declaration of Helsinki. To protect the privacy
of participants, all data were anonymized during extraction
from the hospital’s EMR system and used solely for analysis
purposes. As this was a retrospective study, no compensation
was provided to participants.
Algorithm Description
The VC algorithm is a deep-learning-based model that uses a
bidirectional long short-term memory architecture as a binary
classifier to predict the occurrence of major AEs (positive or
negative) in GW inpatients. It comprises VC-Major Adverse
Event Score (MAES) and VC-Mortality Score (MORS), both
of which have been approved by the Korean Ministry of Food
and Drug Safety. The VC-MAES is designed to comprehen-
sively predict 3 key events, namely, UIT, death, or cardi-
opulmonary resuscitation, within the GW. In contrast, the
VC-MORS is designed to provide a score that could predict
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death in patients who are admitted to the ICU. ICU transfers
within 3 hours of surgery completion or 12 hours of proce-
dure initiation were considered as planned ICU transfers and
were excluded from the outcome analyses. The VC-MAES
was trained using data from 334,185 hospitalizations of
209,825 adult patients between 2013 and 2017 at Yonsei
Severance Hospital, which is a 2454-bed tertiary academic
medical center in Seoul, Republic of Korea. The VC-MORS
was trained using data from 21,186 hospitalizations of 19,570
adult patients who were admitted to the ICU between 2013
and 2017 at the same hospital. The dataset encompasses more
than 35 surgical and medical specialties. The details of the
model architecture were the same as those described in a
previous study, with slight modifications [10].

The model primarily uses 5 vital signs—systolic and
diastolic blood pressure, heart rate, respiratory rate, and body
temperature—along with age to generate risk scores ranging
from 0 to 100. Higher scores indicate an increased risk
of target events occurring within the next 6 hours. When
available, the model also incorporates optional variables,
including oxygen saturation (SpO2), mental status (Glas-
gow Coma Scale), total bilirubin, lactate, creatinine, platelet
count, pH, sodium, potassium, hematocrit, white blood cell
count, bicarbonate, and C-reactive protein. These inputs are

updated whenever new data are recorded in the EMR system
to ensure that the score reflects the patient’s most recent
condition. Given that these optional parameters are infre-
quently measured, missing values are imputed using the last
observation carried forward method, where the most recent
available value is used. If no prior values are available,
normal reference values are assigned for score computation
[11].
Practical Setting
We integrated the hospital network’s EMR system with the
pretrained VC algorithm, which was deployed to another
institution without any retraining or recalibration, thereby
enabling validation using real-world data from hospitalized
patients. The system was configured to allow VC access
across all GWs and ICUs. Health care providers reviewed
single parameters, such as vital signs, laboratory data, and
VC prediction scores, for all hospitalized patients via the VC
web platform. The VC web platform presents a trend graph of
score changes over time, alarm history, and single-parameter
history (Figure 1). It was displayed continuously, allowing the
health care providers to access it at any time, and clinicians
used the information provided by the VC as a reference
during clinical decision-making.

Figure 1. Web interface of VitalCare.

Clinical Evaluation
We analyzed clinical variables such as the in-hospital Code
Blue incidence rate, AE (death and UIT cases) incidence rate,
proportion of long-term hospitalization during each period,
and frequency of early interventions to evaluate the clinical
effectiveness following the implementation of VC.

We investigated the annual number of Code Blue events
from 2019 to 2023 and calculated the incidence rate relative
to the total number of hospitalized patients, excluding those
with documented “Do Not Resuscitate” status. The silent
period was represented by the average values from 2019 to
2022. The pLOS was defined as the 75th percentile of the
total length of stay in the study population [12,13]. Based
on this criterion, patients who were admitted to the GW for
9 days or more and those who were admitted to the ICU
for 4 days or more were classified as having a prolonged
hospital stay. The proportion of patients meeting these criteria

was subsequently calculated to evaluate the prevalence of
prolonged hospital stay within the cohort.

Given the varying total number of hospital admissions
across different periods, the incidence rate of AEs was
calculated per 1000 admissions. The number of interventions
or evaluations performed within 2 hours of the first alarm
activation was calculated to analyze the frequency of early
interventions. For this analysis, intervention and evaluation
items were compared using prescription codes, such as new
oxygenation or change orders, laboratory tests, and any new
code orders.
Performance Evaluation
The overall accuracy of the scores was determined by
calculating the area under the receiver operating character-
istic curve (AUROC) and area under the precision-recall
curve (AUPRC) based on whether a target event occurred
within 6 hours of the predicted scores. The bootstrap method
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was used to compare the AUROC and AUPRC with the
National Early Warning Score (NEWS), Modified Early
Warning Score (MEWS), Sequential Organ Failure Assess-
ment (SOFA), and Acute Physiology and Chronic Health
Evaluation II (APACHE II). Given the extensive use of
NEWS, MEWS, and SOFA in studies worldwide to predict
cardiac arrest or clinical deterioration, these scores were also
used as comparators in this study [1,2,14,15]. NEWS and
MEWS were calculated using current values of systolic blood
pressure, heart rate, respiratory rate, body temperature, mental
status, SpO2, and the fraction of inspired oxygen (FiO2)
recorded in the EMR within 1 hour before the prediction
point. The SOFA score was calculated using the worst
recorded values in the EMR within 24 hours following ICU
admission. As the APACHE II score is specifically used to
predict the mortality risk of acutely ill patients within 24
hours of ICU admission [16], the AUROC and AUPRC were
calculated based on whether death occurred during the ICU
stay.
Statistical Analysis
Demographic characteristics during the silent and alert
periods were compared using chi-square tests for catego-
rical variables. For continuous variables, normality was
assessed using the Shapiro-Wilk test and histogram inspec-
tion, which noted that large sample sizes may cause the test to
reject normality due to high sensitivity. Normally distributed
variables were compared using independent 2-tailed t tests,
and nonnormally distributed variables were compared using
the Mann-Whitney U test (2-tailed).

To evaluate predictive performance, 95% CIs for the
AUROC were estimated using the bootstrap method with
1000 resamples. DeLong’s test was used for statistical
comparison of AUROC values, while a bootstrap-based test
with 1000 resamples was applied for AUPRC.

Sensitivity, specificity, positive predictive value, and
negative predictive value were calculated to evaluate the

performance of the scores, using predefined thresholds
corresponding to moderate and high alarm levels. Proportions
were compared using the 2-sample proportion test, applying
either 1- or 2-tailed approaches as appropriate. One-tailed
tests were used to compare AE rates when a directional effect
was prespecified, whereas 2-tailed tests were applied when no
prior direction was assumed.

All statistical analyses were performed using Python
(version 3.12.9; Python Software Foundation), with statisti-
cal significance defined as P<.05, applied uniformly across
1- and 2-tailed tests. The analyses used the MLstatkit and
scikit-learn libraries.

Results
Overview
This study initially included 32,750 admissions from 24,187
patients. After applying the exclusion criteria, 30 admissions
involving patients aged younger than 19 years of age were
excluded, resulting in 32,720 admissions being included in
the study dataset, which was used for performance evalu-
ation. Considering the adaptation period, 1935 admissions
were excluded from the study. The final dataset consisted
of 5375 admissions during the silent period, 25,410 admis-
sions during the alert period, and 5780 admissions during
the seasonally matched alert period. There were 3576 ICU
admissions, of which 2 were younger than 19 years of age and
were excluded, leaving 3574 admissions for the VC-MORS
performance evaluation. After excluding 214 admissions
during the adaptation period, 3360 admissions remained,
including 647 admissions during the silent period, 2713
admissions during the entire alert period, and 597 admissions
during the seasonally matched alert period (Figure 2).
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Figure 2. Flowchart of admission selection.

Baseline Characteristics
We compared baseline characteristics of patients admitted
during the silent and alert periods, including vital signs,
laboratory values, and the Charlson comorbidity index,
which was calculated according to previously published
methods [17,18]. While statistically significant differences

were observed in pulse rate, respiratory rate, SpO2, bilirubin,
sodium, NEWS, MEWS, Charlson Comorbidity Index, and
other baseline characteristics were similar (Table 1). These
findings indicate that patient baseline characteristics were
largely similar between the 2 periods.

Table 1. Characteristics of patients across hospitalizations.

Variables Overall (n=11,155)
Silent period
(n=5375)

Season-matched alert
period (n=5780) Missing, n (%) P value

Age (years), median (IQR) 67.0 (55.0-77.0) 67.0 (55.0-77.0) 67.0 (55.0-77.0) 0 (0) .90
Sex, n (%) .19
  Female 5632 (50.5) 2679 (49.8) 2953 (51.1) 0 (0)
  Male 5523 (49.5) 2696 (50.2) 2827 (48.9) 0 (0)
BMI (kg/m2), mean (SD) 24.3 (4.1) 24.3 (4.0) 24.3 (4.2) 1787 (16.02) .58
Vital signs
  Diastolic blood pressure (mm Hg), mean (SD) 76.7 (12.1) 76.9 (12.0) 76.6 (12.2) 4 (0.04) .27
  Pulse (beats per min), mean (SD) 79.4 (14.7) 79.1 (14.7) 79.8 (14.7) 4 (0.04) .01
  Respiratory rate (breaths per min), median

(IQR)
20.0 (18.0-20.0) 20.0 (19.0-20.0) 20.0 (18.0-20.0) 4 (0.04) <.001

  Systolic blood pressure (mm Hg), mean (SD) 127.4 (20.1) 127.7 (20.4) 127.1 (19.9) 4 (0.04) .13
  SpO2 (%), median (IQR) 97.0 (96.0-98.0) 97.0 (96.0-98.0) 97.0 (96.0-98.0) 2634 (23.61) .03
  Temperature (°C), mean (SD) 36.8 (0.4) 36.8 (0.4) 36.8 (0.4) 6 (0.05) .18
Laboratory values
  Bilirubin (mg/dL), median (IQR) 0.5 (0.4-0.8) 0.5 (0.4-0.8) 0.5 (0.4-0.8) 2928 (26.25) <.001
  Creatinine (mg/dL), median (IQR) 0.8 (0.6-1.0) 0.8 (0.6-1.0) 0.8 (0.6-1.0) 2362 (21.17) .15
  C-reactive protein (mg/dL), median (IQR) 0.7 (0.1-3.9) 0.6 (0.1-3.7) 0.7 (0.1-4.2) 3605 (32.32) .24
  HCO3 (mmol/L), mean (SD) 24.4 (5.7) 24.6 (5.5) 24.3 (5.8) 9437 (84.60) .21
  Hematocrit (%), mean (SD) 35.7 (6.0) 35.6 (6.1) 35.7 (6.0) 1719 (15.41) .21
  Lactate (mmol/L), median (IQR) 2.0 (1.2-4.3) 2.2 (1.3-4.0) 1.9 (1.1-4.3) 10,890 (97.62) .51
  PCO2 (mm Hg), mean (SD) 38.3 (10.2) 38.4 (10.0) 38.2 (10.3) 9437 (84.60) .69
  pH, mean (SD) 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) 9437 (84.60) .17
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Variables Overall (n=11,155)
Silent period
(n=5375)

Season-matched alert
period (n=5780) Missing, n (%) P value

  Platelets (103/µL), mean (SD) 218.9 (80.6) 218.7 (81.5) 219.0 (79.7) 1719 (15.41) .87
  PO2 (mm Hg), median (IQR) 92.0 (78.0-113.0) 91.0 (78.0-114.0) 93.0 (78.0-112.0) 9437 (84.60) .85
  Potassium (mEq/L), mean (SD) 4.1 (0.6) 4.0 (0.6) 4.1 (0.6) 2732 (24.49) .01
  Sodium (mEq/L), median (IQR) 141.0 (138.0-142.0) 141.0 (139.0-142.0) 140.0 (138.0-142.0) 2728 (24.46) .001
  White blood cell count (103/µL), median

(IQR)
7.0 (5.5-9.2) 6.9 (5.5-9.2) 7.0 (5.5-9.3) 1719 (15.41) .41

Baseline scores, median (IQR)
  NEWSa 3.0 (3.0-4.0) 3.0 (3.0-4.0) 4.0 (3.0-5.0) 549 (4.92) <.001
  MEWSb 1.0 (1.0-1.0) 1.0 (1.0-1.0) 1.0 (1.0-1.0) 549 (4.92) .05
  APACHE IIc 13.0 (9.0-18.0) 13.0 (9.0-18.0) 13.0 (10.0-18.0) 9911 (88.85) .23
  CCId (comorbidity) 3.0 (2.0-5.0) 3.0 (2.0-5.0) 3.0 (2.0-5.0) 0 (0) .58

aNEWS: National Early Warning Score
bMEWS: Modified Early Warning Score
cAPACHE II: Acute Physiology and Chronic Health Evaluation II
dCCI: Charlson Comorbidity Index

Reduction in Code Blue and AEs
The incidence of Code Blue was expected to decrease in
2023 compared to the 4-year average between 2019 and 2022.
Since the implementation of the VC system in 2023, the
hospital’s Code Blue incidence rate (per 1000) has decreased

by 24.97%, from 10.57 to 7.93 (P=.004). As shown in Table
2, even year-by-year comparisons during the pre-VC period
show that the incidence was lower after the introduction of
VC.

Table 2. Code blue trends before and after VCa implementation.
Year Number of hospitalized patientsb Number of Code Blue events Code Blue period incidence rate (per 1000)
Before VC implementation
  2019 22,262 262 11.69
  2020 21,726 229 10.34
  2021 22,087 210 9.32
  2022 21,381 223 10.19
  Average 21,864 231 10.57
After VC implementation
  2023 21,061 167 7.93

aVC: VitalCare
bExcluding DNR (Do Not Resuscitate) patients.

Moreover, we compared the rates of UIT and in-hospital
mortality across three intervals: the silent (pre-VC) period,
the season-matched period, and the entire study period. The
baseline UIT event rate during the silent period was 69.40
events per 1000 admissions, which significantly decreased
to 60.73 (P=.03) in the season-matched period and 62.37

(P=.03) in the entire study period. For in-hospital mortality,
the baseline rate was 19.72 deaths per 1000 admissions,
decreasing to 16.78 (P=.12) during the season-matched period
and further to 15.87 (P=.02) during the entire period (Table
3).

Table 3. Number of adverse events by period.
UITa P value Mortality P value

Silent period 69.40 —b 19.72 —
Season-matched alert period 60.73 .03 16.78 .12
Entire alert period 62.37 .03 15.87 .02

aUIT: unplanned ward-to-intensive care unit transfer.
bNot applicable.
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Clinical Outcomes
The pLOS rate in the GW decreased significantly following
VC implementation. No significant difference in the pLOS

rate was observed before and after the implementation of the
VC system in the ICU (Table 4).

Table 4. Comparison of length of stay between periods.
General wards (n=30,785 admissions) Intensive care units (n=4013 transfers)
Proportion of pLOSa (LOS ≥9 days), % P value Proportion of pLOS (LOS ≥4 days), % P value

Silent period 26.85 —b 28.91 —
Season-matched alert period 24.65 .01 30.96 .39
Entire alert period 25.46 .03 28.54 .84

apLOS: prolonged length of stay
bNot applicable.

As shown in Tables 5 and 6, significantly more early
interventions such as oxygenation, laboratory tests, and
new code orders occurred following the activation of both
moderate (VC-MAES=30) and high (VC-MAES=50) alarms.

However, in the ICU, significant earlier interventions were
observed only following a moderate VC-MORS alarm
(VC-MORS=20), particularly with the ordering of laboratory
tests, such as that for lactate.

Table 5. Early interventions measure for the first VCa alarm in general wards.
Intervention Silent period Season-matched alert period P value Entire alert period P value
Moderate alarmb (%), n 557 541 2291
  New oxygenation ordered 3.94 9.43 <.001 9.60 <.001
  Laboratory tests ordered 10.05 13.86 .05 13.84 .01
  New code ordered 24.42 30.87 .02 31.25 <.001
High alarmc (%), n 212 215 870
  New oxygenation ordered 3.77 17.67 <.001 13.10 <.001
  Laboratory tests ordered 12.26 21.86 .01 19.43 .01
  New code ordered 35.85 47.44 .02 42.76 .07

aVC: VitalCare.
bVC-MAES=30.
cVC-MAES=50.

Table 6. Early interventions measure for the first VCa alarm in intensive care units.
Intervention Silent period Season-matched alert period P value Entire alert period P value
Moderate alarmb (%), n 152 141 638
  New oxygenation ordered 12.50 17.02 .28 16.14 .29
  Laboratory tests ordered 24.34 35.46 .04 37.15 .002
  Lactate ordered 2.63 9.93 .01 7.68 .01
  New code ordered 55.26 63.83 .14 62.85 .09
High alarmc (%), n 51 47 214
  New oxygenation ordered 5.88 14.89 .17 9.35 .60
  Laboratory tests ordered 27.45 36.17 .36 28.04 .99
  Lactate ordered 1.96 6.38 .35 6.54 .31
  New code ordered 72.55 72.34 .98 67.29 .51

aVC: VitalCare.
bVC-MORS=20.
cVC-MORS=80.

Model Performance Compared With
Traditional Scoring System
VC-MAES and VC-MORS outperformed conventional EWS
in both AUROC and AUPRC. VC-MAES achieved an
AUROC of 0.865 (95% CI 0.857-0.873) and an AUPRC of

0.088 (95% CI 0.080‐0.098), which were significantly higher
than those of NEWS (AUROC=0.804; AUPRC = 0.018) and
MEWS (AUROC=0.772; AUPRC=0.020).

Similarly, VC-MORS showed strong predictive perform-
ance for 6-hour mortality, with an AUROC of 0.937
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(95% CI 0.931‐0.944) and an AUPRC of 0.098 (95% CI
0.087-0.109), which outperformed SOFA (AUROC=0.754;
AUPRC=0.011). APACHE II, calculated once within 24

hours of ICU admission, showed an AUROC of 0.814 and
an AUPRC of 0.259 for predicting ICU mortality (Table 7).

Table 7. Performance comparison by AUROCa and AUPRCb.
Score AUROC (bootstrap 95% CI) AUPRC (bootstrap 95% CI)
General wards
  VCc-MAESd 0.865 (0.857‐0.873) 0.088 (0.080‐0.098)
  NEWSe 0.804 (0.797‐0.811)f 0.018 (0.015‐0.021)g

  MEWSh 0.772 (0.764-0.780)f 0.020 (0.015‐0.025)g

Intensive care units
  VC-MORSi 0.937 (0.931‐0.944) 0.098 (0.087‐0.109)
  SOFAj 0.754 (0.742-0.765)f 0.011 (0.010‐0.012)g

  APACHE IIk 0.814 (0.787‐0.840) 0.259 (0.215‐0.307)
aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cVC: VitalCare.
dMAES: Major Adverse Event Score.
eNEWS: National Early Warning Score.
fP<.001; Delong test.
gP<.001; bootstrap-based test.
hMEWS: Modified Early Warning Score.
iMORS: Mortality Score.
jSOFA: Sequential Organ Failure Assessment.
kAPACHE II: Acute Physiology and Chronic Health Evaluation II.

Discussion
Principal Findings
We retrospectively collected the EMR data of hospitalized
patients and compared the pre- and postintervention clinical
outcomes to evaluate the effectiveness of VC. The results
demonstrated that VC use was associated with high predictive
performance and a significant reduction in Code Blue events.
Specifically, VC-MAES exhibited a reduced pLOS and a
lower number of AEs compared with the silent period, along
with an increased frequency of early interventions.
Bridging the Afferent Limb With AI-EWS
Globally, the importance of RRS as a means of preventing
AEs has been increasingly emphasized. However, rescue
failures may occur even in environments where RRSs are
implemented owing to challenges in the afferent limb [19].
The afferent limb refers to the “recognition” phase, encom-
passing processes such as monitoring, identification, and
triggering a response [20]. VC supports automated monitor-
ing, aids in the detection of early high-risk patients, and
offers potential solutions for delaying and preventing Code
Blue events [1]. In this regard, it can be used systematically
and efficiently in environments where an RRS is already
established. Conversely, it can maximize the potential impact
by addressing unmet needs, even in hospitals where the RRS
is not organized or is understaffed.

Optimizing Care With Predictive
Monitoring
In practical settings, the initial assessment and recognition
of a patient’s condition are typically performed by nursing
staff. Subsequently, the attending physician is notified of
the patient’s condition to facilitate decision-making regard-
ing diagnosis and treatment. Vital signs and laboratory tests
are also intermittently monitored, making the automatic
interpretation and screening of time-series data a critical
clinical requirement. As AEs often occur abruptly, such
sequential processes can serve as barriers to timely interven-
tion. VC can address this challenge by providing predictive
alerts before the occurrence of AEs. This study confirmed a
short-term decrease in UIT and death cases, which was found
to have led to a significant long-term reduction in Code Blue
events.

VC provides the opportunity to assess a patient’s condition
(eg, laboratory tests, blood culture, and imaging) proactively
or report it to the attending physician early, enabling the
preparation of the necessary resources in advance. Accord-
ingly, our findings suggest that VC implementation leads
to notable clinical improvements, including increased early
intervention and reduced AEs. Prior studies have indicated
that several patients who ultimately experience CA remain in
the GW for extended periods before being transferred to the
ICU (or are never transferred at all), which negatively affects
their survival rates. Consequently, these studies asserted that
AI-based EWSs have the potential to reduce in-hospital
mortality [15,21-23].
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We conducted a subgroup analysis of the frequency of
early interventions and observed a more significant increase
in the GW following VC use (Table 5). It is well established
that early intervention improves patient outcomes [24-26].
The occurrence of any intervention or evaluation within 2
hours of the initial risk prediction of VC can be interpreted
as an indication that the clinician agreed with this information
and suspected patient deterioration. VC can detect AEs more
quickly than traditional scoring systems, thereby offering
the benefit of securing opportunities for early recognition
and treatment, and potentially preventing AEs in the GW,
where closed observation may not be as rigorous. Con-
versely, as patients in the ICU were already under real-time
close observation by medical staff, there was no change in
the intervention rate within 2 hours of the first elevation.
Similarly, a trend was observed in which the difference in
intervention rates diminished as the patient severity increased.
These results were predictable and reasonable. Based on these
findings, we propose that the use of VC-MORS in the ICU
is more beneficial for real-time patient monitoring, enabling
the early prediction of critical events with high predictive
power, rather than offering new information that could lead to
additional prescriptions.

In conclusion, VC serves as a clinical decision-support-
ing system that provides supplementary information for
health care providers rather than functioning as an inde-
pendent diagnostic tool. Ultimately, the clinical judgment
of health care professionals remains the final determinant
in decision-making. The successful integration and adapta-
tion of AI-EWS into clinical practice suggest the potential
for clinical decision-supporting systems to be used more
extensively. Various research will be needed to achieve this.
We believe that the synergy between the enhancement of
health care professionals’ ability to use predictive informa-
tion and the advancement of AI-EWS could yield significant
outcomes for patients and clinical settings.

This study demonstrates the effectiveness of AI-based
EWS in a community hospital without an RRS; however,
its applicability to institutions in resource-limited settings
requires further consideration. The adoption and integration

of health AI can vary significantly across countries, depend-
ing on geopolitical and socioeconomic development [27,28].
Consequently, several challenges may arise in rural hospi-
tals or institutions with limited digital infrastructure [29].
These include the absence of real-time EMR systems,
poor clinical data quality, limited clinician training in AI
tools, and variability in clinical workflows and institutional
acceptance. While simplified models may offer a feasible
alternative, future research should explore implementation
strategies for lightweight AI-EWS systems and scalable
integration approaches in community-based and resource-
limited settings.
Limitations
This study has several limitations. First, the control period
was relatively short owing to constraints in data extraction
following the computerized system upgrade period at our
institution. A comparative analysis was conducted within a
given period using the same computerized system. Second,
the effect of VC on patient prognosis following discharge
was not investigated. Third, although this was a real-time
EWS validation study, it did not evaluate interaction variables
between AI-based EWS and the clinician, such as alarm
fatigue. Given that real-time EWS operates as a continu-
ous monitoring system, some degree of alert fatigue may
perhaps be unavoidable. While adjusting thresholds—such
as lowering sensitivity—may mitigate excessive alerts, it
may also increase the risk of missing critical events. Future
research will focus on assessing the effectiveness of clinician-
AI interactions through the AI-based EWS and their influence
on discharge outcomes and postdischarge prognosis.
Conclusions
A well-designed and validated AI-based EWS, such as VC,
can effectively reduce major in-hospital AEs by enabling
early detection and intervention. By supporting clinical
decision-making without replacing professional judgment,
this study demonstrates the potential of AI-EWS to enhance
patient outcomes and optimize resource utilization in hospital
settings.
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