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Abstract

Background: Deep learning has demonstrated significant potential in advancing computer-aided diagnosis for neuropsychiatric
disorders, such as migraine, enabling patient-specific diagnosis at an individual level. However, despite the superior accuracy of
deep learning models, the interpretability of image classification models remains limited. Their black-box nature continues to
pose a major obstacle in clinical applications, hindering biomarker discovery and personalized treatment.

Objective: This study aims to investigate explainable artificial intelligence (XAI) techniques combined with multiple functional
magnetic resonance imaging (fMRI) indicators to (1) compare their efficacy in migraine classification, (2) identify optimal
model-indicator pairings, and (3) evaluate XAI’s potential in clinical diagnostics by localizing discriminative brain regions.

Methods: We analyzed resting-state fMRI data from 64 participants, including 21 (33%) patients with migraine without aura,
15 (23%) patients with migraine with aura, and 28 (44%) healthy controls. Three fMRI metrics—amplitude of low-frequency
fluctuation, regional homogeneity, and regional functional connectivity strength (RFCS)—were extracted and classified using
GoogleNet, ResNet18, and Vision Transformer. For comprehensive model comparison, conventional machine learning methods,
including support vector machine and random forest, were also used as benchmarks. Model performance was evaluated through
accuracy and area under the curve metrics, while activation heat maps were generated via gradient-weighted class activation
mapping for convolutional neural networks and self-attention mechanisms for Vision Transformer.

Results: The GoogleNet model combined with RFCS indicators achieved the best classification performance, with an accuracy
of >98.44% and an area under the receiver operating characteristic curve of 0.99 for the test set. In addition, among the 3 indicators,
the RFCS indicator improved accuracy by approximately 8% compared with the amplitude of low-frequency fluctuation. Brain
activation heat maps generated by XAI technology revealed that the precuneus and cuneus were the most discriminative brain
regions, with slight activation also observed in the frontal gyrus.

Conclusions: The use of XAI technology combined with brain region features provides visual explanations for the progression
of migraine in patients. Understanding the decision-making process of the network has significant potential for clinical diagnosis
of migraines, offering promising applications in enhancing diagnostic accuracy and aiding in the development of new diagnostic
techniques.
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Introduction

Background
Migraines are a common, incapacitating neurovascular disorder
characterized by attacks of severe headaches and autonomic
nervous system dysfunction [1,2]. Diagnosing migraines, in
general, is a complex task due to the subjective nature of the
condition [3]. The symptoms of patients vary greatly, often
overlapping with those of other neurological or medical diseases,
and the lack of distinct biomarkers or image characteristics also
increases diagnostic challenges. Furthermore, migraine with
aura (MWA) and migraine without aura (MWoA) are the 2
primary types of migraines [4]. The main challenge in
distinguishing between these categories lies in the fact that the
warning signs of MWA do not always manifest and vary
considerably in duration and severity from person to person
[5,6].

In recent years, the study of magnetic resonance imaging (MRI)
has greatly advanced our understanding of the neural
mechanisms underlying migraines [7], using blood oxygenation
level–dependent (BOLD) signals to measure neural activity [8].
Most related findings were obtained by applying mass-univariate
analysis techniques to detect group differences and probe the
pathogenesis of migraines [9]. Three commonly used
indicators—amplitude of low-frequency fluctuation (ALFF),
regional homogeneity (ReHo), and regional functional
connectivity strength (RFCS)—can effectively help us analyze
functional magnetic resonance imaging (fMRI) data because
they reflect brain activity characteristics from different
perspectives. As a result, these metrics have been widely applied
in neuropsychiatric research and have proven valuable in
uncovering the neural mechanisms of diseases [10-12]. For
example, compared with healthy controls (HCs), patients with
migraines have been shown to exhibit significant ALFF
variations in the bilateral middle occipital cortex or cuneus and
ReHo changes in the prefrontal cortex, orbitofrontal cortex [13],
insula [14], and cuneus [15]. Altered functional connectivity
(FC) has also been identified between the dorsolateral prefrontal
cortex and the dorsal anterior cingulate cortex [16]. However,
this analysis lacks a personalized diagnosis for patients in a
clinic setting.

Recent studies have highlighted the potential of machine
learning in migraine classification; however, challenges such
as inconsistent study design and lack of methodological
transparency underscore the need for robust frameworks such
as deep learning to improve generalization and clinical
applicability [17]. Deep learning has been applied to medical
data across a variety of fields, allowing for inferences at the
level of individual participants and thus solving this problem.
Furthermore, it is sensitive to subtle and spatially distributed
differences in the brain; excels in automatically extracting
intermediate and high-level feature representations from raw
data; and identifies the crucial features necessary for accurate
classification, which might be undetectable in group
comparisons. Ashina et al [18] further emphasized that even
though deep learning models demonstrate superior accuracy,
their “black box” nature remains a critical barrier to achieving

biomarker discovery and personalized treatment. Therefore,
developing deep learning frameworks that integrate both high
accuracy and interpretability is essential for deciphering the
heterogeneous mechanisms of migraine and advancing precision
medicine [18].

Objectives
We hypothesize that deep learning models can classify patients
with migraine versus HCs using resting-state fMRI (rs-fMRI)
data with higher accuracy than traditional methods, while
explainable techniques will reveal distinct neurofunctional
patterns that align with known migraine-related
pathophysiology, thereby bridging the “black box” gap. In this
research, we used an array of deep learning architectures,
including GoogleNet [19] and ResNet [20], and integrated the
self-attention mechanism of the Vision Transformer (ViT) [21]
model, alongside various modalities of MRI data for
classification purposes. These deep learning architectures each
have their own advantages and can extract features from rs-fMRI
data from different perspectives. Moreover, these models have
been widely applied in medical image analysis and proven
effective [22]. We implemented the gradient-weighted class
activation mapping (Grad-CAM) [23] technique for
convolutional neural networks (CNNs). This method
significantly enhances the interpretability of the classification
results, thereby increasing the model’s credibility in the context
of migraine diagnosis. For the ViT model, we leveraged the
attention mechanism to improve interpretability by visualizing
attention weights. This allows us to visually identify the regions
of the image that the model focuses on when making
classification decisions. By using these explainable artificial
intelligence (XAI) [24] techniques and visualizing attention
maps, we can delineate the approximate locations of the regions
of interest via a heat map, thus facilitating the interpretation of
the classification results generated by the deep learning models.

Methods

Participants
This study enrolled 64 individuals, categorized into 3 groups:
21 (33%) patients with MWoA, 15 (23%) patients with MWA,
and 28 (44%) HC. The patients were recruited from the internal
medicine–neurology department of West China Hospital,
Sichuan University, and diagnoses were confirmed by
neurologists specializing in headache disorders based on the
International Classification of Headache Disorders criteria.

Participants were right-handed adults aged 18 to 50 years. They
discontinued analgesic medications for ≥2 weeks and other
medications for ≥1 month before the study, with no ongoing
prophylactic treatment. All patients remained migraine free for
at least 72 hours before the brain scan and throughout the
48-hour follow-up period after scanning. Exclusion criteria
included for the HCs, and inclusion criteria required no personal
or family history of migraine or other headache disorders and
no history of neuropsychiatric disorders or neurological
impairments. Controls were age matched (±7 y) and sex matched
to patients. Exclusion criteria for all groups included MRI
contraindications, substance abuse history, and
neurodevelopmental disorders. HCs underwent additional
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screening via structured clinical interviews to exclude headache
disorders.

It is important to note that while the presence of a clinical
diagnosis of neuropsychiatric disorders was an exclusion
criterion, subclinical levels of depression and anxiety were not.
The inclusion of participants with varying degrees of depression
and anxiety allowed us to investigate the natural variability of
these conditions within the migraine population and HCs.
Exclusion criteria for both patient and control groups included
the presence of chronic migraines, concurrent pain conditions,
history of neuropsychiatric disorders, or any other neurological
impairments that could affect the imaging results.

Demographic data (age, sex, and education) and psychometric
scores (Hamilton Depression Scale and Hamilton Anxiety Scale)
were collected during initial screening using standardized report
forms. Psychometric evaluations revealed varied levels of
depression and anxiety among the groups, quantified by the
Hamilton Depression Scale and Hamilton Anxiety Scale.

Ethical Considerations
The research was approved by the institutional review board of
West China Hospital, Sichuan University (2020-666; Figure S1
in Multimedia Appendix 1). All participants provided written
informed consent, including explicit permission for secondary
data analysis. Participants were informed about the study’s
purpose, data use, and privacy protections. The consent forms
allowed future reuse of anonymized data. All data were
deidentified before analysis, with Digital Imaging and
Communications in Medicine header information removed using
specialized tools. No identifiable facial features or personal
metadata were present in any of the presented images.

Statistical Analysis
This study used the Kruskal-Wallis H test from the scipy.stats
package of Python (Python Software Foundation) to analyze
the experimental data. This is a nonparametric test used to
determine whether there are statistically significant differences
in medians among ≥3 independent samples [25].

The specific method involves combining all data from the 3
sample types used in this study and ranking them by value,
assigning each data point a corresponding rank. If values are
tied, the average rank is calculated. Next, the rank sums (R1,
R2, and R3) for each sample group are computed separately.
The H statistic is then calculated using the Kruskal-Wallis H
test formula:

where N represents the total sample size across all groups, k
represents the number of groups (in this case, k=3), ni represents
the sample size of the i-th group, and Ri represents the rank sum
of the i-th group.

Finally, the calculated H value is compared with the chi-square
distribution with 2 dfsto obtain the corresponding P value. If
P≤.05, it indicates that at least 1 of the 3 sample groups has a
median significantly different from the others. If P>.05, there

is insufficient evidence to conclude a significant difference in
medians among the 3 sample groups.

Neuroimaging Data Acquisition and Preprocessing
Data acquisition was performed using a 3.0 Tesla MRI system
(Trio Tim, Siemens). Participants were instructed to rest with
their eyes closed, remain awake, and avoid active thinking.
Structural imaging was conducted using a transverse echoplanar
imaging sequence with the following parameters: the ratio of
repetition time to echo time (TR/TE)=2000/30 ms, flip
angle=90°, slice thickness/gap=5/0 mm, field of view =240×240
mm², matrix=64×64, and voxel size=3.75×3.75×5 mm³. The
scanning duration for all participants was 6 minutes (360 s),
corresponding to 180 time points.

We preprocessed the data using the Graph Theoretical Network
Analysis toolbox and Statistical Parametric Mapping. The
preprocessing steps included the following:

• The first 10 time points were removed from each functional
dataset to account for initial signal instability and participant
adaptation, leaving 170 time points (340 s) for subsequent
processing

• Slice timing correction and realignment were performed to
minimize motion artifacts. Participants with head motion
exceeding 2-mm displacement or 2° rotation were excluded.
All participants in this study met these motion criteria.

• Spatial normalization was conducted to standard Montreal
Neurological Institute space with 3-mm isotropic voxels

• Bandpass filtering (0.01-0.08 Hz) was applied to each
voxel’s time series to reduce low-frequency drift and
high-frequency physiological noise [26]

• Spatial smoothing was conducted using a 4-mm full width
at half maximum Gaussian kernel.

• Regression of nuisance covariates was performed to mitigate
the influence of nonneuronal signals.

Finally, the ALFF, ReHo, and RFCS were calculated. ALFF
serves as a reliable metric of regional intrinsic neuronal activity
[27]. Time series from each voxel were converted to the
frequency domain via fast Fourier transform to derive the power
spectrum. The square root of the power spectrum was then
averaged over a predefined frequency range. Within the 0.01
to 0.08 Hz frequency band, ALFF was calculated per voxel
using the rs-fMRI Data Analysis Toolkit (REST, Provided by
the REST team led by Professor ZANG Yu-Feng, ORCID:
0000-0003-1833-8010) software. To control for interparticipant
variability, the ALFF values of individual voxels were
normalized by dividing them by the global mean ALFF. ReHo,
quantified using the Kendall coefficient of concordance,
measures the temporal similarity between a voxel and its
immediate neighbors, yielding consistent outcomes in rs-fMRI
analyses. In our study, a cubic cluster of 27 voxels was defined
for each normalized and resliced image, with the ReHo value
of each cluster attributed to the central voxel. Higher ReHo
values indicate greater local synchronization of rs-fMRI signals
among adjacent voxels. Similar to ALFF normalization, each
voxel’s ReHo value was divided by the global mean ReHo value
per participant. These procedures were carried out using REST
software.

JMIR Med Inform 2025 | vol. 13 | e72155 | p. 3https://medinform.jmir.org/2025/1/e72155
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The rs-fMRI enables the evaluation of brain function through
the measurement of FC among distinct brain regions. To
mitigate the impact of regions of interest selection on FC
outcomes, we adopted the RFCS approach, which evaluates the
average correlation between a given brain region and all others
[28]. To calculate resting-state FC, we controlled for the
spurious effects of nuisance covariates [29]. The rs-fMRI data
were parcellated into 116 regions of interest based on the
automated anatomical labeling (AAL) template, yielding 116
FC results for each participant. The RFCS values were
subsequently determined using a methodology detailed in a
previous study by Jiang et al [30]. The RFCS was defined as
follows:

The preprocessed neuroimaging data were managed using the
NiBabel library, converting 4D data into 2D matrices suitable
for CNNs. Throughout the data conversion process, MRI scans
from all 64 participants were processed. Each scan initially
produced 33 slices; the first 3 slices were discarded due to
potential quality issues, leaving 30 valid slices per participant.
Each slice then underwent 3 feature mappings, resulting in a
total of 5760 images: 1890 from patients with MWoA, 1350
from patients with MWA, and 2520 from HCs. We ensured that
no slices from the same patient appeared in both the training
and testing sets to avoid data leakage. To mitigate overfitting,
data augmentation techniques, such as cropping, rotating, and
flipping of input images, were implemented [31,32]. Further
data augmentation, involving random shuffling and resizing to
224×224 pixels, increased the diversity of the dataset. The entire
training phase was conducted on a high-performance GPU
(Nvidia 4070 Ti with CUDA support), using the PyTorch
framework for the implementation of the deep learning model.

Model Validation
For the machine learning applications, we first performed a
5-fold cross-validation to split the participants’data into training
and testing sets. Specifically, the entire dataset is first randomly
divided into 5 roughly equal parts, a step commonly referred
to as folding. Next, 5 iterations are performed. In each iteration,
1 fold is selected as the test set, while the remaining 4 folds are
combined to form the training set. The model is trained on the
training set and evaluated on the test set, with the evaluation
results recorded. After all 5 iterations are completed, the results
of the 5 evaluations are averaged to obtain the final model
performance assessment. This averaged value provides a more
stable and reliable reflection of the model’s performance on the
data.

In addition, we also used leave-one-out cross-validation
(LOOCV) methodology for comparative validation purposes.

Deep Learning Architecture
CNN architectures include several CNN layers that transform
an input image step by step, ultimately yielding a class
prediction. This study examines some of the most popular CNN
architectures used for image recognition tasks, including
GoogleNet and ResNet18. In contrast, the ViT is a
transformer-based architecture that divides an image into

multiple small patches, treating these patches as elements in a
sequence, and processes them through the Transformer model.
This approach leverages self-attention mechanisms to capture
global contextual information within the image. Compared with
traditional CNNs, ViT offers greater flexibility and scalability
in image processing. The introduction of ViT has brought a new
perspective to the field of image recognition, achieving
remarkable performance on various benchmark tests. These
different models were included to test the impact of network
architecture on visualization performance. Results derived from
each model were compared, and the best-performing algorithm
was used as the basis for visualization.

In addition, to provide a more comprehensive performance
comparison, we included 2 widely used traditional machine
learning methods—support vector machine and random
forest—as baseline models, performing 3-class classification
directly using features extracted from RFCS.

Transfer Learning
Currently, optimization algorithms such as Stochastic Gradient
Descent [33] have significantly improved our training efficiency.
To further enhance model performance and reduce training time,
we also used transfer learning. Transfer learning increases a
model’s robustness and accuracy when performing new
classification tasks by leveraging knowledge acquired from
related tasks, which is particularly beneficial for small training
datasets [34]. Initialization weights that have been trained to
recognize various items in different images are easier to train
than initial random weights, as image recognition primarily
involves detecting combinations of edges. The initial weights
used in our model included transfer learning weights from the
ImageNet competition, derived from images with similar
features. In addition, all weights throughout the network were
frozen and did not participate in backpropagation, except for
those in the last convolutional layer and the fully connected
layer. These layers were replaced with new layers exhibiting
random weights. By training only the updated layers, we reduced
runtime by limiting the number of calculations required in each
forward pass iteration. This approach also improved
classification performance by simplifying the model and
reducing the number of parameters.

XAI Methods
XAI methods are designed to enhance the transparency of
machine learning models, enabling a clear understanding of the
models’ decision-making processes. XAI is particularly well
suited for applications that demand a high level of trust and
safety. Among the commonly used interpretability techniques
are Grad-CAM and the visualization of self-attention
mechanisms.

Grad-CAM merges the gradients of target concepts with the
final convolutional layer to produce a coarse localization map,
highlighting the important regions in an image for the purpose
of predicting feature concepts. A previous study by Hao et al
[35] has asserted that deeper representations of models allow
for the capture of higher-level visual constructs. In addition,
convolutional features naturally retain spatial information, which
is lost in fully connected layers. As such, we can expect the last

JMIR Med Inform 2025 | vol. 13 | e72155 | p. 4https://medinform.jmir.org/2025/1/e72155
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


convolutional layer to exhibit the best compromise between
high-level semantics and detailed spatial information.
Grad-CAM can also be used to represent so-called
counterfactual explanations, regions that (if removed) could
change the classification results. Neurons in the latter layers of
a CNN are mostly used to identify semantic class-specific
information in an image (ie, specific structures). In contrast,
Grad-CAM uses gradient information passed to the last
convolutional layer of the CNN to understand the importance
of each neuron for a decision of interest.

The ViT model enhances its ability to capture image features
by dividing the image into multiple patches and using the

self-attention mechanism [36] in the Transformer architecture.
This approach captures the relationships and global contextual
information between different regions of the image. By
visualizing the attention weights, we can intuitively see which
areas of the image the model focuses on when making
classification decisions. This visualization of attention maps
provides a clear method for understanding the model’s
decision-making process, thereby improving its interpretability.
This enhanced understanding of how the model identifies and
distinguishes different categories of images is crucial for
increasing the model’s transparency and credibility. A flowchart
for this process is shown in Figure 1.

Figure 1. A schematic illustration of the proposed classification process. (A) Deep learning models; (B) Output layer; (C) Activation map. AAL:
Automated Anatomical Labeling; CNN: convolutional neural network; FC: functional connectivity; Grad-CAM: gradient-weighted class activation
mapping; HC: healthy control; mALFF: mean amplitude of low-frequency fluctuation; MWA: migraine with aura; MWoA: migraine without aura;
ReHo: regional homogeneity; rs-fMRI: resting-state function magnetic resonance imaging; ViT: Vision Transformer; XAI: explainable artificial
intelligence.

Evaluation Criteria

Receiver Operating Characteristic Curve
Prediction model performance was evaluated for the test sets
using a receiver operating characteristic (ROC) curve [37]. The
area under the curve (AUC) is a quantitative metric assessing
the overall performance of a binary classifier without setting a
specific threshold. AUC ranges from 0 to 1, where an AUC of
1 indicates perfect classification, and an AUC of 0.5 suggests
the model performs no better than random guessing. Values
<0.5 are uncommon in practice, as reversing the classification
would improve results. Higher AUC values (>0.5) indicate
better class separation.

To comprehensively evaluate the classification performance,
both AUC and the F1-score were used as key performance
indicators. AUC measures the model’s ability to distinguish
between classes across all thresholds, making it robust to class
imbalance and useful when misclassification costs vary between
classes. The F1-score, defined as the harmonic mean of precision
and recall, provides a balanced measure especially suitable for
imbalanced datasets where both false positives and false
negatives are of concern [38]. The relevant metrics are defined
as follows:

where TP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative, respectively.

Confusion Matrix
An analysis table can be used to summarize prediction results
for a classification model and is particularly beneficial for
multiclass objects (ie, distinguishing MWoA, MWA, and HC).
In this process, decisions for specific data are summarized in a
matrix form, using the real category and classification judgments
made by the model. A confusion matrix was applied in this
study to quantify the consistency between predicted and actual
results.
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Results

Classification Performance

Table 1 presents the research data, demonstrating that the
observed differences in psychometric assessments were not
confounded by demographic variables, such as sex, age, or
education level.

Table 1. Baseline characteristics of patients with migrainea.

P valueHCdMWAcMWoAbVariables

.40Sex, n (%)

13 (20%)4 (6%)7 (11%)Male

15 (24%)11 (17%)14 (22%)Female

.4729.00 (27.00-34.25)29.00 (27.00-35.00)29.00 (26.00-31.00)Age (y), median (IQR)

.00216.00 (16.00-19.00)16.00 (15.00-16.00)19.00 (16.00-19.00)Education (y), median (IQR)

<.0011.00 (0.00-3.00)10.00 (6.00-15.00)4.00 (1.00-9.00)24-HAMDe, median (IQR)

<.0010.00 (0.00-3.00)6.00 (5.00-9.50)3.00 (1.00-6.00)14-HAMAf, median (IQR)

aStatistical differences between groups were calculated using the Kruskal-Wallis test.
bMWoA: migraine without aura.
cMWA: migraine with aura.
dHC: healthy control.
eHAMD: Hamilton Depression Scale.
fHAMA: Hamilton Anxiety Scale.

Classification performance was tested using deep learning
models with different rs-fMRI indicators (ALFF, ReHo, and
RFCS). The data were divided into 2 groups before being input
to the model: migraine versus HC and MWA versus MWoA.
The loss of training and testing data were measured during the
training phase. All models exhibited an improved classification
accuracy (>84%) when compared with conventional machine
learning methods applied to the same data. Our group previously

used the LOOCV technique to obtain higher ranking features
from the square of a weight vector coefficient, used as a ranking
criterion to determine features for training a multicore support
vector machine classifier [39].

Confusion matrices and ROC curves were also calculated for
each model and used to display the classification results. We
found that GoogleNet produced the highest classification
accuracy for a given set of indicators, as shown in Figure 2.
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Figure 2. Performance classification as determined by various indicators. (A) The ALFF indicator as input to GoogleNet; (B) The ReHp indicator as
input to GoogleNet; (C) The RFCS indicator as input to GoogleNet. ALFF: amplitude of low-frequency fluctuation; HC: healthy control; MWA: migraine
with aura; MWoA: migraine without aura; ReHo: regional homogeneity; RFCS: regional functional connectivity strength; ROC: receiver operating
characteristic curve.

In addition, RFCS achieved the best performance for each
classifier among the tested indicators. Therefore, GoogleNet
combined with RFCS provided the highest average precision
for identifying patients with migraine. In the results, we
observed that the use of the ViT-B/16 model did not yield an
improvement in accuracy. In fact, compared with the
straightforward CNN architecture, the classification outcomes

of the ViT model showed a decrease in performance across
various MRI modalities. The ultimate accuracy of the models
was then determined by averaging the accuracies from 4 distinct
trials, as illustrated in Table 2. In addition, we performed
LOOCV using the GoogleNet model that achieved the best
classification performance, with results available in Table S1
in Multimedia Appendix 1.
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Table 2. Results of 5-fold cross-validation based on 3 metrics across different deep learning models.

F1-score (%), mean (SD)Accuracy (%), mean (SD)Model, indicator, and data group

ResNet18

ALFFa

87.13 (0.62)87.20 (0.64)HCb versus migraine

86.70 (1.85)86.83 (1.84)HC versus MWoAc versus MWAd

ReHoe

92.50 (0.90)92.56 (0.94)HC versus migraine

90.95 (0.35)91.07 (0.37)HC versus MWoA versus MWA

RFCSf

97.7 (0.40)97.81 (0.39)HC versus migraine

96.55 (1.95)96.75 (1.93)HC versus MWoA versus MWA

GoogleNet

ALFF

90.50 (1.10)90.69 (1.12)HC versus migraine

89.8 (0.65)89.95 (0.65)HC versus MWoA versus MWA

ReHo

94.6 (1.30)94.79 (1.29)HC versus migraine

93.4 (0.50)93.52 (0.51)HC versus MWoA versus MWA

RFCS

98.65 (0.15)98.71 (0.14)HC versus migraine

98.3 (0.30)98.44 (0.29)HC versus MWoA versus MWA

ViT-B/16g

ALFF

84.03 (0.67)84.58 (1.83)HC versus migraine

83.95 (0.60)84.51 (0.56)HC versus MWoA versus MWA

ReHo

87.3 (0.65)87.78 (0.61)HC versus migraine

86.1 (1.30)86.7 (1.27)HC versus MWoA versus MWA

RFCS

92.8 (0.50)93.04 (0.50)HC versus migraine

92.6 (1.30)92.93 (1.25)HC versus MWoA versus MWA

aALFF: amplitude of low-frequency fluctuation.
bHC: healthy control.
cMWoA: migraine without aura.
dMWA: migraine with aura.
eReHo: regional homogeneity.
fRFCS: regional functional connectivity strength.
gViT: Vision Transformer.

The ROC curves are shown in Figure 3, and the classification
results are presented in Table 3.
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Figure 3. The regional functional connectivity strength (RFCS) indicator as input to support vector machine (SVM) and random forest. AUC: area
under the curve; ROC: receiver operating characteristic curve.

Table 3. Three-class classification performance of support vector machine (SVM), random forest (RF), and deep learning models using regional
functional connectivity strength (RFCS) features.

GoogleNet: accuracy (%), mean
(SD)

RF: accuracy (%), mean (SD)SVM: accuracy (%), mean (SD)Metric: HCa versus MWoAb versus

MWAc

98.44 (0.29)53.45 (1.12)50.71 (1.65)Accuracy

86.44 (0.26)60.48 (2.96)47.7 (2.08)Precision

84.1 (0.32)45.27 (1.19)46.74 (1.89)Recall

98.3 (0.30)44.08 (1.50)46.91 (2.00)F1-score

98.63 (0.19)66.9 (0.57)66.29 (1.47)AUCd

aHC: healthy control.
bMWoA: migraine without aura.
cMWA: migraine with aura.
dAUC: area under the curve.

Model Visualization
Grad-CAM was used to visualize the GoogleNet model that
achieved the best classification performance across various
tasks. This process, representing the first time that CNN
visualization of migraine classification results has been
conducted using different MRI indicators, can be described in
several steps. First, backpropagation was performed from the
correctly classified images of patients with migraine. The mean
gradient in each channel was then determined and multiplied
by postactivated values in the feature map. Second, the absolute
values of the gradient-weighted feature maps were summed to
produce a coarse localization map, which was then thresholded
and resized to the original image resolution. This localization
map was converted into a heat map by applying a color scale
to identify specific brain regions involved in classification tasks.

In this study, 3 MRI indicators—ALFF, ReHo, and RFCS—were
registered and spatially mapped onto the AAL template to ensure

accurate localization. Using these indicators, we generated heat
maps to determine the areas of the brain that contributed most
significantly to the classification performance. For example,
the ALFFs that produced the most prominent heat maps are
shown in Figure 4. Heat maps produced with ReHo and RFCS
are shown in Figures 5A and 5B. In addition, we generated heat
map results for the ViT model based on its self-attention
mechanism. In the self-attention layers, the model calculates
the relationship weights between each patch and all other patches
in the sequence. By aggregating the attention weight matrices
of each patch with others, we obtain the attention distribution
of each patch within the image, thus creating the model’s heat
map (Figure S2B in Multimedia Appendix 1). However, the
heat map lacks distinct hot spots, which may be due to the
similar attention weights across patches, leading to a uniform
attention distribution. This uniformity in the heat map could
also explain the reduced classification performance of the model.
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Figure 4. Activation heat maps derived from amplitude of low-frequency fluctuation (ALFF) features. (A) Activation heatmaps for multiple slices
from a patient with MWA. (B) Activation heatmaps for multiple slices from a patient with MWoA. (C) Mean activation heatmaps for MWA versus
MWoA. (D) Activation heatmaps for incorrectly classified images; (D1) HC samples incorrectly classified as patient with migraine; (D2) MWA samples
incorrectly classified as MWoA. HC: healthy control; MWA: migraine with aura; MWoA: migraine without aura.
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Figure 5. Activation heat maps derived from regional homogeneity (ReHo) and regional functional connectivity strength (RFCS) metrics, along with
high-resolution activation heat maps based on RFCS, demonstrating the activation patterns across multiple brain regions. (A)Activation heatmaps for
multiple slices from an MWA patient (ReHo indicator); (B) Activation heatmaps for multiple slices from an MWA patient (RFCS indicator). (C) Group
1: health control versus migraine (RFCS indicator); (D) Group 2: MWoA versus MWA (RFCS indicator). MWA: migraine with aura; MWoA: migraine
without aura.

In addition, to obtain clearer and more intuitive activation maps,
we additionally visualized the RFCS indicator activation area
on another enlarged and high-definition brain template to
achieve more precise localization of brain activity, as shown in
Figures 5C and 5D. In Figure 5, group 1 displays the most
discriminative activations between HCs and patients with
migraine, with red intensity indicating stronger activation, and
group 2 highlights the most discriminative activation regions
between MWA and MWoA.

Discussion

Principal Findings
This study used the XAI methods to interpret deep learning
models’decision-making processes and produce activation heat
maps for class-discriminative regions in MRI slices. Various
fMRI indicators were included as input data for the classification
of migraines by a deep learning model. Results were compared
for various MRI indicators (ALFF, ReHo, and RFCS) and
different network architectures (GoogleNet, ResNet18, and
ViT-B/16). The GoogleNet model combined with RFCS

indicators produced the best classification performance
(>98.44%). Heat maps confirmed Grad-CAM to be a promising
visualization technique for the clinical diagnosis of migraines.

We compared 3 deep learning models based on different fMRI
indicators. GoogleNet achieved the best results among the 3
models, producing a performance increase of 2% to 3% (AUC)
for each indicator (Table 1). The inception module in GoogleNet
could merge receptive fields of different sizes simultaneously
with a concatenation filter, which improved classification
performance [40]. It was evident in this study that the selection
of indicators had a significant effect on classification results,
with the RFCS indicator improving accuracy by approximately
8% compared with ALFF. RFCS measures the average
correlation between a given brain region and other regions. This
was often based on the AAL template-116 brain region [41],
which contained important information about the whole brain
to enhance accuracy rates. In contrast, ALFF was used to
calculate the intensity of brain activity in a single voxel and
included far fewer features than RFCS. This result suggested
that the improvements in classification were partly the result of
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model selection and primarily a consequence of indicator
preference. In reviewing the literature, we found that education
level was not always directly associated with migraines [42].
Therefore, its ultimate impact on classification performance
might be small.

Comparison With Prior Work
A comparison of average localization maps with the AAL
template suggested the most discriminative brain regions, for
differentiating the migraine and HC groups, to be the cuneus
and precuneus. There was also some slight activation present
in the frontal gyrus. The most significant areas for distinguishing
MWoA from MWA were the frontal gyrus and bilateral cuneus.
These findings are in agreement with similar results from other
studies. For example, Li et al [43] reported a significant decrease
in ALFF in the bilateral middle occipital cortex and cuneus,
when compared with HC. In addition, regions exhibiting
decreased ALFF in patients with migraine included the bilateral
cerebellum posterior lobe, left cerebellum anterior lobe, bilateral
orbital cortex, middle frontal gyrus, bilateral occipital lobe,
right fusiform gyrus, and bilateral postcentral gyrus [44]. There
was no obvious pattern in the HC group, which suggests that
pain is somewhat randomly distributed in normal cases.

Similarly, Farago et al [45] studied the low-frequency
components of a BOLD signal (0.01-0.08 Hz) in MWoA and
MWA groups [45]. Results showed the resting-state amplitude
of BOLD fluctuations in the bilateral frontal regions to be higher
in patients with MWA than in those with MWoA. This is in
agreement with this study, as the cuneus is part of the visual
cortex area of the brain [46].

Our study demonstrated the feasibility and clinical relevance
of interpretable deep learning techniques in distinguishing
between HCs and patients with migraine based on neuroimaging
biomarkers. The identified patterns aligned with existing clinical
knowledge: the cuneus, involved in visual processing, was
associated with migraine as patients often exhibited light
sensitivity and photophobia during attacks; the role of the
precuneus in self-referential processing and pain modulation
might explain the altered FC observed in patients with migraine;
and dysregulation in the frontal cortex could be contributed to
impaired pain inhibition and cognitive symptoms in chronic
migraine [47].

Grad-CAM propagated gradients from the final convolutional
layer to the input space, highlighting regions critical for
category-specific predictions. The self-attention mechanism
was particularly suitable for processing sequential data or data
with complex dependencies. In migraine rs-fMRI data analysis,
the self-attention mechanism helped the model identify key
patterns of FC between different brain regions. In summary,
our discovery of abnormal brain regions was supported by
abundant literature. By leveraging interpretable models, we not
only validated these biologically plausible findings but also
provided clinicians with actionable insights. Our method might
enhance the convenience of personalized diagnosis or targeted
neural regulation therapy in certain scenarios. Therefore, in
clinical translation, both methods alleviate the black box problem
by providing visual explanations (heat maps), enabling clinicians
to validate findings against established neurobiological

knowledge, thereby increasing trust in model outputs for
discovering potential biomarkers.

Limitations
While deep learning–based diagnostic tools have advantages,
incorrect decisions can adversely affect patients, leading to
misdiagnoses or missed diagnoses. Inaccuracies in our model
could result in patients with migraine not receiving timely and
appropriate treatment or subject normal participants to
unnecessary medical interventions. Therefore, we emphasize
the importance of thorough validation before clinical application
and suggest using this model as an adjunct rather than the sole
diagnostic tool.

Certain limitations existed in this study that should be noted.
First, the sample size was relatively small. During the training
of the ViT model, overfitting occurred (Figure S2A in
Multimedia Appendix 1). For some specific clinical scenarios,
a more complex and deeper network does not necessarily yield
the best results; instead, it is crucial to select an appropriate
model based on the characteristics and scale of the dataset. This
was addressed in the study by using data augmentation
techniques (ie, rotation, reflection, and cropping in PyTorch)
and adding a dropout layer before the fully connected layer to
mitigate overfitting. Second, the heat maps exhibited relatively
limited resolution, due to a size limit imposed by feature maps
in the last convolutional layer. The architecture and class
activation map algorithm could be optimized using
higher-resolution medical images to produce larger-scale feature
maps.

Future Directions
Future research should aim to enhance the model’s resolution
capabilities, consider other imaging modalities or biological
markers, and explore the adversarial attack approach to enrich
the data and improve the robustness of the results [48]. In
addition, we are also seeking collaborations with similar studies
to share datasets, though this process may take time due to the
high costs of such data collection. Meanwhile, we are making
efforts to acquire data from other hospitals, despite current
challenges in obtaining external data. We plan to incorporate
multicenter data to evaluate the model’s generalizability across
different populations and MRI scanners. In addition, we will
conduct more in-depth comparisons with neurologists’
diagnostic consistency to assess the model’s value in assisting
clinical diagnosis. As for sex differences, our preliminary
analysis did not reveal a significant impact on the model’s
performance. Nonetheless, given the known variations in
migraine prevalence and manifestation between sexes, further
research is warranted to explore this aspect in greater detail.

Conclusions
This study has demonstrated that XAI techniques, combined
with fMRI-derived FC metrics, can achieve high classification
accuracy in distinguishing patients with migraine from HCs
while providing interpretable biomarkers. The GoogleNet model
paired with RFCS emerged as the optimal framework, achieving
exceptional performance (accuracy >98.44%; AUC=0.99) and
outperforming conventional machine learning benchmarks.
Generating heat maps by identifying the most discriminative
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brain regions also confirms that XAI using Grad-CAM is a promising visualization technique.
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MWoA: migraine without aura
ReHo: regional homogeneity
RFCS: regional functional connectivity strength
ROC: receiver operating characteristic curve
rs-fMRI: resting-state functional magnetic resonance imaging
ViT: Vision Transformer
XAI: explainable artificial intelligence
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