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Abstract
Background: Developing computable phenotypes (CP) based on electronic health records (EHR) data requires “gold-stand-
ard” labels for the outcome of interest. To generate these labels, clinicians typically chart-review a subset of patient charts.
Charts to be reviewed are most often randomly sampled from the larger set of patients of interest. However, random sampling
may fail to capture the diversity of the patient population, particularly if smaller subpopulations exist among those with the
condition of interest. This can lead to poorly performing and biased CPs.
Objective: This study aimed to propose an unsupervised sampling approach designed to better capture a diverse patient cohort
and improve the information coverage of chart review samples.
Methods: Our coverage sampling method starts by clustering by the patient population of interest. We then perform a
stratified sampling from each cluster to ensure even representation for the chart review sample. We introduce a novel metric,
nearest neighbor distance, to evaluate the coverage of the generated sample. To evaluate our method, we first conducted a
simulation study to model and compare the performance of random versus our proposed coverage sampling. We varied the size
and number of subpopulations within the larger cohort. Finally, we apply our approach to a real-world data set to develop a CP
for hospitalization due to COVID-19. We evaluate the different sampling strategies based on the information coverage as well
as the performance of the learned CP, using the area under the receiver operator characteristic curve.
Results: Our simulation studies show that the unsupervised coverage sampling approach provides broader coverage of patient
populations compared to random sampling. When there are no underlying subpopulations, both random and coverage perform
equally well for CP development. When there are subgroups, coverage sampling achieves area under the receiver operating
characteristic curve gains of approximately 0.03‐0.05 over random sampling. In the real-world application, the approach
also outperformed random sampling, generating both a more representative sample and an area under the receiver operating
characteristic curve improvement of 0.02 (95% CI −0.08 to 0.04).
Conclusions: The proposed coverage sampling method is an easy-to-implement approach that produces a chart review sample
that is more representative of the source population. This allows one to learn a CP that has better performance both for
subpopulations and the overall cohort. Studies that aim to develop CPs should consider alternative strategies other than
randomly sampling patient charts.
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Introduction
Electronic health records (EHR) data are widely used in
clinical research. While they contain dense, often granu-
lar information on a patient’s health status, they also
pose challenges for clinical studies since they lack explicit
documentation for the reason for the health care encounter
(eg, admission due to infection). In principle, the problem
list, which provides a historical listing of previous health
problems, can be used to identify chronic conditions, though
it is often unreliable [1,2]. Similarly, fields such as dis-
charge diagnosis may not accurately represent the reason
a patient had a visit. Instead, information from diagnosis
codes, laboratory test results, and prescriptions or admin-
istered medications is used to indicate the presence of
a specific clinical condition [3-5]. This is a well-known
challenge in working with EHR data and has led to the
growth of computable phenotypes (CPs). CPs are algo-
rithms, typically Boolean, though sometimes probabilistic,
that use multiple sources of clinical data—such as diagno-
ses, laboratory results, and medication records—to infer the
clinical condition of a patient or the reason for a visit [6-8].

Creating CPs is a multiphase process that often
requires significant collaborative effort from clinicians and

informaticians [5,9]. One of the key components in CP
development is the creation of a set of “gold standard”
outcome labels. The outcome labels are typically generated
based on manual review of a subset of eligible patient charts,
which can require significant time [6-8,10]. The set of charts
that are used to develop these gold-standard labels is usually
sampled randomly [11]. While random sampling will, on
average, produce a representative view of the population
of interest, since one usually wants to review only a small
number of charts, random sampling may not adequately
represent the complete range of disease presentations or
patient demographics. In the scenario shown in Figure 1,
subgroups that have a rarer presentation within the larger
data set (eg, rarer presentations of the disease of interest and
disease presentation in minority subgroups) are less likely
to be adequately covered based on random sampling. In
this case, much larger sample sets are necessary to find
a meaningful number of charts from people from these
subgroups [12]. In such scenarios, random sampling strategies
might not be effective in generating a sample covering all
subgroups for chart review purposes and result in a CP that
does not accurately capture the heterogeneity of the condition
of interest. This can lead to a CP that performs worse for
those subpopulations.

Figure 1. Example of the impact of random sampling on the representation of patient subgroups. The black dots represent unsampled patients; stars
represent the sampled patients. The red box represents a subgroup that was missed by random sampling.

In recent years, various methods have been developed to
enhance the coverage of labeled data [13-16]. However, these
methods either rely on external population resources or focus
solely on maximizing demographic coverage, which do not
fully align with the chart review objective. Among these
methods, active learning is one such approach that iteratively
selects the most informative samples for labeling, aiming to
optimize model performance with a minimal amount of data
[17,18]. However, active learning typically requires an initial
set of labeled data to train the model and guide the selection
process [19]. Moreover, active learning methods are typically
focused on identifying the samples that will provide the most
leverage on the final model, as opposed to the ones that would
best capture the diversity of the patient cohort [18-21].

In this paper, we propose a process for selecting medical
charts for review to generate gold standard labeling when

constructing CPs. The goal of this method is to ensure that
our selection captures the diversity of the full patient cohort.
To achieve this, we propose a clustering-based process to
generate potential samples. We then introduce a novel metric
to identify the most representative sample that should be used
for label generation. By enhancing the information coverage
of the training sample, our approach is expected to yield a
better performing CP for both subgroups and the full patient
cohort. To illustrate this approach, we use simulation methods
coupled with a real-world data example to demonstrate how
this novel sampling approach can match or even surpass the
performance of random sampling.
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Methods
Sampling Approach
The overall methodological approach is illustrated in Figure
2. We start by considering a study cohort for whom we want
to create labels for the presence or absence of a condition of
interest (eg, diabetes, cause-specific admission). We presume
that our study cohort is large enough that we do not want
to review and label all patient charts. Instead, we want to
generate an optimal chart review sample, from which we will
develop or “learn” a CP. In this paper, our analytic task is
to determine how to best identify that sample. We propose

that the best sample is one that maximizes coverage of the
cohort, providing information about all of the subgroups that
compose the cohort (Figure 2A). In other words, the sample
should be equally representative of each subgroup, rather
than merely reflecting the source population distribution. To
assess coverage, we define a novel metric, described below.
A variety of methods can be used to generate the sample
pool. In this study, we propose using a stratified sampling
framework, in other words, clustering the data and then
sampling from these clusters (Figure 2B). By identifying and
then sampling from clusters, we hypothesize that we will be
able to represent different patient subgroups, making the chart
review sample more reflective of the entire patient cohort.

Figure 2. Diagram illustrating our sampling approach. (A) procedures for general coverage sampling; (B) procedures for generating the sample pool.

Optimal Sample Generation
After defining a cohort of interest, we start by clustering
the individual patient records. As illustrated in our real data
example, our groupings are driven by clinical factors, so we
only use clinical features (ie, not demographic factors) to
conduct the clustering. We then sample records randomly
from each of the clusters. For example, if we prespecify that
we want to review 100 charts, and we generate 4 clusters, we
would sample 25 records from each cluster. While a variety
of clustering algorithms can be used, we suggest hierarchical
clustering. The nested cluster structure provided by hierarchi-
cal clustering is reflective of our proposed interpretation that
the cohort consists of patient subgroups. For comparison, we
also present results from K-means clustering. Notably, with a
sufficiently large number of replications, we expect differ-
ent clustering methods to generate similar optimal samples,
resulting in comparable representative samples.

Coverage Assessment
A primary step is assessing data coverage. To do so, we
propose a novel metric that measures the coverage of the

sample for the full data cohort. We define the nth nearest
neighbor distance as:

ntℎ nearest neigℎbor distance =  i = 1
N din

For each person, i, in the study cohort of size N, we calculate
the Euclidean distance, d, to each person from the sampled
set. din is the distance between the itℎ person in the cohort,
to the ntℎ nearest sampled person. For example, the 5th
nearest neighbor distance refers to the sum of the distance
between every patient i and its 5th closest sampled person.
After generating the sample pool, we calculate the distance
for each individual in the patient cohort to the ntℎ nearest
sampled person. We choose the chart review sample with
the lowest ntℎ nearest neighbor distance. The intuition for
the ntℎ nearest neighbor distance is to ensure that for each
person in the full cohort, there is someone in the chart review
sample that is “near” or representative of them. This should
result in greater coverage for underrepresented subgroups and
phenotypes compared to random sampling. For example, for
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a disease that can present clinically in a variety of ways (eg,
diabetes), if a rarer presentation is not represented in the
chart sample, then for a person i from this minority group,
the closest sampled individuals will be in other subgroups,
resulting in a larger ntℎ nearest neighbor distance. Moreover,
sampling to minimize the ntℎ nearest neighbor distance will
not adversely impact the majority presentation since group
members will still have representative samples.

Our coverage sampling process can be summarized as
follows:

1. Cluster the dataset based on clinical factors across a
range of k clusters.

2. Conduct stratified sampling with a specified sample
size across the clusters multiple times to generate the
sample pool.

3. Calculate the ntℎ nearest neighbor distance for each
sample set in the sample pool and identify the sample
with the minimal ntℎ nearest neighbor distance.

The primary tuning parameter is n. This can be prespecified
by the user, or n can be assessed over a range of values, and
taking the mean distance. As we show below, the approach
is not very sensitive to the choice of n. Although the results
presented are based on Euclidean distance, given the mixed
data types of the EHR data, we also assessed Manhattan and

Gower distances and found that they had minimal impact on
the final results.

Assumptions
The primary assumption of this procedure is that we have
a broad cohort from which to sample that fully captures all
individuals with the condition from which we wish to define a
CP. Meaning, our identified patient cohort (ie, our denomina-
tor) has perfect sensitivity for the outcome of interest, and the
analytic challenge is improving the specificity of the CP.

Evaluation Criteria
As shown in Figure 3, we assess the quality of a selected
sample for chart review in 2 ways: cohort coverage and
CP performance. For cohort coverage, we compare the ntℎ
nearest neighbor distance, with samples exhibiting smaller
distances considered more representative of the study cohort.
For CP performance, we train a classification model using a
sample derived from either our proposed coverage sampling
or random sampling methods. All the unsampled patients are
regarded as the test dataset. We evaluate the efficacy of these
models by comparing the area under the receiver operating
characteristic curve (AUROC) using the test dataset. Samples
that yield models with higher AUROC values are considered
to be better.

Figure 3. Diagram to show the evaluation criteria of sample quality. The coverage sampling refers to the sampling procedure outlined in Figure 2.
AUROC: area under the receiver operating characteristic curve.

Simulation Study
We conduct a simulation study to evaluate the efficacy of
coverage sampling outlined above. We sample 120 patients
from 250 simulated datasets with a size of 10,000 and
10 characteristic variables by both random sampling and
coverage sampling. Across the datasets, we generate 4
clusters and create a sample with different proportions of each
cluster: (simulation set 0: 1.0,0,0,0; simulation set 1: 0.25,
0.25, 0.25, 0.25; simulation set 2: 0.1, 0.3, 0.3, 0.3; simulation
set 3: 0.1, 0.1, 0.4, 0.4 and simulation set 4: 0.1, 0.1, 0.1, 0.7).
These samples can be interpreted as: no underlying cluster
structure, equally distributed subgroups, 1 minority subgroup,
2 minority subgroups, and one majority group. The initial 2
simulation sets (sets 0‐1) serve as baselines, where either no
underlying cluster exists or all clusters are of equal size. The

subsequent simulations (sets 2‐4) delve into more complex
scenarios, incorporating minority subgroups to assess their
impact on the representation of subgroups within the samples.

To generate the clustered data, we used the R package
fungible [13], which uses the following model:

X = DjB + e
Where X  is the matrix of simulated observations, where each
row representing an observation and each column represent-
ing a variable; Dj is a matrix of indicator for cluster j,
identifying the membership of observation within this cluster;B is a matrix that represents the correlation between the
cluster membership and observation scores), and e represents
the deviations that generated from a mixture distribution.

JMIR MEDICAL INFORMATICS Wang et al

https://medinform.jmir.org/2025/1/e72068 JMIR Med Inform2025 | vol. 13 | e72068 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e72068


To generate outcomes (ie, phenotypes to be derived), we
apply the following model:

logit P event = 1 = α0 + j = 1
k I clusteri = j αj + l = 1

p Xilβl
Where P event = 1  represents the probability of itℎ
encounter outcome equal to 1. I clusteri = j  is the indicator
of whether the itℎ encounter belongs to jtℎ cluster or not. X
is the design matrix where each row represents one encoun-
ter, and each column represents one explanatory variable. α0,αi, and βl are the intercept and main effects corresponding
to I clusteri = j  and X. To more accurately reflect real-
world conditions, only half of the explanatory variables were
incorporated into the generation of the outcome variables,
treating the remaining variables as noise (with respect to the
outcome).

For each simulated dataset, we assessed information
coverage and model performance across 3 samples. First,
using the procedure described in the optimal sample
generation section, we averaged the 1st to 10th nearest
neighbor distances to obtain a hierarchical-cluster-based
sample of size 120 and a k-means-cluster-based sample of
size 120. For comparison, we selected 120 random samples
and 120 that were sampled from the true underlying clusters.
In this manuscript, we refer to the 4 samples as hierarchical,
k-means, random, and truth. All data not included in these
samples were retained as test data for further analysis. For
the model performance comparison, we used each of the
4 derived samples (hierarchical cluster coverage, k-means
cluster coverage, random, truth) to fit a logistic regression
model to learn a probabilistic CP. For the scenario with-
out an underlying cluster structure, only hierarchical cluster
coverage, k-means coverage, and random sampling results are
presented, as there is no true cluster structure to compare
against. We computed the AUROC to evaluate the model’s
performance and averaged the performance over 50 iterations.
Real-World Data Application
Our application is motivated by our previous work to develop
a CP for a hospital admission due to COVID-19. During
the height of the COVID-19 pandemic, hospitals tested all
patients for SARS-CoV-2. Work by us [14] and others [15]
has indicated that up to 38% of patients who tested positive
for SARS-CoV-2 upon admission were admitted for reasons
other than COVID-19. Therefore, a CP for admission due
to COVID-19 would need to be more complex than simply
a positive SARS-CoV-2 test. Our goal then is to define a
sample of patients for chart review, in aid of learning a CP
for admission due to COVID-19. Since COVID-19 patients
could have different presentations, we hypothesize that our
coverage sampling approach would be better for learning a
CP.
Data Source
We abstracted data from the Duke University Health System
EHR system. Duke University Health System consists of
3 hospitals on a common, EPIC-based EHR system. The

clinical data are organized into a research-ready datamart,
based on the PCORnet Common Data Model [16].

Source Cohort
Our study cohort consisted of all patients with an inpa-
tient admission and a positive test for SARS-CoV-2 from
March 2020 to March 2023 (when routine testing stopped).
This definition has perfect sensitivity, but poor specificity,
for capturing admissions due to COVID-19. Following our
previous work, we split this cohort into training and testing
data. The testing data consisted of 441 patients admitted from
January 16 to 22, 2022 and were already chart reviewed
for operational purposes. Additional information regarding
the testing data can be found in [14]. The training data
consisted of the other 7743 unlabeled patients with positive
SARS-CoV-2 tests from 2020‐2023.

Features Used
For coverage sampling and CP generation, we used 46
clinically relevant features such as encounter characteristics
(encounter type, admitting source, and discharge disposi-
tion), diagnoses, laboratory tests conducted, and medications
administered. Table S1 in Multimedia Appendix 1 provides
full details on features used. While we extracted demographic
characteristics, we did not include these in the sampling or CP
development steps.

Sampling and Outcome Labeling
We generated 2 samples of 100 using coverage and ran-
dom sampling from the training dataset of 7743 patients.
For the coverage sampling, we used hierarchical clustering
and identified the cluster structure that minimized the 1st
nearest neighbor distance. An infectious disease specialist
(JHH) chart reviewed and labeled the encounter as due to
COVID-19 or related sequela, or not.

Method Evaluation
We compare the patient characteristics for the samples that
were selected from each sampling approach. Then, using
the criteria defined above, we evaluate the coverage of the
sample of the full cohort. Finally, we used each sample to
learn a probabilistic CP based on a least absolute shrinkage
and selection operator logistic regression. We evaluated each
version on the independent test data.

All analyses were conducted in R version 4.3.2. The
source code used in these experiments is available at GitHub
[22].
Ethical Considerations
This study was approved and declared exempt by the Duke
School of Medicine IRB, protocol Pro00109397 (9/14/2021).
We used a limited analytical dataset within a secure comput-
ing environment, and patients did not receive any compensa-
tion.
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Results
Evaluation of Sampling Methods Using
Simulated Data
Figure 4 presents the mean 1st to 10th nearest neighbor
distances for both random and coverage sampling methods
across 4 distinct scenarios. Figure 4A illustrates a base-
line scenario where all clusters are of equal size, while
Figure 4B-D depict scenarios with 1, 2, and 3 minority

subgroups, respectively. In each scenario, the coverage
samples consistently exhibit smaller nearest neighbor
distances compared to those from random samples. As
minority subgroups are incorporated into the simulated
cohort, the advantage of the coverage sample over a random
sample increases. Notably, the distances in the hierarchical
and k-means-clustered coverage samples are closely aligned
with those observed in true cluster configurations, indicating
similar coverage of the cohort.
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Figure 4. From 1st to 10th nearest neighbor distance mean across 200 simulated data samples for 4 cluster ratios. The red line represents the random
sample; the blue line represents the coverage sampling based on hierarchical cluster; the orange line represents the coverage sampling based on
k-means clustering; the green line represents the coverage sampling based on the true cluster. (A) All simulated data follows the baseline cluster ratio
(0.25,0.25,0.25,0.25). (B) All simulated data follows cluster ratio (0.1,0.3,0.3,0.3). (C) All simulated data follows cluster ratio (0.2,0.2,0.4,0.4). (D)
All simulated data follows cluster ratio (0.1,0.1,0.1,0.7).
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After generating the samples, we used the data to learn a
probabilistic CP and tested its performance. Table 1 presents
the mean 1st to 10th nearest neighbor distance and the
mean logistic model’s AUROC between a random sample
and coverage samples generated using hierarchical clustering,
k-means clustering, and a true cluster structure of size 120
across 250 simulated datasets. Values highlighted in asterisk
(Table 1) indicate AUROCs that are significantly higher than
those of the random sample at the 0.05 significance level. The
visualization of the AUROC results is shown in Figure S1
in Multimedia Appendix 1. Consistent with coverage results,

in the baseline scenario without any minority subgroup or
any underlying cluster structure, coverage samples exhibit
similar AUROC compared to random samples. However,
with the introduction of a minority subgroup, the coverage
samples based on hierarchical, k-means, and true cluster
structures all produced significantly higher AUROC values
compared to random samples. Additionally, we observed
that the coverage samples using hierarchical clustering and
k-means clustering exhibited similar performance, suggesting
that the choice of clustering method has minimal impacts on
coverage sampling, provided there are sufficient repetitions.

Table 1. Comparison of mean distance and area under the curve between random sample, sample based on coverage samples based on hierarchical
clustering, k-means clustering, and true cluster.

Cluster ratio and
sample type

Mean of
1st-10th nearest
neighbor
Distance

Overall AUROCa
(95% CI)

Subgroup 1
AUROC (95% CI)

Subgroup 2
AUROC (95% CI)

Subgroup 3
AUROC (95% CI)

Subgroup 4
AUROC (95% CI)

(1.0,0,0,0)
   Random 3877.728 0.806 (0.803-0.809) N/Ab N/A N/A N/A
  Hierarchical 3802.404 0.805 (0.801-0.808) N/A N/A N/A N/A
  K-means 3823.452 0.805 (0.802-0.809) N/A N/A N/A N/A
(0.25,0.25,0.25,0.25)
   Random 3257.498 0.751 (0.747-0.755) 0.735 (0.732-0.738) 0.739 (0.735-0.743) 0.731 (0.728-0.735) 0.733 (0.730-0.736)
  Hierarchical 3170.708 0.751 (0.747-0.756) 0.734 (0.731-0.738) 0.739 (0.735-0.742) 0.731 (0.727-0.734) 0.732 (0.729-0.735)
  K-means 3163.75 0.752 (0.748-0.757) 0.735 (0.732-0.738) 0.738 (0.734-0.742) 0.731 (0.727-0.734) 0.732 (0.729-0.735)
  Truth 3173.694 0.748 (0.744-0.753) 0.731 (0.727-0.735) 0.735 (0.731-0.738) 0.727 (0.724-0.731) 0.729 (0.725-0.732)
(0.1,0.3,0.3,0.3)
   Random 2293.954 0.691 (0.678-0.703) 0.706 (0.694-0.717) 0.607 (0.596-0.618) 0.609 (0.599, 0.618) 0.601 (0.593-0.610)
  Hierarchical 2192.928 0.742c

(0.731-0.753)
0.750c
(0.741-0.760)

0.633c
(0.623-0.643)

0.638c
(0.630-0.647)

0.629c
(0.620-0.638)

  K-means 2183.826 0.740c
(0.729-0.752)

0.746c
(0.737-0.755)

0.632c
(0.623-0.642)

0.636c
(0.628-0.644)

0.628c
(0.620-0.636)

  Truth 2197.208 0.739c
(0.727-0.751)

0.747c
(0.736-0.757)

0.631c
(0.621-0.642)

0.634
(0.625-0.643c)

0.622c
(0.613-0.632)

(0.1,0.1,0.4,0.4)
   Random 2478.755 0.747 (0.737-0.757) 0.746 (0.737-0.756) 0.743 (0.734-0.753) 0.619 (0.612-0.626) 0.617 (0.609-0.626)
  Hierarchical 2286.317 0.778c

(0.769-0.788)
0.774c
(0.767-0.781)

0.769c
(0.762-0.776)

0.636c
(0.630-0.641)

0.635c
(0.628-0.642)

  K-means 2276.429 0.775c
(0.764-0.786)

0.774c
(0.767-0.781)

0.771c
(0.764-0.778)

0.633c
(0.628-0.639)

0.634c
(0.627-0.640)

  Truth 2292.119 0.782c
(0.773-0.791)

0.778c
(0.772-0.784)

0.773c
(0.767-0.779)

0.639c
(0.633-0.644)

0.637c
(0.630-0.644)

(0.1,0.1,0.1,0.7)
   Random 2584.656 0.731 (0.718-0.745) 0.740 (0.730-0.750) 0.743 (0.735-0.752) 0.739 (0.730-0.747) 0.586 (0.580-0.592)
  Hierarchical 2287.864 0.769c

(0.756-0.782)
0.776c
(0.771-0.782)

0.776c
(0.770-0.781)

0.772c
(0.767-0.777)

0.601c
(0.595-0.607)

  K-means 2276.252 0.775c
(0.762-0.788)

0.777c
(0.771-0.783)

0.774c
(0.769-0.780)

0.771c
(0.765-0.776)

0.600c
(0.594-0.606)

  Truth 2290.974 0.772c
(0.759-0.785)

0.780c
(0.774-0.786)

0.778c
(0.773-0.783)

0.774c
(0.769-0.780)

0.601c
(0.596-0.607)

aAUROC: area under the receiver operating characteristic curve.
bN/A: not applicable.
cindicates that the AUROC is significantly higher than that of random sampling method at the .05 significance level.
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Evaluation of Sampling Methods Using
Real-World Data
In real-world data, the true number of clusters or patient
subgroups is unknown. We therefore explored a range of
potential cluster structures, including 2, 3, 4, 5, 10, 15, and
20 cluster structures. Based on simulated data results, with
enough replications, the choice of clustering method does
not impact our sampling approach; thus, we only evalu-
ated hierarchical clustering in the real-world data analysis.
Figure 5 shows the difference in the mean 1st to 20th
nearest neighbor distances in samples generated using the

coverage and random samples (ie, coverage sample ntℎ
nearest neighbor distance subtracted from random samplentℎnearest neighbor distance). The results demonstrate that
for smaller sample sizes (50 and 100), samples drawn from
structures with 2, 3, and 4 clusters provide a more accurate
representation than their random counterparts. However, as
the chart review sample size increases from 400 to 800, thentℎ nearest neighbor distance of the coverage samples aligns
more closely with that of random samples. It is noteworthy
that samples derived from 10, 15, and 20 cluster structures
perform less effectively across all sample sizes.

Figure 5. Mean nth nearest neighbor distance difference (random sample distance–coverage sample distance) over 100 replications for real-world
data.

We conducted a chart review of the 100 random samples
and 100 coverage samples. Our coverage sampling approach
selected a sample based on 1st nearest neighbor distance.
Assessing the clusters using nearest neighbor distance
indicated that 2 clusters were the optimal cluster structure.
Major clinical differences between the 2 clusters included
the C-Reactive protein test, D-dimer test, and BMI (Table
S1 in Multimedia Appendix 1). Moreover, while clustering
was performed using only clinical variables, the resulting
clusters also exhibited meaningful demographic differences,
with cluster 1 consisting of an older population compared

to cluster 2 (50% vs 25% individuals older than 65 y old).
Additional details regarding the cluster characteristics are
provided in Table S1 in Multimedia Appendix 1. Table 2
presents the demographic characteristics of the full 7743
patient cohort, as well as the demographics of the coverage
and random samples. The standardized mean differences of
the random sample and coverage sample are also shown.
Notably, the coverage sample includes a higher percentage
of young adults (24/100) compared to the random sample
(11/100), with other demographic variables showing similar
prevalence patterns in both samples.
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Table 2. Demographic characteristics of real-world data, full sample, coverage sample, and random sample.

Characteristics Full sample Test dataset Coverage sample Random sample
Random versus
cluster SMDa

Sample size 7743 441 100 100
Male sex, n (%) 3737 (48.3) 221 (50.1) 43 (43.0) 47 (47.0) 0.080
Age (years), n (%) 0.391
  Children (0‐18) 307 (4.0) 11 (2.5) 3 (3.0) 2 (2.0)
  Young adult (18-35) 995 (12.9) 63 (14.3) 24 (24.0) 11 (11.0)
  Middle adult (35-65) 3015 (38.9) 177 (40.1) 38 (38.0) 38 (38.0)
  Older adult (>65) 3426 (44.2) 190 (43.1) 35 (35.0) 49 (49.0)
Race and Ethnicity, n (%) 0.131
  Hispanic 833 (10.8) 30 (6.8) 13 (13.0) 15 (15.0)
  Non-Hispanic Black 2999 (38.7) 211 (47.8) 44 (44.0) 39 (39.0)
  Non-Hispanic white 3572 (46.1) 187 (42.4) 36 (36.0) 40 (40.0)
  Non-Hispanic Asian 110 (1.4) 1 (0.2) 3 (3.0) 2 (2.0)
  Other races 229 (3.0) 12 (2.7) 4 (4.0) 4 (4.0)
Group primary payment 0.239
  Private 3564 (46.0) 216 (49.0) 48 (48.0) 50 (50.0)
  Public 3215 (41.5) 176 (39.9) 42 (42.0) 35 (34.0)
  Self-pay 307 (4.0) 22 (5.0) 4 (4.0) 3 (3.0)
  Others 657 (8.5) 27 (6.1) 6 (6.0) 12 (12.0)

aSMD: standardized mean differences.

After generating labels, we fit a least absolute shrinkage and
selection operator logistic regression model to learn and test
a CP. Table 3 presents the 1st nearest neighbor distance for
both the coverage sample and random sample, as well as the
AUROC for the learned CP. Additionally, we plot the 1st
to 20th nearest neighbor distances of coverage and random
sample in Figure S2 in Multimedia Appendix 1.

Given that the true cluster structure is unknown, we report
the AUROC at the demographic variable level. The 1st
nearest neighbor distance and the AUROC results indicate
that the coverage sample slightly outperforms the random
sample. This pattern is also observed at the demographic
feature level; however, these differences did not reach
statistical significance. Nonetheless, in terms of magnitude,
coverage samples demonstrate a notable improvement in
the coverage of young adults compared to random samples.
Of note, we found that increased coverage of demographic
groups is not directly correlated with model performance. For

example, the coverage and random samples both have similar
proportions of males and females. However, the coverage
sampling performs nominally better within each sex group.
This supports not including demographics in the clustering
step and relying on clinical drivers of differentiation. We
further evaluated the performance of coverage sampling
using additional model architectures, including random forest
and XGBoost, for real-world data. Across all models, the
coverage sampling approach consistently performed as well
as, or better than, random sampling. More details can be
found in Table S2 in Multimedia Appendix 1.

For very small subgroups, the performance of the coverage
sample may vary. For instance, in the “Other race” group
(n=12), the coverage sample shows a substantial AUROC
improvement over random sampling (0.611 vs 0.925). In
contrast, for the “Other payment” group (n=27), the coverage
sample performs slightly worse than random sampling (0.805
vs 0.820).

Table 3. Mean area under the curve comparison between the coverage sample and the random sample on real-world data.
Characteristics (n) Random sample AUROCa (95% CI) Cluster sample AUROC (95% CI)
First nearest neighbor distance 57777.82 54213.58
Overall 0.726 (0.680-0.772) 0.747 (0.701-0.793)
Sex
  Female (n=220) 0.724 (0.659-0.784) 0.763 (0.695-0.824)
  Male (n=221) 0.725 (0.656-0.789) 0.730 (0.663-0.797)
Age (years), n (%)
  Children (0‐18; n=2) 0.609 (0.312-0.875) 0.656 (0.312-0.937)
  Young adult (18 – 35; n=65) 0.789 (0.685-0.886) 0.867 (0.774-0.947)
  Middle adult (35 – 65; n=179) 0.723 (0.652-0.793) 0.727 (0.647-0.797)
  Older adult (>65; n=185) 0.669 (0.587-0.749) 0.673 (0.588-0.754)
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Characteristics (n) Random sample AUROCa (95% CI) Cluster sample AUROC (95% CI)
Race and ethnicity, n (%)
  Hispanic (n=30) 0.828 (0.674-0.963) 0.850 (0.692-0.973)
  Non-Hispanic Black (n=211) 0.730 (0.660,0.791) 0.736 (0.664-0.802)
  Non-Hispanic white (n=187) 0.703 (0.629,0.778) 0.725 (0.658-0.798)
  Non-Hispanic Asian (n=1) N/Ab N/A
  Other races (n=12) 0.611 (0.222-0.944) 0.925 (0.778-1)
Group primary payment
  Private (n=216) 0.698 (0.626-0.764) 0.737 (0.667-0.805)
  Public (n=176) 0.743 (0.672-0.811) 0.736 (0.661-0.809)
  Self-pay (n=22) 0.642 (0.423-0.857) 0.733 (0.485-0.923)
  Others (n=27) 0.820 (0.641-0.961) 0.805 (0.623-0.950)

aAUROC: area under the receiver operating characteristic curve.
bN/A: Not applicable.

Discussion
Principal Findings
CPs are a key component of secondary research with EHR
data [23,24]. A required step in CP development is conduct-
ing a manual chart review to establish a set of “gold-standard”
labels to identify patients with and without the condition
or outcome of interest. This manual review can be highly
time-consuming [25,26]. Little work has been conducted on
how to optimally select charts for review, with investigators
most often using random chart selection [11]. This can lead
to inefficiencies as potentially informative or edge cases can
be missed. To address this concern, we have proposed a
sampling strategy to select charts for review that captures
the diversity of a population of interest. The key aspect of
our method is identifying the optimal sample using a new
metric that we have termed the ntℎ nearest neighbor distance.
We assessed our method using both simulated and real-
world data, evaluating both the information coverage and CP
performance. Our findings indicate that coverage sampling
performs as well as, if not better than, random sampling. We
recommend using a representative sample when developing
a computable phenotype. Alternatively, if the phenotype has
already been developed, it should be recalibrated using a
representative sample of the population before deployment.

One of the motivations for this approach is the presump-
tion that within any group of patients with a particular
condition, there are patient subgroups that may have a
different presentation of that condition. For example, while
many patients with diabetes will have glycosylated hemo-
globin test values >6.5% there will be some individuals
with controlled diabetes and normal glycosylated hemoglo-
bin values; however, these patients still have diabetes [27].
Such scenarios require the creation of complex CPs that
can identify patients with diabetes who have a variety of
disease presentations [28]. If these patient subgroups are
small enough, a random selection of charts may not pro-
vide sufficient coverage of these subgroups to ensure that
the CP performs equitably for all patient subgroups. As

our results demonstrate, coverage sampling has its greatest
impact in CP performance when minority subgroups are
present. However, the presence of such minority subgroups
is not a requirement for the method to perform well. In
scenarios without minority subgroups, our method performs
comparably to random sampling, highlighting the robustness
of the approach. Moreover, even when there is no underlying
cluster structure at all, coverage sampling performs as well as
random sampling.

A novel aspect of our approach is the development of
a metric, the ntℎ nearest neighbor distance, to measure
the coverage of a given sample. While previous methods
have used nearest neighbor distances to detect and quantify
spatial randomness, they have primarily focused on ana-
lyzing spatial patterns in populations [29]. Existing repre-
sentativeness metrics, such as Simpson’s Diversity Index
and Shannon’s Entropy, quantify overall variability across
multiple demographic features [30]. Simpson’s Diversity
Index measures the probability that 2 individuals randomly
selected from a sample will belong to different categories,
thereby emphasizing the dominance or evenness of group
representation [31]. Shannon’s Entropy quantifies diversity
by accounting for both the abundance and the evenness of
the categories present, using information theory to assess the
uncertainty in predicting the category of a randomly chosen
individual [32]. While these metrics effectively address
general diversity measurement goals, they do not directly
align with our specific goal of evaluating the representation
and coverage of minority subgroups. The ntℎ nearest neighbor
distance explicitly evaluates the distance between records in
the unsampled group to those in the sampled group. This
targeted focus enables a more precise assessment of the extent
to which minority subgroups are included in study samples,
thereby avoiding underrepresentation in the set of records
used for CP development. As our real data analysis results
showed, we can use the ntℎ nearest neighbor distance to
choose an optimal number of cluster k from which to sample.
In particular, choosing too large of k leads to suboptimal
performance.
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Although the construction and generation of a chart
review sample has not been widely discussed in the CP
literature, parallel work exists in the active learning litera-
ture. Current active learning methods can be categorized
as query-acquiring (pool-based) or query-synthesizing [20,
33]. We focus on query-acquiring active learning, as query-
synthesizing methods are not directly analogous to our
work. Query-acquiring active learning uses various sampling
strategies, including uncertainty sampling or information-the-
oretic measures, to identify which sampling strategies would
be most impactful for continued labeling [18,34]. Therefore,
the underlying burden for query-acquiring active learning is
the same as in our method: an efficient need for labeling [35,
36]. Most existing methods, including uncertainty sampling
or information-theoretic measures, focus on identifying the
most influential records to enhance the performance of a
given prediction task [20,21,37-40]. In contrast, our method
is not based on a supervised objective. Further, our method
seeks to select records that best capture diversity, rather
than records that are most representative. While representa-
tiveness and diversity may be related, they are not necessarily
equivalent.

To illustrate our approach, we tested our method with
the real-world task of identifying hospital encounters due
to COVID-19. During the height of the COVID-19 pan-
demic (2020‐2023), all patients admitted to our health
system’s hospitals were tested for SARS-CoV-2. As we
and others have noted, approximately 38.2% of patients
with a positive SARS-CoV-2 test were admitted for reasons
other than COVID-19 [14,15]. Therefore, if one wanted
to identify patients admitted due to COVID-19, a positive
SARS-CoV-2 test would not be a sufficient CP because of
its poor specificity. We compared the performance of the
chart review sample based on a random selection of charts
and our coverage sampling method. Overall, the coverage
sample yielded a comparable performing CP. So, while
coverage sampling did not yield better performance, the
results conform to the simulation findings, which indicate that
coverage is robust even when there is no underlying cluster
structure or minority group.

While we selected charts based solely on clinical data
elements, there were meaningful demographic differences
between samples derived from randomly selected charts and
through coverage sampling. For example, cluster 1 includes a
much older patient population, with 50.2% (2959/5897) over
the age of 65, compared to 25.3% (467/1846) in cluster 2.
Patients in cluster 1 also have longer hospital stays (9.42
d on average) than those in cluster 2 (3.52 d). Additional
details on cluster characteristics are provided in Table S1 in
Multimedia Appendix 1. Consequently, the coverage sample
exhibits a different distribution than the random sample.
Specifically, the coverage sample included younger patients,
a greater number of non-Hispanic Black patients (though
fewer Hispanic patients), and more individuals with pub-
lic insurance compared to the cohort derived from random
sampling. This result highlights one of the key opportunities
in this approach: deriving a less biased sample on which to
build a CP. As others have described, one of the mechanisms

of algorithmic bias is having unrepresentative samples used
to develop the algorithm [41]. For instance, in the context
of rare diseases, the typical ratio of patients with a given
rare condition to those without the condition is approximately
100:1 [42,43]. In such scenarios, using random sampling
may result in underrepresentation of minority subgroups in
the chart review sample. When the review sample does not
accurately reflect the patient population, the resulting CPs
can produce biased results. For example, if certain demo-
graphic groups are underrepresented in the dataset, the CP
may not learn to make accurate predictions for these groups,
leading to disparities in performance [44]. To account for
this, algorithmic solutions have been proposed, including data
augmentation [45,46], resampling techniques [47,48], and
algorithmic adjustments [49]. However, instead of address-
ing this problem algorithmically, we propose addressing it
via design. As such, by clustering the data and sampling
equally from the obtained clusters, we aim for the chart
review sample to better represent the patient population.
An advantage of our method is that it does not require the
researcher to prespecify groups. Moreover, as our empirical
results show, we are able to capture demographic diversity
with just clinical data.
Limitations
While our approach shows promise, there are some lim-
itations. First, while our simulation results illustrate the
potential improvement for coverage sampling, our real-world
data example only showed nominal improvement. Further
work should be conducted in other contexts. Second, the
performance of our method is related to the quality of the
cluster analysis. As others have noted, clustering methods
can be highly variable [50]. This variability may be more
obvious in EHR data, which often experience data quality
issues. Because the clustering step is a means of obtaining a
representative sample, we address this by generating multiple
samples from multiple cluster structures and selecting the one
with the best coverage. In principle, it is possible to skip
the clustering step and directly choose an optimal sample,
leading to more robust results. While such an approach is
worthy of further exploration, it would be more computation-
ally expensive and would not necessarily yield meaningfully
better results. Third, while our study suggests that cover-
age sampling is not very sensitive to the choice of n, its
robustness warrants further evaluation. Future researchers are
encouraged to test a small range of n values (eg, n=1, 5, 10),
as different choices of n may yield different samples. Another
potential limitation is that the coverage sample (intentionally)
generates a sample that will likely have a different event rate
than the true event rate within the full patient population.
While this does not present a problem for rank-based metrics
like AUROC, it may affect the calibration of other metrics,
such as Kullback-Leibler divergence [51]. When calibration is
a priority, recalibration methods can be used [52].
Conclusions
Overall, our results show that our coverage sampling
method can provide a more representative sample than
random sampling, especially when the source cohort contains
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minority subgroups. This approach can lead to the generation
of a CP that has better performance in the overall study
population as well as within subgroups. While CP develop-
ment is a key part of secondary research with EHR data,
little work has been done on how best to derive samples

for learning CPs. This work addresses this gap and seeks
to spur more investigation in this area. Ultimately, this
sampling method has the potential to improve future clinical
research by making gold-standard chart review labeling a
more efficient process.
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