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Abstract

Background: Electroencephalography (EEG) has been widely used to measure brain activity, but its potential to generate
accurate images from neural signals remains a challenge. Most EEG-decoding research has focused on tasks such as motor
imagery, emotion recognition, and brain wave classification, which involve EEG signal analysis and classification. Some studies
have explored the correlation between EEG and images, primarily focusing on EEG-image pair classification or transformation.
However, EEG-based image generation remains underexplored.

Objective: The primary goal of this study was to extend EEG-based classification to image generation, addressing the limitations
of previous methods and unlocking the full potential of EEG for image synthesis. To achieve more meaningful EEG-to-image
generation, we developed a novel framework, Neural-Cognitive Multimodal EEG-Informed Image (NECOMIMI), which was
specifically designed to generate images directly from EEG signals.

Methods: We developed a 2-stage NECOMIMI method, which integrated the novel Neural Encoding Representation Vectorizer
(NERV) EEG encoder that we designed with a diffusion-based generative model. The Category-Based Assessment Table (CAT)
score was introduced to evaluate the semantic quality of EEG-generated images. In addition, the ThingsEEG dataset was used
to validate and benchmark the CAT score, providing a standardized measure for assessing EEG-to-image generation performance.

Results: The NERV EEG encoder achieved state-of-the-art performance in several zero-shot classification tasks, with an average
accuracy of 94.8% (SD 1.7%) in the 2-way task and 86.8% (SD 3.4%) in the 4-way task, outperforming models such as Natural
Image Contrast EEG, Multimodal Similarity-Keeping Contrastive Learning, and Adaptive Thinking Mapper ShallowNet. This
highlighted its superiority as a feature extraction tool for EEG signals. In a 1-stage image generation framework, EEG embeddings
often resulted in abstract or generalized images such as landscapes instead of specific objects. Our proposed 2-stage NECOMIMI
architecture effectively extracted semantic information from noisy EEG signals, showing its ability to capture and represent
underlying concepts derived from brain wave activity. We further conducted a perturbation study to test whether the model overly
depended on visual cortex EEG signals for scene-based image generation. The perturbation of visual cortex EEG channels led
to a notable increase in Fréchet inception distance scores, suggesting that our model relied heavily on posterior brain signals to
generate semantically coherent images.
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Conclusions: NECOMIMI demonstrated the potential of EEG-to-image generation, revealing the challenges of translating noisy
EEG data into accurate visual representations. The novel NERV EEG encoder for multimodal contrastive learning reached
state-of-the-art performance both on n-way zero-shot and EEG-informed image generation. The introduction of the CAT score
provided a new evaluation metric, paving the way for future research to refine generative models. In addition, this study highlighted
the significant clinical potential of EEG-to-image generation, particularly in enhancing brain-machine interface systems and
improving quality of life for individuals with motor impairments.

(JMIR Med Inform 2025;13:e72027) doi: 10.2196/72027
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Introduction

Background
Electroencephalography (EEG) is one of the ancient techniques
for measuring neuronal activity in the human brain [1,2]. EEG
records electrical activity from the scalp, offering exceptional
temporal resolution and high sensitivity to neural processes. Its
application has significant value in clinical practice, especially
for diagnosing conditions such as epilepsy, depression, and
sleep disorders [3-5], as well as assessing dysfunctions in
sensory transmission pathways [6,7]. Historically, the analysis
of EEG signals was limited to visual inspection of changes in
amplitude and frequency over time. However, with the advent
of digital technology, the methodology has undergone significant
evolution, enabling a more comprehensive analysis of both the
temporal and spatial characteristics of these signals [8]. As a
result of these advancements, EEG has become recognized as
a powerful tool for capturing real-time brain activity, particularly
in the subsecond range. Despite these advantages, EEG
traditionally suffers from low spatial resolution, which makes
it difficult to precisely identify the brain areas responsible for
the observed neuronal activity at the scalp [9]. In recent years,
there has been growing interest in leveraging EEG for more
advanced applications such as image recognition and
reconstruction [10]. These developments have led to significant
improvements in the accuracy of image recognition tasks,
highlighting EEG’s potential as a bridge between neural activity
and visual representation [11,12]. The appeal of using EEG for
image recognition lies in its ability to capture the temporal
dynamics of neuronal activity, although its spatial resolution
remains a major challenge. To address this, innovative
methodologies, including deep learning techniques and
generative models such as generative adversarial networks
(GANs) [13] and diffusion models [14], have enhanced the
accuracy and effectiveness of EEG-based systems, allowing for
the generation of photorealistic images from neural signals
[12,15,16].

Recent studies have demonstrated the feasibility of decoding
natural images from EEG signals by aligning EEG responses
with paired image stimuli [17]. However, most of the existing
works claiming to generate images from EEG signals are still
primarily image-to-image transformations. In these approaches,
EEG information is typically used to slightly alter the input
image, often by adding noise rather than generating new images
directly from the brain signals [17-19]. In a typical experiment

designed to study brain responses related to visual processes,
participants view a series of images while their brain signals
are recorded by a brain scanner or other recording device for
subsequent analysis. Various noninvasive methods, such as
functional magnetic resonance imaging (fMRI), EEG, and
magnetoencephalography, can be used to capture these brain
responses, each offering different sensitivity levels. Despite the
availability of these techniques, there is still limited
understanding regarding the precise interpretation of the data
and, more importantly, the mechanisms underlying these
responses. A pioneering study explored the possibility of
generating impressions of what participants saw by using fMRI
data based on a large image dataset sourced from YouTube [20].
However, this method faces significant challenges, including
the complexity and high costs associated with using fMRI
scanners. To overcome these limitations, much of the recent
research has shifted toward using electrophysiological responses,
particularly EEG. Although EEG offers a lower spatial
resolution than fMRI, it provides much higher temporal
resolution, making it a more accessible and cost-effective
method. This shift to EEG is further supported by its ability to
capture rapid, real-time neural dynamics. However, EEG data
present their own set of challenges. The inherent noise and
susceptibility to external factors complicate the accurate
reconstruction of the original visual stimulus, limiting its
effectiveness in image recognition and generation tasks. As a
result, fMRI remains the preferred method in many studies
focusing on image recognition or generation from brain signals
[21], whereas EEG is used less frequently due to its noisier
nature. Previous efforts such as Brain2Image and EEG-GAN
have explored EEG-guided image reconstruction using
variational autoencoders (VAEs) and GAN frameworks,
respectively. However, most of these approaches relied heavily
on paired image inputs and did not fully explore direct
EEG-to-image synthesis.

To address these limitations and achieve more meaningful
EEG-to-image generation, we introduced Neural-Cognitive
Multimodal EEG-Informed Image (NECOMIMI), an innovative
framework that focuses on EEG-based image generation. This
framework integrates advanced diffusion model techniques to
enhance the accuracy and realism of images generated from
EEG signals. In this study, we first proposed a novel EEG
encoder, Neural Encoding Representation Vectorizer (NERV),
which achieved state-of-the-art (SOTA) performance in
multimodal contrastive learning tasks.
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Related Work
The concept of using EEG signals for image-related tasks has
evolved over time. Initially, efforts focused on decoding visual
categories from EEG signals [11], demonstrating the feasibility
of EEG-based image classification using deep learning models.
While these early studies laid the groundwork, the datasets used
were small, limiting the generalizability of the findings.
However, subsequent advancements in generative models, such
as VAEs and GANs, paved the way for more sophisticated
EEG-to-image generation. The VAE, as proposed by Kingma
and Welling [22,23], provided a means of generating and
reconstructing data by learning latent data distributions.
Similarly, the GAN framework introduced by Goodfellow et al
[13] leveraged adversarial training between a generator and a
discriminator to produce realistic images. Building on these
ideas, Brain2Image [12] became the first to apply VAEs to
guide image generation from EEG features. Later, EEG-GAN
[18] introduced the first EEG-based image generation model
using long short-term memory [24] to extract EEG features and
guide the GAN’s image generation process.

Several works based on GANs, such as ThoughtViz [25],
visual-guided GAN with visual-consistent term [26], BrainMedia
[27], and EEG2IMAGE [16], have emerged, each focusing on
improving the interaction between the EEG encoder and the
GAN architecture. Despite these advancements, a common
challenge remains in effectively using EEG data to guide image
generation and reconstruction. This challenge persisted until
the advent of Contrastive Language-Image Pretraining (CLIP;
OpenAI) [28], which provided a better solution by enabling
more reliable alignment between EEG and image data.
EEG-CLIP [29] was the first framework to use contrastive
learning to align EEG and image data. However, it was largely
exploratory, and its framework was not extended for downstream
tasks such as zero-shot image recognition. The next step in this
evolution was to design more effective EEG encoders for
contrastive learning, leveraging the rich image embeddings
extracted from CLIP-based pretrained models. Recent efforts
such as Natural Image Contrast EEG (NICE), Multimodal
Similarity-Keeping Contrastive Learning (MUSE), Adaptive
Thinking Mapper, and others [30-33] have explored this
direction. In addition, some researchers have ventured into
quantum-classical hybrid computing using a quantum EEG
encoder [34], aiming to perform quantum contrastive learning
[35]. Currently, many studies focus on zero-shot classification,
where the model is tested on unseen EEG data and images,
aiming to assess its ability to generalize to novel data. This is
a challenging task that involves computing similarity scores
between EEG and image data for recognition purposes. The
evolution of contrastive learning techniques for EEG-based
image recognition has improved the generalization performance
of models, particularly when tested on out-of-sample data.

Despite the significant progress, the use of diffusion models to
generate EEG-based images remains a relatively new area.
While there are several EEG-based image reconstruction models
that use diffusion models, such as NeuroVision [19],
DreamDiffusion [17], diffusion model for the reconstruction
from EEG to image [36], BrainViz [37], NeuroImagen [38],
and EEGVision [39], most of these approaches rely on

image-based features and treat EEG data as supplementary
information. However, these methods primarily use images as
input and are not designed to process nonvisual signals such as
EEG directly. To address this gap, we proposed NECOMIMI,
a flexible and modular framework explicitly designed for
EEG-to-image generation. Unlike previous methods that focus
on recognition or classification, NECOMIMI leverages modern
diffusion models using EEG signals as the primary prompt,
enabling direct generation of images from neural features. This
shift represents a crucial step forward, reframing EEG not
merely as a support signal but as a core semantic driver for
brain-conditioned multimodal generation.

On the basis of the trajectory of prior work, it becomes clear
that the field is moving from EEG-assisted image recognition
toward more ambitious goals such as direct image generation
conditioned solely on EEG signals. Although recent studies
have explored advanced paradigms, including contrastive
learning frameworks and hybrid quantum models, most still
relegate EEG to a secondary role. In contrast, our preliminary
investigations into quantum-enhanced EEG processing, such
as quantum machine learning for enhanced EEG encoding and
quantum contrastive learning [35], demonstrate how EEG can
serve as the central signal in generative tasks. Quantum machine
learning for enhanced EEG encoding [34] uses variational
quantum circuits to enrich EEG representations with greater
expressive capacity, whereas quantum contrastive learning
integrates quantum projections into contrastive learning
pipelines to improve cross-modal alignment. These findings
underscore a critical limitation in current literature: the lack of
a dedicated generative framework that places EEG at the
forefront of image synthesis. Our work aimed to fill this void
by shifting the paradigm from recognition to generation,
positioning EEG not as an auxiliary cue but as a rich, semantic
prompt capable of guiding diffusion-based image creation. This
reorientation opens new avenues for decoding cognitive states
through generative modeling and facilitates the development
of brain-native, multimodal artificial intelligence systems.

In this study, we developed a comprehensive 2-stage
EEG-to-image multimodal generative framework, which
extended previous contrastive learning between EEG and images
and applied it to image generation. Unlike previous works that
have focused primarily on image-to-image generation with EEG
features serving as guidance, our framework offered a more
holistic approach to leveraging EEG data for image creation.
While EEG data are traditionally characterized by high temporal
but low spatial resolution, our goal was not to recover precise
pixel-level representations. Instead, we treated EEG as a
high-level cognitive modulator that captures semantic concepts,
which can be used to guide image generation via latent diffusion
models. To address the conceptual differences between
EEG-to-image and traditional text-to-image tasks, we introduced
a new evaluation metric, the Category-Based Assessment Table
(CAT) score. This score assessed image generation performance
based on semantic concepts as opposed to merely evaluating
image distribution. We further established a CAT score
benchmark using a vision language model on the ThingsEEG
dataset. Finally, our study uncovered several notable findings
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and phenomena that shed light on the EEG-to-image generation
process.

Methods

Datasets and Preprocessing
The ThingsEEG dataset comprised a large set of EEG
recordings, which were obtained using a rapid serial visual
presentation paradigm [40]. The rapid serial visual presentation
is a commonly used experimental protocol where participants
are shown a series of visual stimuli in quick succession, typically
at rates of ≥10 Hz, to evoke reliable neural responses. Responses

were collected from 10 participants, each of whom viewed a
total of 16,740 natural images sourced from the THINGS
database [41]. The dataset includes 1654 training categories,
with each category containing 10 images, as well as 200 test
categories, each featuring a single image. The EEG data were
recorded using 64-channel Easycap equipment, and
preprocessing involved segmenting the data into trials that
spanned 0 to 1000 milliseconds after the stimulus was shown,
with baseline correction applied based on the prestimulus period.
EEG responses for each image were averaged over multiple
repetitions. The workflow and models used in the EEG-based
image generation system are shown in Figure 1.

Figure 1. The entire workflow of the electroencephalography (EEG)–based image generation model, including (A) training phase, (B) zero-shot testing
phase, (C) 1-stage image generation, and (D) 2-stage image generation. GELU: Gaussian error linear unit; InfoNCE: information noise-contrastive
estimation; MLP: multilayer perceptron; SDXL: Stable Diffusion XL.

NERV EEG Encoder
As the foundational component of the NECOMIMI framework,
we first describe our novel EEG encoder, NERV, which served
as the foundation for EEG signal representation and embedding.

As illustrated in Figure 2, NERV was designed to address the
unique spatiotemporal complexity of EEG signals, which differ
from natural images or text due to their nonstationary nature,
simultaneous temporal dynamics, and spatial dependencies
across multiple electrodes. To effectively capture these
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characteristics, NERV adopted a hierarchical architecture that
combined convolutional and attention-based modules. The input
EEG data, flattened and linearly projected, first underwent
positional encoding to preserve temporal order. It then flowed
through 2 complementary convolutional branches: a
spatial-temporal convolution, which extracted spatial features
followed by temporal ones, and a temporal-spatial convolution,

which performed the reverse. These dual-pathway 2D
convolutions operated across the EEG channel dimension,
allowing the model to learn localized patterns in both directions.
This design enabled NERV to generate robust and semantically
meaningful embeddings from EEG signals, laying the
groundwork for high-quality image generation in the
NECOMIMI pipeline.

Figure 2. The overall structure of the Neural Encoding Representation Vectorizer electroencephalography encoder model. Fp1: frontal pole 1; Fp2:
frontal pole 2; FpZ: frontal pole Z; MLP: multilayer perceptron; O1: occipital 1; O2: occipital 2; OZ: occipital midline; POZ: parieto-occipital midline.

The output of these branches was passed through multihead
self-attention layers, allowing the model to capture long-range
dependencies across time and channel dimensions. Unlike
conventional EEG encoders that treat all channels uniformly,
NERV incorporated an EEG attention module at an early stage.
This module used a transformer encoder across the channel axis
to explicitly model interchannel relationships and assign
adaptive importance weights to different brain regions. Such a
design leveraged the structured spatial geometry of EEG
electrode placement, enabling the model to generalize more
effectively across participants. To further enhance
discriminability, particularly in zero-shot settings, a
cross-attention block was incorporated, enabling the class token
to selectively attend to latent spatial-temporal features. The
resulting feature sequence was flattened and passed through a
fully connected layer, yielding a 1440D intermediate
representation. Following this, a participant-specific linear
transformation adjusted the temporal resolution to accommodate
interindividual variability in EEG patterns. Finally, a residual
projection head, composed of a Gaussian error linear unit
activation and dropout, mapped the features into a 1024D latent
space, providing a compact yet expressive representation for
the downstream generative module.

The model was trained using a contrastive learning objective,
aligning EEG embeddings with paired image embeddings from
a pretrained CLIP model. This approach enabled robust
multimodal representation learning, bridging neural signals and
visual semantics. By combining structured convolution,
channel-aware attention, and semantic alignment mechanisms,
the NERV encoder effectively captured both the signal dynamics
and spatial layout of EEG signals, significantly outperforming
previous models in low-data and cross-participant scenarios.
The EEG attention module explicitly modeled interchannel
relationships and assigned adaptive importance to each channel
based on its functional relevance, ensuring that different EEG
channels are weighted according to their significance in the
image generation process. By adopting this approach, NERV
can effectively capture the unique spatial dependencies inherent
in EEG data, leading to more accurate and contextually relevant
representations for downstream image generation tasks.

Framework Architecture and Experiment Setting
Details
To ensure a fair comparison of various EEG encoders and
minimize external factors, all experiments in this study were
rerun using a unified CLIP–vision transformer (ViT)
environment, leveraging the available open-source code [30-32].
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CLIP is a deep learning model by OpenAI that uses contrastive
learning to map both image and text into a shared embedding
space, enabling the model to understand their relationship. It
trains separate image and text encoders and supports zero-shot
tasks such as image retrieval based on text. CLIP-ViT is a
variant that uses ViT as the image encoder, which improves
performance by processing images as patches. Given that
contrastive learning is sensitive to batch size, a batch size of
1024 was used for all experiments. The final results were
averaged across the best outcomes from 5 random-seed training
sessions, each running for 200 epochs. We used the AdamW
optimizer (The PyTorch Foundation) with a learning rate of
0.0002, and the β1 and β2 parameters were set to 0.5 and 0.999,
respectively. The contrastive learning parameter τ was initialized
with log(1/0.07). In terms of model architecture, the NERV
model performed optimally with 5 multiheads, whereas the
transformer layer used 1 multihead and the cross-attention layer
used 8 multiheads. The time step for the diffusion model was
set to 50. All experiments, including EEG encoder training and
prior diffusion model processing, were conducted on a machine
equipped with an A100 graphics processing unit.

Using the ThingsEEG dataset, we developed an advanced
EEG-to-image generation model that leverages deep learning
techniques and diffusion models. Initially, the framework
included a 1-stage image generation phase. However, we
observed that its performance was suboptimal. As a result, we
adapted the model to a 2-stage process. The overall structure
of the model was composed of 4 phases: training, zero-shot
testing, 1-stage image generation, and 2-stage image generation
(Figure 1). Each phase played a crucial role in transforming raw
EEG data into meaningful visual outputs.

Diffusion Model Implementation Details
To enhance the reproducibility and transparency of our
EEG-to-image generation pipeline, we further describe the
technical configuration of the diffusion model used in both the
1-stage and 2-stage NECOMIMI frameworks. We adopted the
Stable Diffusion XL (SDXL) Turbo (Stability AI) [42,43] as
the backbone generative model. SDXL Turbo is an optimized
variant of the original Stable Diffusion architecture designed
to produce high-quality images using significantly fewer
sampling steps. This model is based on a U-Net structure with
cross-attention mechanisms and operates in the latent space of
a VAE, allowing for efficient and photorealistic image
generation. For the denoising process, we applied a cosine noise
schedule [14]. This schedule gradually adjusted the amount of
noise during reverse diffusion, which helped improve image
diversity and ensured smoother training convergence by
avoiding sudden changes in noise levels across time steps.
During inference, we used 50 sampling steps, which provided
a good balance between generation speed and visual quality.
This step count was well suited to SDXL Turbo’s low-latency
design and has been empirically verified to maintain satisfactory
image fidelity.

To condition the image generation on EEG signals, we used the
IP-Adapter module [44]. Although originally developed for
visual feature prompts, we adapted it to accept EEG embeddings.
These embeddings were projected into the appropriate feature

space and injected into the cross-attention layers of the U-Net
at both low and middle resolutions, enabling the EEG signals
to influence multiple stages of the generation process.
Furthermore, we applied a classifier-free guidance strategy
during image generation. This involved generating both
conditional and unconditional outputs and blending them in a
controlled manner to improve the relevance of the generated
images to the input EEG signal while still preserving sample
diversity. In our implementation, the guidance strength was set
to a moderate value to maintain a balance between controllability
and visual variation. In the 2-stage generation framework, the
EEG embeddings were first processed by a lightweight diffusion
prior network. This network, implemented as a 6-layer U-Net,
was trained to transform noisy EEG embeddings into clean,
CLIP-like image embeddings [30-32]. A dropout rate of 0.1
was used during training to encourage robustness. The resulting
embeddings were then passed through the IP-Adapter into the
SDXL Turbo model for final image synthesis. By integrating
these components, the NECOMIMI framework effectively
bridges the gap between EEG signals and generative models,
enabling high-quality image synthesis guided purely by brain
activity.

Training Phase

In the initial training phase, both visual image ∈ .h × w × ch

and EEG data ∈ .e × d were processed in parallel to establish
a shared embedding space. Here,   denotes the image height, w
is the image width, and ch refers to the number of channels (eg,
RGB channels). Similarly, e represents the number of electrodes
(channels), and d corresponds to the number of data points (time
samples) in the EEG signal. Training set images were initially
passed through a pretrained image encoder, which transforms
the images into latent representations, referred to as image
embeddings I. In this work, we used a pretrained ViT [45] from
the CLIP model [28] as the image encoder, producing

embeddings of size .1 × 1024 for each image. Simultaneously,
the corresponding EEG signals are processed by a custom EEG
encoder, generating EEG embeddings E. For the EEG encoder,
this work extended several existing approaches, including NICE,
MUSE, Nervformer, and Adaptive Thinking Mapper, to enable
EEG-to-image capabilities [30-32]. Moreover, we introduced
a novel EEG encoder, NERV, specifically designed for noisy,
multichannel time-series data such as EEG that leveraged a
multi-attention mechanism. The image and EEG embeddings
were projected into a shared latent space using a multilayer
perceptron projector, where they were optimized using the
information noise-contrastive estimation (InfoNCE) loss
function. This contrastive learning loss function ensured the
alignment of corresponding image and EEG embeddings in the
latent space, thereby improving the model’s capacity to associate
neural patterns with visual stimuli. The InfoNCE loss,
commonly used in contrastive learning, is defined as follows

[28,46,47]: . (1), where SE,I represents the
similarity score between the EEG embeddings E and the paired
image embeddings I and τ is the learned temperature parameter.

JMIR Med Inform 2025 | vol. 13 | e72027 | p. 6https://medinform.jmir.org/2025/1/e72027
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Zero-Shot Testing Phase
Once trained, the model proceeded to the zero-shot testing phase,
which evaluated its ability to generalize to unseen data. During
this phase, the EEG signals and images from the test set were
encoded using the pretrained encoders, and their respective
embeddings were projected through the multilayer perceptron
projector. The test data were divided into several groups,
including 2-way, 4-way, 10-way, 50-way, and 100-way
classification, facilitating a structured comparison between the
EEG and image embeddings. The final similarity scores between
the embeddings determine the model’s classification accuracy,
enabling an evaluation of how well the model generalizes to
new EEG data without requiring additional training.

One-Stage Image Generation
In the 1-stage image generation process, EEG embeddings from
the test set were directly used as inputs to reconstruct images.
By incorporating the IP-Adapter [44], originally designed to
use images as prompts, the compact design enhanced the
flexibility of image prompts within pretrained text-to-image
models. In this study, we adapted the IP-Adapter to transform
EEG embeddings into feature prompts for the image generation
process. These vectors were injected into the cross-attention
layers of the U-Net at both low- and midresolution blocks,
enabling the EEG embedding to modulate generation across
multiple stages. These conditioned embeddings were then
processed by the SDXL Turbo model [42,43]. This approach
offered a streamlined method for EEG-based image generation,
relying on a single transformation stage to produce meaningful
visual outputs from neural signals. The commencement of the
EEG-conditioned diffusion phase was crucial for generating
images from EEG data. During this phase, a classifier-free
guidance method was used, which paired CLIP embeddings
and EEG embeddings (I and E). Specifically, we generated both
conditional and unconditional outputs and combined them using
t h e  f o l l o w i n g  f o r m u l a :

. (2), where
w≥0 is the guidance scale (set to 3.5 in our experiments). This
technique improves controllability while preserving diversity.

By applying advanced generative techniques, the diffusion
process was tailored to use the EEG embedding E to model the
distribution of the CLIP embeddings p(I|E). The CLIP
embedding I, generated in this stage, served as the foundation
for the subsequent image generation phase. The architecture

integrates a simplified U-Net model, denoted as ∈prior (It, t, E),

where It represents the noisy CLIP embedding at a specific
diffusion step t. The classifier-free guidance method refined the
diffusion model by conditioning it on a specific EEG input E.
This approach synchronized the outputs of both the conditional
and unconditional models. The final model equation was
e x p r e s s e d  a s  f o l l o w s :

. (3).

Where w≥0 was used to control the guidance scale, this
technique allowed for training both the conditional and
unconditional models within the same network, periodically
replacing the EEG embedding E with a null value to introduce

variation in the training process (approximately 10% of the data
points). The primary goal was to improve the quality of the
generated images while maintaining their diversity. However,
we were surprised to find that when EEG embeddings were
directly used as prompts for the diffusion model, the generated
images predominantly consisted of landscapes regardless of the
intended category. As a result, we explored a 2-stage approach
for image generation.

Two-Stage Image Generation
The prior diffusion stage played a crucial role in generating an
intermediate representation [48], such as a CLIP image
embedding, from a text caption [49]. This representation was
then used by the diffusion decoder to produce the final image.
This 2-stage process not only enhanced image diversity but also
maintained photorealism, allowing for efficient and controlled
image generation [50]. The 2-stage image generation process
introduced a more sophisticated and refined method for
synthesizing images from EEG data. In this approach, the EEG
embeddings were initially processed by a diffusion prior network
consisting of a 6-layer U-Net trained using cosine schedule and
dropout (P=.10). After passing through the U-Net, the modified
EEG embeddings were input into the SDXL Turbo model
assisted by the IP-Adapter. This 2-step transformation ensured
a more nuanced generation process, potentially leading to
higher-quality images through deeper layers of refinement. The
reverse diffusion process used a cosine noise schedule [42],
which smoothly adjusts the variance over diffusion steps to
stabilize training. This scheduling strategy improved sample
diversity and convergence by avoiding abrupt noise scale
changes across time steps. The time step t=50 referred to the
number of reverse sampling steps used during inference. We
found that 50 steps achieved a good trade-off between speed
and quality, especially under the SDXL Turbo architecture,
which was optimized for low-step generation.

The first step of stage 1 involved training the prior diffusion
model. The primary goal of this training phase was to enable
the model to recover the original embedding from noisy
embeddings. The specific steps are detailed in Multimedia
Appendix 1. Briefly, in the first phase of training, the model
learned to reconstruct the original EEG embedding from a noisy
version. Some EEG embeddings were randomly replaced with
null values to introduce variability, and random noise was added
and perturbed over multiple time steps. The model was trained
to predict and remove this noise, effectively recovering the
original EEG embedding. Once trained, the model entered the
generation phase. It started with random noise, progressively
refining it at each time step by predicting and removing noise.
Both conditional and unconditional noise predictions were made
and combined using a guidance mechanism to generate the final
clean EEG embedding. In the second phase, the clean EEG
embedding was passed through a specialized adapter, preparing
it as a prompt for the image generation model. The final EEG
embedding was then input into the SDXL Turbo model, which
generated the final image based on the EEG data.

Classification Task and Evaluation Strategy
We designed a participant-dependent zero-shot classification
task to assess the semantic generalization ability of our
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EEG-to-image model. In this setting, the model was evaluated
separately for each participant—a subset of image categories
was used for training, whereas a disjoint set was held out for
testing, ensuring a strict zero-shot scenario where the model
must generalize to entirely unseen classes. Notably, no
participant-specific adaptation methods (eg, participant
embeddings or normalization layers) were used, and both
training and testing were conducted on a within-subject basis.
To align EEG and image features in a shared embedding space,
we adopted the InfoNCE loss, a contrastive objective that
encourages the model to pull matching EEG-image pairs closer
while pushing apart nonmatching pairs within the same batch.
This facilitates learning fine-grained semantic associations
between brain activity and visual representations. We evaluated
the model’s retrieval performance under zero-shot conditions
using an n-way retrieval framework, where each test EEG
sample was matched against n candidate image embeddings,
including the correct one and n – 1 distractors sampled from
unseen categories. A prediction was considered correct if the
ground-truth image ranked highest in similarity. Retrieval
difficulty was varied across 3 levels: 2-way task (1 distractor),
4-way task (3 distractors), and 200-way task (199 distractors
from the full test set). This evaluation protocol provided a
realistic and stringent benchmark for assessing semantic
generalization and robust retrieval performance in EEG-to-image
understanding.

CAT Score
Unlike traditional image-to-image or text-to-image models
driven by image representations, EEG-to-image models face
unique challenges. In the current NECOMIMI architecture, the
model can only capture broad semantic information from EEG
signals rather than fine-grained details. For example, suppose
the EEG data are recorded while a participant is viewing an
aircraft carrier. When different EEG encoders are used in the
NECOMIMI framework, they may lead to different outputs.
Specifically, one EEG encoder could generate an image of a
jet, whereas another EEG encoder might produce an image of
a sheep. Therefore, to objectively assess performance, it was
necessary to establish a standard that would score the encoder
generating the jet image higher than the one generating the sheep
image in such cases. Existing evaluation metrics were not
suitable for this purpose. Traditional metrics such as the
structural similarity index [51] measure structural similarity
between the ground truth and the generated image, whereas the
inception score [52] and Fréchet inception distance (FID) [53]
focus on the accuracy of image categories and their distribution.
However, EEG captures more abstract semantic information,
and there was no guarantee that the participants’ thoughts during
EEG recording would perfectly align with the ground-truth
image. This made traditional evaluation methods unfair for
EEG-to-image tasks. To address this issue, we proposed the
CAT score, a new metric specifically designed for
EEG-to-image evaluation (Multimedia Appendix 2). In the
ThingsEEG test dataset, which contained 200 categories with
1 image per category, each image was manually labeled using
2 tags for broad categories, 1 for a specific category, 1 for
background content, and 1 for object attribute, resulting in a
total of 5 tags per image. The tags were extracted using

ChatGPT-4o (OpenAI) [53]. The entire test dataset thus
consisted of 200 images × 5 tags, totaling 1000 points. Using
manual annotation, we were able to determine whether the
categories of generated images matched these labels, providing
a fair assessment for EEG-to-image models.

While FID remains a widely used metric for evaluating image
fidelity by comparing feature distributions of generated and real
images, it does not consider semantic alignment between the
source EEG signal and the generated output [53]. In contrast,
the CAT score directly evaluates whether the generated image
aligns with the cognitive concept inferred from EEG signals.
Therefore, the CAT score and FID served as complementary
evaluation tools in our study. FID captures the visual quality,
whereas the CAT score emphasizes semantic correctness, which
is particularly crucial for EEG-driven generation where
pixel-level supervision is unavailable. Further details on the
ThingsEEG categories and scoring scheme are provided in
Multimedia Appendix 2.

Ethical Considerations
This study used publicly available datasets, and no personal or
sensitive information was collected directly. All data were
deidentified before analysis. As the study involved only publicly
available data and did not involve the collection of personal
data or clinical trials, institutional review board approval was
not required per the Chang Gung University's Academic Ethics
Series [54].

Results

Classification Results
Table 1 presents the classification accuracy results for the 2-way
and 4-way zero-shot tasks across 10 participants. Our proposed
model, NERV, consistently outperformed other methods,
particularly excelling in the 2-way classification task, where it
maintained the highest accuracy across most participants.
Specifically, NERV achieved an average accuracy of 94.8%
(SD 1.7%) in the 2-way task and 86.8% (SD 3.4%) in the 4-way
task, surpassing competing models such as NICE, MUSE, and
Adaptive Thinking Mapper ShallowNet (ATM-S). While NICE
and MUSE demonstrated strong performance in certain
participants, they fell short of NERV’s overall performance.
NICE achieved an average accuracy of 91.3% (SD 3.1%) in the
2-way task and 81.3% (SD 5.9%) in the 4-way task, whereas
MUSE achieved averages of 92.2% (SD 2.3%) and 82.8% (SD
5.0%), respectively. ATM-S, while comparable to NICE and
MUSE in some participants, showed weaker results on average,
with an accuracy of 86.5% (SD 4.9%) in the 4-way task. In the
more challenging 200-way zero-shot classification task (Table
2), NERV also outperformed all other methods, particularly in
terms of top-1 accuracy. Although ATM-S and NERV
performed similarly overall, NERV demonstrated superior
performance in most participants. NERV achieved an average
top-1 accuracy of 27.9% (SD 5.8%) and an average top-5
accuracy of 54.7% (SD 6.5%), leading all other models. In
contrast, Nervformer exhibited a significantly weaker
performance, particularly in the top-1 accuracy, with averages
of 19.8% (SD 4.9%) and 44.3% (SD 8.7%) for top-1 and top-5
accuracy, respectively. The results showed that NERV

JMIR Med Inform 2025 | vol. 13 | e72027 | p. 8https://medinform.jmir.org/2025/1/e72027
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


consistently outperformed its competitors across all tasks,
demonstrating the strongest zero-shot classification performance,

particularly in distinguishing between a large number of
categories.

Table 1. Overall accuracy of 2-way and 4-way zero-shot classification using Contrastive Language-Image Pretraining–vision transformer as the image
encoder. The average accuracy was reported along with the SD across 10 participants to reflect the statistical robustness of each method.

Accuracy
(%), mean
(SD)

Accuracy (%)Method

Partici-
pant 10

Partici-
pant 9

Partici-
pant 8

Partici-
pant 7

Partici-
pant 6

Partici-
pant 5

Partici-
pant 4

Partici-
pant 3

Partici-
pant 2

Partici-
pant 1

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

4-
way
task

2-
way
task

81.4
(4.9)

91.8
(2.6)

83.192.483.79288.396.281.692.582.591.170.486.385.994.380.891.680.791.376.989.9Nervformer

81.3
(5.9)

91.3
(3.1)

87.793.876.587.989.295.887.191.281.789.170.385.984.99483.793.577.489.980.491.7NICEa

82.8
(5.0)

92.2
(2.3)

88.194.481.890.587.795.485.393.185.393.174.288.387.593.685.693.476.890.378.490.1MUSEb

86.5
(4.9)

94.4
(1.6)

8794.786.894.192.996.697.194.285.294.178.590.887.395.98995.386.393.584.994.8ATM-Sc

86.8
(3.4)

94.8
(1.7)
e

87.694.884.294.492.396.886.294.785.493.680.490.887.495.891.295.988.89685.795.3NERVd

(ours)

aNICE: Neural Image Conditioning for Electroencephalography.
bMUSE: Multimodal Unsupervised Sensing Embeddings.
cATM-S: Adaptive Thinking Mapper ShallowNet.
dNERV: Neural Encoding Representation Vectorizer.
eThe values in italics represent the best results (participant dependent—training and testing on 1 participant).
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Table 2. Overall accuracy of 200-way zero-shot classification using Contrastive Language-Image Pretraining–vision transformer as image encoder—top
1 and top 5. The SD provided a measure of variability and generalization across participants.

Accura-
cy (%),
mean
(SD)

Accuracy (%)Method

Partici-
pant 10

Partici-
pant 9

Partici-
pant 8

Partici-
pant 7

Partici-
pant 6

Partici-
pant 5

Partici-
pant 4

Partici-
pant 3

Partici-
pant 2

Partici-
pant 1

Top 5Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

Top
5

Top
1

44.3
(8.7)

19.8
(4.9)

47.122.946.320.16030.34219.542.218.929.11354.423.344.919.74015.636.715Nerv-
former

47.1
(9.4)

21.1
(6.2)

57.127.442.418.263.532.547.92143.818.530.71151.624.151.423.938.215.244.819.3NICEa

47.3
(8.9)

21.7
(5.8)

55.2254319.159.933.248.62151.922.133.712.152.624.752.624.734.215.341.119.8MUSEb

56.5

(7.7) d
26.2
(5.6)

60.93053.92671.137.957.225.95321.241.916.257.825.962.928.452.624.654.125.8ATM-Sc

54.7
(6.5)

27.9
(5.8)

61.632.355.22767.440.851.626.152.324.943.919.358.43053.928.651.124.151.225.4NERVe

(ours)

aNICE: Neural Image Conditioning for Electroencephalography.
bMUSE: Multimodal Unsupervised Sensing Embeddings.
cATM-S: Adaptive Thinking Mapper ShallowNet.
dThe values in italics represent the best results (participant dependent—training and testing on 1 participant).
eNERV: Neural Encoding Representation Vectorizer.

Performance Comparison of Different Generative
Models
Table 3 shows the results of our newly proposed CAT score
method, which quantified and evaluated the quality of
EEG-generated images based on their alignment with semantic
concepts rather than pixel-level details. The specific CAT score

labels are provided in Multimedia Appendix 2. Interestingly,
although our NERV method achieved SOTA performance on
the CAT score, no EEG encoder surpassed a score of 500 out
of a possible 1000 points in this evaluation. This result
underscored both the rigor of the CAT score and the inherent
challenges associated with the pure EEG-to-image generation
task.

Table 3. Overall Category-Based Assessment Table (CAT) score out of 1000 of the Neural-Cognitive Multimodal Electroencephalography
(EEG)–Informed Image EEG-to-image generation using several EEG encoders. Average accuracy with SD across 10 participants was reported to
indicate statistical reliability.

CAT score,
mean (SD)

CAT score (higher is better)EEG en-
coder

Partici-
pant 10

Partici-
pant 9

Partici-
pant 8

Partici-
pant 7

Partici-
pant 6

Partici-
pant 5

Partici-
pant 4

Partici-
pant 3

Partici-
pant 2

Partici-
pant 1

438.9 (23.0)410427438404463475454429457432Nervformer

437.5 (14.3)429426443438454411447445456426NICEa

439.1 (19.1)468410437443463426416434456438MUSEb

439.3 (22.9)445431472442469427464411419413ATM-Sc

439.7 (14.9)444433437410466438456432436445NERVd

(ours)

aNICE: Neural Image Conditioning for EEG.
bMUSE: Multimodal Unsupervised Sensing Embeddings.
cATM-S: Adaptive Thinking Mapper ShallowNet.
dNERV: Neural Encoding Representation Vectorizer.
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The FID results for EEG-to-image generation using the
NECOMIMI framework with several SOTA EEG encoders are
shown in Table 4. This metric evaluated the similarity between
generated images and real ones based on deep feature
distributions, with lower scores indicating better visual fidelity.
To assess the robustness and consistency of each method, we
reported the average FID alongside its SD across 10 participants.
As expected, the “Pure Test Image” baseline, which did not
involve EEG input, achieved an ideal FID of 106.1. Among
EEG-based approaches, our proposed NERV (2-stage) model
outperformed all competitors, with the lowest mean FID being
183.8 (SD 13.3), significantly surpassing other 2-stage pipelines

such as NICE (mean 218.7,  SD 7.5) and ATM-S (mean 197.1, 
SD 18.9). This consistent superiority suggested that NERV may
be more effective in learning semantically aligned and visually
coherent representations from EEG signals. Notably, even the
best EEG-based models exhibited a noticeable gap from the
ideal FID score, highlighting the intrinsic difficulty of
reconstructing high-fidelity images solely from brain signals.
These findings collectively validated the effectiveness of our
NERV architecture in capturing and translating complex neural
patterns into meaningful visual outputs while also revealing the
need for continued improvements in EEG-based generative
modeling.
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Table 4. Overall Fréchet inception distance (FID) of the Neural-Cognitive Multimodal Electroencephalography (EEG)–Informed Image EEG-to-image
generation using several EEG encoders. The average accuracy alongside its SD calculated across 10 participants was reported to demonstrate the
consistency of each method.

FID,
mean
(SD)

FID (lower is better)EEG encoder
and embedding
type

Partici-
pant 10

Partici-
pant 9

Partici-
pant 8

Partici-
pant 7

Partici-
pant 6

Partici-
pant 5

Partici-
pant 4

Partici-
pant 3

Partici-
pant 2

Partici-
pant 1

106.1
(0.0)

106.1106.1106.1106.1106.1106.1106.1106.1106.1106.1Pure test image

Nervformer

246.6
(6.1)

244.8250.6247.1241.3241.2251.5247.4259.9241.7240.61 stage

199.8
(6.0)

210.8191.9202.2198.5202.2206.4192.8193.9201.4198.32 stages

NICEa

241.7
(9.7)

237.2243.6262.4224.6243.5248.4241.5242.3235.3238.11 stage

218.7
(28.9)

196.1213.1209.7235.3272.0199.1198.9264.9193.2204.32 stages

MUSEb

244.5
(7.1)

245.0243.0250.8243.3243.1236.2257.7247.0246.6231.91 stage

199.0
(12.1)

204.7195.4190.5206.7186.5215.9198.1184.5218.5188.72 stages

ATM-Sc

242.0
(6.3)

235.0239.0250.3232.2250.1248.9242.1238.6239.7244.51 stage

197.1
(18.9)

206.1242.4179.4201.5202.7194.9183.0191.3194.9174.92 stages

NERVd (ours)

218.9 (

7.5 ) e
217.2204.6227.6215.5218.8229.1221.1225.6211.4217.91 stage

183.8 (
13.3 )

174.4208.1176.2187.2198.3191.6175.8167.2189.4169.52 stages

aNICE: Neural Image Conditioning for EEG.
bMUSE: Multimodal Unsupervised Sensing Embeddings.
cATM-S: Adaptive Thinking Mapper ShallowNet.
dNERV: Neural Encoding Representation Vectorizer.
eThe values in italics represent the best results (participant dependent—training and testing on 1 participant).

Perturbation Study on Visual Cortex EEG Channels
We further conducted a perturbation study to investigate whether
the model disproportionately relied on EEG signals from the
visual cortex, particularly in generating scene-based images. In
EEG analysis, the visual cortex corresponds to posterior regions
of the scalp, particularly the occipital and parieto-occipital areas.
Accordingly, we identified 6 key EEG channels: occipital 1,
occipital 2, occipital midline, parieto-occipital 3,
parieto-occipital 4, and parieto-occipital midline, which are
commonly associated with visual perception and spatial
integration. These channels are known to play critical roles in

visual information processing. Occipital 1 and occipital 2 are
located over the left and right occipital lobes; these channels
are strongly associated with early-stage visual perception and
processing. Occipital midline is situated along the midline of
the occipital region; this channel captures central visual cortex
activity and contributes to basic visual field representation.
Parieto-occipital 3 and parieto-occipital 4 are positioned at the
parieto-occipital junction; these channels reflect integrative
processing of spatial and visual information such as visuospatial
attention. Parieto-occipital midline is a midline parieto-occipital
channel involved in high-level integration of visual input and
attentional modulation. In this experiment, we replaced the
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signals from these 6 channels with Gaussian noise while keeping
the remaining EEG data unchanged. This allowed us to isolate
the contribution of visual cortex–related signals to the image
generation process. We then evaluated the quality of the
generated images using the FID. Table 5 shows a significant
increase in FID scores compared to the unperturbed condition,

confirming that the model heavily depends on signals from the
visual cortex to generate coherent and semantically meaningful
images. These findings highlight the spatial sensitivity of our
EEG-to-image model and further validate its biological
plausibility in capturing relevant neural representations for
visual imagination.

Table 5. Fréchet inception distance (FID) of the Neural-Cognitive Multimodal Electroencephalography (EEG)–Informed Image EEG-to-image generation
using Neural Encoding Representation Vectorizer (NERV) EEG encoders with and without perturbation applied to visual cortex EEG channels. The
average accuracy alongside its SD calculated over 10 participants was reported to demonstrate the consistency of each method.

FID,
mean SD)

FID (lower is better)EEG encoder
and embedding
type

Partici-
pant 10

Partici-
pant 9

Partici-
pant 8

Partici-
pant 7

Partici-
pant 6

Partici-
pant 5

Partici-
pant 4

Partici-
pant 3

Partici-
pant 2

Partici-
pant 1

106.1
(0.0)

106.1106.1106.1106.1106.1106.1106.1106.1106.1106.1Pure test image

NERV with perturbation

251.2
(17.4)

256.6212.7243.6263.5235.5268.4266.3263.3244.9257.41 stage

240.6
(20.6)

245.2263.5225.7247.7223.3224.4267.5262.5240.5205.32 stages

NERV without perturbation

218.9 (

7.5 ) a
217.2204.6227.6215.5218.8229.1221.1225.6211.4217.91 stage

183.8 (
13.3 )

174.4208.1176.2187.2198.3191.6175.8167.2189.4169.52 stages

aThe values in italics represent the best results (participant dependent—training and testing on 1 participant).

Findings on EEG-to-Image Generation
We observed several noteworthy findings in the pure
EEG-to-image generation process (Figure 3). Figure 3A shows
the original images shown to participants during EEG recording
(ground truth). Figure 3B serves as an ideal baseline,
demonstrating the model’s capacity when guided by
semantically rich CLIP embeddings. As shown in Figure 3C,
the images generated by the diffusion model from embeddings
derived from EEG signals predominantly consisted of
landscapes, which deviated substantially from the original
(ground truth). Due to the inherently noisy and low-dimensional
nature of EEG signals, these results often default to generic or
landscapelike images, where outputs deviate significantly from
the intended object categories. This suggested that EEG signals
may not directly correspond to specific objects in images. As
a result, the model tended to generate “safe options,” such as
landscapes, which may have constituted a significant portion
of the training data. This phenomenon, often referred to as
“hallucination,” occurs when the model generates content that
does not accurately represent the intended visual stimuli.
Consequently, in the 1-stage image generation framework, EEG
embeddings often led to abstract or generalized images such as
landscapes rather than specific objects. In contrast, the 2-stage

NECOMIMI architecture (Figure 3D) was able to effectively
extract semantic information from noisy EEG signals. This
additional transformation improved semantic alignment and
supported more accurate object-level synthesis (eg, a cat in
column 3 or a caterpillar in column 4). Nonetheless, failure
cases still occurred, underscoring the challenge of decoding
high-level visual semantics from EEG data. Overall, this figure
shows the enhanced specificity and visual relevance achieved
by the 2-stage pipeline compared to the 1-stage approach.
Moreover, Figure 4 shows the NECOMIMI model’s ability to
reconstruct images solely from EEG data without relying on
“seen” images (ground truth) as embeddings during the
generation process. The bottom row of images in Figure 4,
generated exclusively from EEG input, highlights NECOMIMI’s
potential to approximate the content of the “seen” images in the
top row even without direct visual references or embeddings.
Figure 5 illustrates the performance of NECOMIMI’s 1-stage
and 2-stage EEG-to-image generation pipelines under
perturbation of visual cortex channels. The reconstructed images
show clear differences in visual fidelity and semantic alignment,
emphasizing the model’s spatial sensitivity and its dependence
on visual cortex activity for generating coherent visual
representations.
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Figure 3. The progression of visual representations generated using different embedding techniques in a diffusion model—(A) the original images
shown to participants during electroencephalography (EEG) recording (ground truth); (B) images generated using Contrastive Language-Image Pretraining
(CLIP) embeddings of the ground-truth images serving as an upper-bound reference; (C) 1-stage Neural-Cognitive Multimodal EEG-Informed Image
(NECOMIMI) results using EEG embeddings directly as prompts via the IP-Adapter; and (D) 2-stage NECOMIMI results, where EEG embeddings
are refined into CLIP-like embeddings through a diffusion prior, producing images more consistent with object categories in the ground truth (eg, a cat
in column 3 or a caterpillar in column 4).

Figure 4. The capability of the Neural-Cognitive Multimodal Electroencephalography (EEG)–Informed Image (NECOMIMI) model to reconstruct
images purely from EEG data without using the “Seen” images (ground truth) as embeddings during the generation process—(A) the original images
shown to participants during EEG recording (ground truth) and (B) images generated using the 2-stage NECOMIMI method.
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Figure 5. Neural-Cognitive Multimodal Electroencephalography (EEG)-Informed Image (NECOMIMI) EEG-to-image generation using Neural
Encoding Representation Vectorizer EEG encoders with perturbation applied to visual cortex EEG channels—(A) the original images shown to
participants during EEG recording (ground truth), (B) images generated conditioned on Contrastive Language-Image Pretraining (CLIP) embeddings
of seen images, (C) images generated using the 1-stage NECOMIMI method, and (D) images generated using the 2-stage NECOMIMI method.

Discussion

Principal Findings
In this study, our NERV EEG encoder demonstrated SOTA
performance in various zero-shot classification tasks, including
2-way, 4-way, and 200-way classification, solidifying its role
as an effective feature extraction tool for EEG signals. However,
when applied in a 1-stage image generation framework where
EEG embeddings from the encoder were directly used to
generate images, the results often turned out to be abstract or
overly generalized (eg, landscapes) rather than depicting specific
objects. This suggests that EEG signals may reflect more
abstract, high-level concepts or emotional responses related to
viewing the images rather than concrete objects or specific
details. These abstract concepts are likely associated with
broader aspects of the scene or the brain’s generalized perception
of the environment. Consequently, the model may be more
inclined to generate generalized images such as landscapes than
to focus on specific objects. This limitation underscores the
inherent challenges of using EEG signals for precise image
generation, primarily due to their noisy and low-resolution
nature. Another contributing factor could be insufficient training
of the model on EEG signals. The diffusion model might not

yet be fully optimized to interpret and generate images from
EEG data, particularly in cases in which the available data fail
to adequately map EEG signals to specific visual representations.
In addition, the significant gap between the visual modality and
the neural modality (EEG) could further contribute to these
challenges. Several factors may explain the noticeable
discrepancies between the images generated from EEG signals
and the ground truth, particularly in the failure to recognize
specific objects.

Furthermore, this study highlights the critical role of visual
cortex activity in EEG-based image generation. Our perturbation
analysis, which involved replacing EEG signals from key
occipital and parieto-occipital channels with Gaussian noise,
led to a significant degradation in image quality, as reflected
by increased FID scores. These results indicate that the
NECOMIMI framework strongly depends on signals from visual
cortical regions to generate semantically coherent images. This
observation aligned with previous findings emphasizing the
role of occipital areas in visual perception and EEG-based image
reconstruction [55]. Importantly, this dependency also reveals
potential limitations of such models in cases in which visual
cortex function is impaired. Overall, these results further validate
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the biological grounding of our approach, demonstrating its
ability to capture neural patterns linked to visual imagination.

To address these challenges, we proposed the 2-stage
NECOMIMI framework, which combines the NERV EEG
encoder with a diffusion-based generative model. The 2-stage
NECOMIMI architecture effectively extracts semantic
information from the noisy EEG signals, showing its ability to
capture and represent underlying concepts derived from brain
wave activity. In this framework, we introduced the CAT score,
a new evaluation metric specifically designed for EEG-to-image
generation. Unlike traditional image evaluation metrics, such
as those that assess image distribution, the CAT score focuses
on measuring the alignment between the generated images and
the underlying semantic intent captured by EEG signals. This
evaluation method provides a more accurate reflection of how
well the generated images correspond to the cognitive state
represented by the EEG data.

Interestingly, our analysis revealed a complex relationship
between the encoder’s performance in classification tasks and
the quality of the generated images. While a high-performing
EEG encoder provides robust feature representations, the fidelity
and specificity of the generated images were also influenced by
other factors such as the generative model’s capacity to interpret
the EEG embeddings. These findings underscore the challenges
of bridging EEG signal processing with image generation and
suggest that successful EEG-to-image translation requires both
strong feature extraction and sophisticated generative modeling.
Our perturbation study further reinforced the biological
plausibility of the NECOMIMI framework. The model’s
responsiveness to disruptions in specific EEG regions indicated
its ability to extract spatially meaningful neural patterns,
especially those critical for scene-level image synthesis. These
results underscore the importance of spatial channel specificity
and suggest that leveraging region-targeted EEG signals could
further enhance generative performance in future applications.

While the primary focus of NECOMIMI was image generation,
its potential extends far beyond this task, particularly in clinical
applications for individuals with motor impairments. This
section explores how NECOMIMI could be integrated into
existing brain-computer interface (BCI) systems and enhanced
assistive technologies. One of the applications of NECOMIMI
is its ability to function as a visual feedback module in
noninvasive BCI systems. Current BCIs for individuals with
motor impairments primarily rely on classification-based intent
detection methods, such as motor imagery or steady-state visual
evoked potentials [56,57]. In contrast, NECOMIMI introduces
a novel interaction modality, visual synthesis directly from
thought. This approach could enable individuals with severe
motor or speech impairments, such as those with locked-in
syndrome, to communicate by visualizing concepts through
their brain activity. Compared to traditional methods, this offers
a more intuitive and flexible interface, allowing users to draw
or visualize their thoughts, thereby enhancing their ability to
express needs and emotions.

NECOMIMI could also play a critical role in neurofeedback
therapies. In this context, real-time EEG-to-image generation
may be used to reflect users’ mental states, such as emotions

or imagined visual scenes, back to them as visual feedback.
This feedback loop could be particularly beneficial in therapies
targeting attention regulation, anxiety management, or
exposure-based interventions [58]. By providing visual stimuli
derived from brain activity, NECOMIMI may help users better
understand and regulate their mental states, potentially leading
to an effective therapeutic outcome. Moreover, NECOMIMI
holds strong potential in the field of virtual rehabilitation. The
framework could be integrated into immersive virtual
environments where patients engage in therapy tasks. Rather
than relying on conventional controllers, users could interact
with the virtual world by generating images that represent
specific tasks or intentions. This offers a more natural and
intuitive input method, especially for users with motor
disabilities who may struggle with standard navigation tools.
EEG-driven image generation could enhance patient engagement
and contribute to more personalized and effective rehabilitation
processes. As the technology continues to evolve, integration
with existing BCI platforms and assistive systems may broaden
NECOMIMI’s impact, ultimately improving quality of life for
individuals with motor and speech impairments. Although still
in its early stages, EEG-driven image generation presents a
promising direction for enriching user interaction in virtual
rehabilitation. By enabling thought-driven image-based
communication, NECOMIMI could lower the barrier to access
for patients with limited motor control, paving the way for more
inclusive and engaging therapy solutions.

Overall, our research presents a novel framework for EEG
signal–to-image generation, which expands the application of
existing BCI technologies and demonstrates its potential to
improve quality of life for individuals with motor impairments.
Traditional EEG-based control systems, particularly in clinical
settings, often fail to meet expected outcomes. Although our
study did not directly evaluate the effectiveness of
EEG-controlled devices, it highlighted the promising clinical
applications of EEG-to-image conversion. This technology
could assist patients in controlling external devices (eg,
prosthetics, wheelchairs, and smart environments) through
EEG-generated images, thereby offering more opportunities for
performing daily tasks and enhancing the accuracy and
reliability of EEG-based control systems. Moreover, this
approach allows for the transformation of brain sensory signals
into realistic visual images, which could be presented in virtual
environments, enabling patients to engage in visual perception
and interaction based on EEG signals. This not only has the
potential to enhance motivation and engagement during the
treatment process but also offers possible benefits for
rehabilitation therapy and anxiety management. Despite the
significant clinical potential, the technology faces several
challenges. Future research will need to address how to extract
accurate and specific control commands from low-resolution,
noise-prone EEG signals while ensuring their stability and
reliability in real-world applications.

Understanding the CAT Score Ceiling
The moderate CAT score observed across all EEG encoders,
with no model exceeding a score of 500 out of 1000, raised an
important question about the underlying limitations of
EEG-to-image generation. This result reflected both inherent
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challenges of the EEG modality and technological constraints
in current generative modeling approaches. Fundamentally,
EEG signals are characterized by low spatial resolution, high
temporal variability, and a strong susceptibility to noise, making
it difficult to extract detailed, object-specific information from
brain activity. Compared to neuroimaging modalities such as
fMRI, EEG primarily captures global cortical dynamics and
abstract cognitive states, which limits its capacity to convey
fine-grained visual representations. From a technical perspective,
existing diffusion models, even those enhanced with learned
priors, are not fully adapted to decode such noisy and
semantically diffuse embeddings. The reliance on vision
language models such as CLIP may introduce additional
complications as these models were trained on natural images
and text, not on neural signals, leading to a mismatch in modality
and representation [28]. The observed plateau around a CAT
score of 500 was largely due to the structure of the scoring
system, where each image was evaluated based on 5 semantic
tags. Because the EEG embeddings often only weakly reflected
specific visual features, the generated images typically aligned
with only 1 to 3 of the intended tags. This partial semantic
alignment resulted in midrange scores, often between 400 and
500. Furthermore, the generation outputs frequently exhibited
generic or overly broad content such as landscapes or blurred
objects, reflecting the limited conditioning power of EEG inputs.
To overcome these limitations and improve performance beyond
this ceiling, several strategies can be considered. Incorporating
multimodal physiological signals such as eye tracking or
electromyography may provide complementary information
that helps disambiguate user intent and improve semantic
grounding. In addition, training generative models specifically
on EEG-to-image tasks rather than relying on pretrained vision
language priors could reduce the modality gap and enhance
fidelity. Building large-scale EEG-specific datasets and
pretraining encoders on diverse cognitive states may also
improve generalization. These directions highlight the
importance of tailoring both model architecture and data curation
to the unique characteristics of neural signals and point toward
a future where EEG-based generative systems can achieve more
accurate and reliable visual reconstructions.

Limitations
Despite the promising results of the NECOMIMI framework
in EEG-to-image generation, several key limitations remain
that must be addressed in future research. One of the primary
challenges in EEG-to-image research is the scarcity of publicly
available, large-scale EEG-image pair datasets. Unlike
text-to-image tasks, which benefit from extensive datasets such
as LAION-5B, EEG-to-image studies are constrained by the
limited availability of paired EEG and image data. While the
ThingsEEG dataset is one of the largest of its kind, it still lacks
the diversity and scale necessary to train highly generalized
EEG-to-image models. This limitation hinders benchmarking
efforts and prevents the development of robust generative
models capable of generalizing across different EEG recording
conditions, participants, and experimental paradigms. In addition
to the dataset scarcity, EEG recordings exhibit significant
interparticipant variability, meaning that neural responses to
identical visual stimuli can vary considerably between

individuals. This variability complicates the generalization of
models across different participants. Furthermore, EEG-based
datasets are often collected under controlled experimental
conditions, which limits their applicability to real-world
scenarios. Consequently, without access to larger, more diverse
datasets, EEG-to-image models remain constrained in their
ability to generalize across a wide range of neural and visual
domains.

Another challenge arises from the fact that, although our NERV
EEG encoder demonstrated SOTA performance in zero-shot
classification tasks, this high classification accuracy did not
necessarily translate into higher-quality image generation. This
suggests that feature representations optimized for classification
tasks may not be equally effective for generative tasks. The gap
between feature extraction and image generation remains an
open challenge, indicating the need for future models to explore
alternative training strategies that better align EEG embeddings
with the generative process. Optimizing NECOMIMI for
real-time image generation could unlock new possibilities for
applications in BCIs and neurofeedback systems. Furthermore,
expanding training datasets to include more diverse and
larger-scale EEG recordings will be essential for improving
model generalization. Incorporating additional data modalities
such as eye tracking, electromyography, or functional
near-infrared spectroscopy could also provide complementary
information to enhance image generation. Finally, future work
should aim to improve the model’s resilience to signal noise
and variability, particularly in the visual cortex. Multimodal
integration and training protocols that encourage distributed
cortical representation may reduce the model’s dependency on
any single brain region, ultimately enhancing stability,
interpretability, and generalization across individuals and tasks.

Conclusions
The NECOMIMI framework expands previous work on
EEG-image pair contrastive learning classification by enabling
image generation, filling a gap in previous research and opening
up new possibilities for EEG applications. We introduced the
SOTA EEG encoder NERV, which achieved top performance
in 2-way, 4-way, and 200-way zero-shot classification tasks, as
well as in the CAT score evaluation, demonstrating its
effectiveness in EEG-based generative tasks. A key finding was
that the model often generated abstract images rather than
specific objects. This suggests that EEG data, being noisy and
low resolution, captured broad semantic concepts rather than
detailed visuals. The gap between neural signals and visual
stimuli remained a challenge for precise image generation. In
addition, we proposed the CAT score, a new metric tailored for
EEG-to-image generation, and established its benchmark on
the ThingsEEG dataset. Surprisingly, we found that EEG
encoder performance may not strongly correlate with the quality
of the generated images, providing new insights into the
limitations and challenges of this task. NECOMIMI
demonstrates the potential of EEG-to-image generation while
highlighting the complexities of translating neural signals into
accurate visual representations. Furthermore, the perturbation
experiment revealed that the NECOMIMI model strongly
depends on EEG signals from the visual cortex, particularly the
occipital and parieto-occipital regions. This reliance not only
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supports the biological plausibility of our model’s design but
also emphasizes the critical role of spatial EEG features in
accurate image reconstruction. These insights may guide future
improvements in region-aware modeling strategies for
EEG-based generative tasks. Future work should prioritize

improving EEG representation learning, refining generative
modeling techniques, and developing more robust evaluation
frameworks to enhance the reliability and realism of
EEG-generated images.
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