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Abstract

Background: Machine learning (ML) has shown great potential in recognizing complex disease patterns and supporting clinical
decision-making. Diabetic foot ulcers (DFUs) represent a significant multifactorial medical problem with high incidence and
severe outcomes, providing an ideal example for a comprehensive framework that encompasses all essential steps for implementing
ML in a clinically relevant fashion.

Objective: This paper aims to provide a framework for the proper use of ML algorithms to predict clinical outcomes of
multifactorial diseases and their treatments.

Methods: The comparison of ML models was performed on a DFU dataset. The selection of patient characteristics associated
with wound healing was based on outcomes of statistical tests, that is, ANOVA and chi-square test, and validated on expert
recommendations. Imputation and balancing of patient records were performed with MIDAS (Multiple Imputation with Denoising
Autoencoders) Touch and adaptive synthetic sampling, respectively. Logistic regression, support vector machine (SVM), k-nearest
neighbors, random forest (RF), extreme gradient boosting (XGBoost), Bayesian additive regression trees, and artificial neural
network were trained, cross-validated, and optimized using random sampling on the patient dataset. To evaluate model calibration
and clinical utility, calibration curves, Brier scores, and decision curve analysis (DCA) were performed.

Results: The exploratory dataset consisted of 700 patient records with 199 variables. After dataset cleaning, the variables used
for model training included age, smoking status, toe systolic pressure, blood pressure, oxygen saturation, hemoglobin, hemoglobin
A1c, estimated glomerular filtration rate, wound location, diabetes type, Texas wound classification, neuropathy, and wound area
measurement. The SVM obtained a stable accuracy of 0.853 (95% CI 0.810-0.896) with an area under the receiver operating
characteristic curve of 0.922 (95% CI 0.889-0.955). The RF and XGBoost acquired an accuracy of 0.838 (95% CI 0.793-0.883)
and 0.815 (95% CI 0.768-0.862), respectively, with areas under the receiver operating characteristic curve of 0.917 (95% CI
0.883-0.951) for RF and 0.889 (95% CI 0.849-0.929) for XGBoost. SVM, RF, and XGBoost were well-calibrated, with average
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Brier scores around 0.127 (SD 0.013). DCA showed that the SVM provided the highest net clinical benefit across relevant risk
thresholds.

Conclusions: Handling missing values, feature selection, and addressing class imbalance are critical components of the key
steps in developing ML applications for clinical research. Seven models were selected for comparing their predictive power
regarding complete wound healing, and each model representing a different branch in ML. In this initial DFU dataset used as an
example, the SVM achieved the best performance in predicting clinical outcomes, followed by RF and XGBoost. The model’s
calibration and clinical utility were determined through calibration curves, Brier scores, and DCA, demonstrating its potential
relevance in clinical decision-making.

(JMIR Med Inform 2025;13:e71994) doi: 10.2196/71994
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Introduction

Machine learning (ML) has demonstrated remarkable efficacy
in recognizing complex disease patterns and informing clinical
decision-making, where conventional methods do not provide
sufficient insights [1-4]. ML algorithms have been applied in
various medical conditions, including cardiovascular diseases
and diabetic foot ulcer (DFU) research. Previous papers have
either provided an overview of potential ML models through a
review or applied ML in data analyses [5]. However, there seems
to be no prior medical study that has created a clear and detailed
overview including examples of all the key steps generally
involved in applying ML to datasets: data preprocessing, model
selection, hyperparameter optimization, evaluation and
comparison of model performance, and interpretation of results.
Certain critical aspects of data analysis, such as addressing
missing values and class imbalance, are frequently left out of
the literature [6-11]. While a wide range of models can be used
and compared, heavily imbalanced classes can still result in low
area under the receiver operating characteristic curve (AUC)
scores and accuracy [12]. Furthermore, previous studies compare
at most 6 ML models, and no paper was found that explores the
full spectrum of common ML models [6].

DFUs represent a complex and significant multifactorial medical
problem, making these highly suitable for the application of
ML. According to estimates from the International Diabetes
Federation, in 2021, 537 million adults worldwide (10.5%) were
living with diabetes mellitus, a number projected to escalate to
642 million by 2030. On average, 1 in 4 diabetics will
experience a DFU in their lifetime, of which 22.3% (95% CI
15.3-29.2) eventually undergo a lower extremity amputation
[13,14]. The personal and societal costs of DFUs and
amputations are enormous, and as such, it is of utmost
importance to correctly identify predictors of treatment response
to optimize targeted interventions and prevent unnecessary
treatments [15-18].

This study evaluates the use of 7 distinct ML models: logistic
regression (LR), support vector machine (SVM), k-nearest
neighbors (KNN), random forest (RF), extreme gradient
boosting (XGBoost), Bayesian additive regression trees (BART),
and artificial neural network (ANN). These models
accommodate a wide range of regression, tree-based,
probabilistic, and neural network methods, addressing higher

complexity data. Moreover, LR, tree-based models, and BART
provide a level of transparency that offers clear insights into
the decision-making process.

Despite notable progress and research in ML, challenges persist
in fully implementing all necessary steps. The multifactorial
nature of DFU makes it a demanding and challenging case for
evaluating the performance of ML models. By elucidating these
methodologies, this paper aims to provide a framework for the
proper use of ML algorithms to predict clinical outcomes of
multifactorial diseases and their treatments, thereby assisting
decision-making for clinicians.

Methods

Data Acquisition and Contextual Analysis
This study made use of a dataset containing records from 700
patients with a DFU due to neuropathy, ischemia, or both, who
were treated at the Haaglanden Medical Center in The Hague,
The Netherlands, between October 1, 2013, and October 1,
2021. Patients with a wound resulting from trauma, a surgical
procedure, venous insufficiency, unguis incarnatus, or a wound
located proximal to the malleoli were excluded. Structured into
71 unique categories, the dataset encapsulated 199 features per
patient, reflecting a detailed record of each patient’s medical
journey. These features spanned from generally available
information to data acquired through medical examinations and
posttreatment outcomes, all extracted from the electronic patient
record, Healthcare Information Exchange. General demographic
information was obtained from the cover page of the record,
while medical history was retrieved from referral letters,
outpatient reports, hospitalization records, and discharge
summaries. Substance use was assessed through records from
the departments of surgery, internal medicine, pulmonology,
cardiology, and anesthesiology. Vital sign measurements and
laboratory results were extracted from designated Healthcare
Information Exchange sections, with averages calculated for
the period in which the DFU was present. Medication use was
determined based on prescription records, pharmacy
verifications conducted during hospital admissions, and data
from the National Exchange Point (ie, LSP). Information
regarding the DFU was extracted from wound care center reports
and hospitalization records.
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A subset of the collected features was selected for analysis (see
Feature Selection section). The patient’s age at the onset of the
DFU was recorded in the database. Smoking encompassed the
use of cigarettes, cigars, or other tobacco products. Wound
location was categorized according to the angiosome concept
[19]. Diabetes type was classified as type 1,
noninsulin-dependent, and insulin-dependent diabetes.
Neuropathy was defined as peripheral impairment of gnostic
sensory function. Wound area was calculated by multiplying
the average length by the average width of the DFU. Complete
wound healing was defined as full closure of the DFU, with an
intact epithelium and no signs of infection, necrosis, or fluid.

A key criterion for the inclusion of patient data in this
retrospective cohort study was the completeness of the feature
set. Patient data were included for analysis if it was entirely
complete or if any missing values could be reliably imputed
(see Handling Missing Values section). A significant proportion
of patients did not undergo any form of treatment (ie, other than
wound care or offloading), resulting in systematic presence of
missing values in treatment-related features. To accommodate
this and enhance the model’s predictive power, the selection of
features for model training and application was intentionally
restricted to those that are obtainable early in the patient’s care
pathway (see Feature Selection section). In preparing the dataset
for analysis, meticulous cleaning processes were used, which
involved the exclusion of features based on redundancy in
information, insufficiency in example frequency (eg, features

related to rare treatments), and duplication of information
through inverse representation.

Handling Missing Values
Addressing missing values was paramount for the effective use
of patient data in ML models. Imputation of missing values was
used to mitigate substantial information loss (Table 1) [20,21].
Numerical variables necessitating imputation, such as average
systolic and diastolic blood pressure, O2 saturation level, serum
hemoglobin A1c (HbA1c), hemoglobin (Hb), and estimated
glomerular filtration rate (eGFR), were predominantly missing
due to unmeasured instances rather than systemic bias. As such,
to ensure statistical validity, a multiple imputation technique
was applied to preserve the integrity of the data distribution.
The technique used was matching imputation, specifically the
MIDAS (Multiple Imputation with Denoising Autoencoders)
Touch algorithm, due to its effectiveness in handling both
numerical and categorical data gaps [22-24]. This algorithm
identified data patterns to infer missing values through a linear
regression model, with coefficients randomly selected from the
feature distribution, and the process was iteratively refined to
enhance imputation accuracy. Additionally, a weighted mean
imputation strategy was incorporated that adopted 50 repetitions
to ensure realistic and generalized imputation. Weight
determination was based on the absolute difference between
the median of the imputation and its vector value, followed by
calculating the reciprocal of this difference. Weight values were
capped at 2.0 to prevent excessive weighting.

Table 1. Features selected and transformed for model training and testing.

TransformationData typeMissing amount prior to imputation, n (%)Feature name

x → √max(x)–xNumerical0 (0)Age

N/AaCategorical0 (0)Smoking

N/ANumerical113 (16.1)Systolic blood pressure

N/ANumerical113 (16.1)Diastolic blood pressure

x → √max(x)–xNumerical154 (22)Oxygen saturation level

x → log (x)Numerical82 (11.7)HbA1c
b

N/ANumerical0 (0)Hemoglobin

x → √xNumerical21 (3)eGFRc

N/ACategorical0 (0)Wound location

N/ANumerical264 (37.7)Toe systolic blood pressure

N/ACategorical0 (0)Diabetes type

N/ACategorical0 (0)Texas wound classification

N/ACategorical0 (0)Neuropathy

x → log (x)Numerical80 (11.3)Wound area

N/ACategorical0 (0)Complete wound healing

aN/A: not applicable.
bHbA1c: hemoglobin A1c.
ceGFR: estimated glomerular filtration rate.
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Feature Selection
In the preprocessing phase, feature selection played a crucial
role in managing model complexity and ensuring adequate
patient representation across different scenarios. This process
relied on both statistical analysis and validation through
literature to identify influential features, thus streamlining the
model while preserving its predictive capability. Normalization
of numerical values to approximate normal distributions was
performed as a preliminary step to enhance statistical validity
and facilitate effective feature selection. Normalization proved
beneficial, where the normal distribution’s statistical properties
were leveraged for analysis. Transformations were applied to
nonnormally distributed variables, such as age, HbA1c, wound
area, and eGFR, to align them with normal distribution
characteristics. This helps the model recognize possible
nonlinear correlations. To prevent imposing normality on the
data, only common transformations such as lognormal,
Box-Cox, and inverse transformations were applied. The
selection of transformation depended on the form of skewness.
Log and inverse transformations were applied to right-skewed
data, while the Box-Cox transformation was used to address
left-skewed data. Each transformation was based on visual
inspection of the distribution and skewness prior to
transformation. To check whether the distribution aids the
transformation to normality, the Shapiro-Wilk test was
performed after transformation with a threshold of 0.05. Feature
selection was carried out using a 2-fold approach. First, relevant
features were identified statistically. For each numeric feature,
the group means were compared using ANOVA for normally
distributed variables and Kruskal-Wallis for nonnormally
distributed data. Chi-square tests were used for categorical
variables. For both approaches, the 5% threshold was used to
evaluate whether the feature should be included in the model.
To prevent multicollinearity, only variables with a variance
inflation factor below 5 were included. In the second time,
expert recommendations (TJS, DE, WJJJ, JCSW, and KEAB)
contributed to a second round of selection in the feature set, to
include the role of clinical judgment in the final selection for
context, and to resolve conflicting results, supported by literature
on known predictors of DFU outcomes [25-32]. Age, smoking
history, toe systolic pressure, blood pressure, oxygen saturation,
Hb, HbA1c, eGFR, wound location, diabetes type, Texas wound
classification, neuropathy, and wound area measurement were
ultimately the features used to train the models.

Addressing Class Imbalance
The balance of datasets is crucial for ML models, especially in
medical diagnostics, where accurate identification of rare
instances such as hemodialysis is significant despite their lower
incidence in patient populations. Imbalanced datasets, with
predominance of one class over another, can lead to bias in ML
models by undervaluing the minority class, adversely affecting
the model’s predictive performance on critical, less common
outcomes [33,34]. A balanced dataset ensures equitable
representation of all classes, mitigating bias and enhancing the
model’s ability to capture the nuances of each category. To
address class imbalance, sampling methods were used to adjust
the class distribution within the dataset. The adaptive synthetic
(ADASYN) oversampling method, a weighted variant of a

synthetic minority oversampling technique, was used to balance
the dataset between patients exhibiting full healing and those
not, thereby correcting the initial skewness [35]. ADASYN
focuses on oversampling in regions where the minority class is
sparse, essentially making the algorithm focus on harder cases
to predict. Furthermore, it improves on usual oversampling
methods, as it uses a combination of KNN and linear
interpolation, which helps preserve the statistical properties of
the dataset. It was shown that ADASYN can improve the
accuracy of a classifier in clinical trials [36]. Oversampling is
a common practice in handling imbalanced classification
problems. In numerous cases, it helps improve the accuracy of
the model. However, in some studies, oversampling has shown
no significant improvement in the performance of the classifier
[37]. In oversampling, it is crucial that the original data are
accurate, as any existing bias can be amplified through the
oversampling process. Moreover, the smaller the number of
minority class examples, the greater the risk of overfitting to
synthetic patterns. Oversampling may also lead to the generation
of illogical cases, which is why it is important to carefully
inspect the synthetic data for such issues. To ensure the validity
of synthetic patients with a nonhealing ulcer, logical tests were
applied to detect any illogical oversampling instances. For
example, when synthetic patient data fell outside of their
respective prior distribution, this patient was deemed illogical
and was then resampled. Validations included the ratio of
systolic to diastolic blood pressure, the limitation to a single
wound location, and the correct use of the Texas wound
classification.

Model Selection
This study evaluated 7 widely adopted, distinct ML models,
LR, KNN, SVM, RF, XGBoost, BART, and ANN, for their
efficacy in predicting DFU healing outcomes within 1 year.
With these 7 models, an attempt was made to apply ML across
the broadest range of possibilities. Specifically, the following
range represents all ML models for the prediction of a (binary)
classification.

LR, the baseline model, is widely recognized for its simplicity
and effectiveness in medical binary classification tasks, although
it may struggle with capturing nonlinear data relationships. LR
is most appropriate when the relationship between features and
the outcome is linear and when model interpretability and
simplicity are prioritized. It performs effectively with smaller
datasets and under conditions of minimal multicollinearity.

SVM excels in handling high-dimensional spaces through its
capability to perform both linear and nonlinear classification;
yet, it faces challenges with large datasets. Its capacity to handle
nonlinear relationships via kernel functions makes it a robust
choice for small- to medium-sized datasets where interpretability
is less critical than accuracy.

KNN introduces flexibility by predicting outcomes based on
the majority outcome of the most similar patients, adapting well
to complex datasets at the cost of sensitivity to the number of
patients and the distance metric. The KNN algorithm is
well-suited for applications where no strong assumptions about
the data distribution can be made. It is particularly effective for
nonlinear decision boundaries and is most efficient on small-
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to medium-sized datasets due to its computational overhead
during inference.

RF, an ensemble method, is praised for its ability to manage
nonlinear data and variable interactions, offering insights into
feature importance despite its comparatively lower
interpretability. RF is a preferred method when dealing with
datasets containing a large number of features or where
overfitting is a concern. It effectively reduces variance and is
versatile for both classification and regression tasks while also
handling missing values well.

XGBoost stands out for its speed, performance, and robustness
against overfitting through gradient boosted decision trees,
although it demands meticulous hyperparameter tuning.
XGBoost is highly effective for large-scale datasets with
complex interactions and structured noise, particularly when
computational efficiency and predictive performance are
paramount. Its built-in handling of missing data and
regularization makes it especially suitable for imbalanced
datasets and high-stakes prediction tasks.

BART leverages probabilistic relationships to model
dependencies between variables, making them useful for
interpretative insights in complex datasets. Although BART
can handle uncertainty effectively, it may require extensive
domain knowledge and computational resources for accurate
structure learning in large datasets. BART is recommended for
problems requiring flexible nonparametric modeling with
integrated uncertainty quantification and automatic variable
selection.

ANN is powerful for capturing complex, nonlinear patterns in
high-dimensional data, often outperforming other models in
prediction accuracy for intricate tasks. However, their
“black-box” nature limits transparency, making it difficult to
interpret specific decision pathways, and they typically require
substantial, highly varied data and computational power for
optimal performance.

Hyperparameter Optimization
The configuration of the hyperparameters affects the
performance of the model, as the structure of the model and its
capacity to generalize from the training data are significantly
altered. These hyperparameters are configured independently
of the data on which the model is trained, but the inherent
meaning of the data does affect the predictive power of the
configuration. Therefore, identifying the optimal configuration
is crucial. A grid search was used to identify the best
hyperparameter combination based on model accuracy. The
grid search method iterated 1000 times over the model training
and testing, recording the results of each iteration along with
its hyperparameter setup and the prediction accuracy. In the
event of missing values, class imbalance, or lack of data, it is
essential to measure all performance metrics (see Evaluation
and Comparison of Model Performance section). Only accuracy
was ultimately used, as other metrics did not yield additional
insight, and the other factors have been addressed. In cases
where the hyperparameter range is large or computational time
is a concern, heuristic search methods offer a more efficient
alternative. For grid search specifically, each possibility of the

configuration is included at least once. Visual confirmation was
used to determine whether convergence toward the best
hyperparameter combination was incidental or deterministic.

For LR, only the model weights were adjusted to reflect feature
importance. For KNN, the k-number of neighbors was optimized
to balance flexibility and overfitting. In SVM, cost and γ
controlled the margin and kernel function, while degree and
kernel type shaped the function itself.

In tree-based models like RF and XGBoost, hyperparameters
such as the number of trees, maximum tree depth, and features
per split regulated complexity and diversity of the ensemble
trees. XGBoost further required learning rate η for convergence,
split thresholds γ to prune weak splits, and regularization terms
λ and α to reduce overfitting. BART retained default prior
distributions for simplicity, although they can be adjusted when
data-specific insights deem them unfit. For ANN, the number
of hidden layers and neurons per layer was prioritized for their
impact on model capacity and complexity.

Evaluation and Comparison of Model Performance
As random variation in dataset partitioning can influence model
outcomes, steps were taken to ensure that the results reflected
both robustness and representativeness rather than chance. To
address this challenge, repeated random split cross-validation
was used by iteratively splitting the dataset and training the
hyperparameter-optimized model 1000 times, ensuring that each
possible configuration was included at least once in the grid
search. In each iteration, the dataset was randomly divided into
a unique training (70%) and testing (30%) set, which were kept
separate to prevent data leakage. This iterative process allowed
the model to be evaluated on different combinations of training
and testing data, enhancing the reliability of its predictions. For
each split, the model, configured with optimal hyperparameters,
was then trained on the training set and evaluated on the testing
set, both using patient characteristics. Following the prediction,
the results were compared to the true values and fitted into a
confusion matrix, with performance further quantified by
average accuracy, specificity, precision, recall, and AUC.
Finally, the iterative process provided not only a look into the
average performance but also the variance. Low variance
indicates the model’s ability to generalize well for patients
outside of the training and testing data. Noteworthy indicators
of model performance included accuracy for average
performance, specificity for predictive power on patients with
a nonhealing ulcer, and the considered balance between
specificity and recall.

For the BART model, uncertainty quantification was enhanced
through a density plot, providing greater transparency in the
decision-making process. The density plot visualizes the
probability distribution of wound healing. The peak of the plot
indicates where the model is most confident in its classification.
A red line marks the threshold, the probability level used to
distinguish between healing and nonhealing outcomes. Predicted
probabilities exceeding this threshold are classified as healing,
while those falling below it are classified as nonhealing.

A calibration curve was used to ensure that the predicted
probabilities reflect true outcome likelihoods. This curve
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compares predicted probabilities to observed outcomes to detect
systematic over- or underestimation. To quantitatively evaluate
calibration, Brier scores were calculated. The Brier score,
ranging from 0 to 1, reflects the model’s ability to estimate true
outcome probabilities with high certainty, with lower values
indicating better calibration.

Decision curve analysis (DCA) was used to evaluate the clinical
use of the ML models (see Model Selection section) [38]. DCA
measures the net benefit of a model dependent on risk threshold
probability. It displays the most beneficial decision-making
strategy corresponding to a patient risk probability. For instance,
in a patient with a DFU who receives a predicted 85% risk of
nonhealing, a clinical decision rule that recommends amputation
for any risk exceeding 80% would lead to an amputation. If, in
reality, the DFU would have healed without surgical
intervention, this decision would constitute overtreatment. DCA
allows such trade-offs to be visualized and quantified across a
range of thresholds, thereby supporting the selection of a
decision threshold that yields the highest overall clinical benefit.

Dataset Size
A common challenge in ML training is the need for a sufficiently
large dataset to effectively train a classification model. In
practical applications, obtaining such data is difficult and
time-consuming. Hence, the improvement in model performance
relative to dataset size was measured. The selected ML models
were trained with randomly sampled, evenly classified train
and test datasets. The performance results were visualized
together with a learning curve illustrating the dataset size
expansion required to achieve the anticipated performance level.
Learning curves are a practical tool for evaluating the
relationship between model performance and dataset size. These
curves help determine the extent to which additional training
data might enhance model performance.

Ethical Considerations
The study was conducted in accordance with the principles of
the World Medical Association Declaration of Helsinki. The

independent Medical Ethics Review Committee Southwest
Holland reviewed the study and determined that it does not fall
within the scope of the Medical Research Involving Human
Subjects Act (approval number 18-038), as it does not constitute
scientific research as defined in article 1, paragraph 1, subsection
b of the Medical Research Involving Human Subjects Act. The
study consists of a retrospective chart review rather than research
in which individuals are subjected to interventions or imposed
behavioral regulations. Additionally, the scientific and general
board of directors of the Haaglanden Medical Center approved
the execution of the study and granted an exemption from
obtaining informed consent due to the retrospective nature of
data collection and the exclusive use of anonymized data. This
decision was based on the minimal risk to patients, the
impracticality of contacting patients, and the strict safeguards
implemented to protect privacy. The data were derived from
electronic patient records and documented anonymously within
the Castor medical web application. All data handling was
conducted in compliance with the General Data Protection
Regulation. Access to the dataset was restricted to authorized
members of the research team, which was stored on a protected
hospital server with controlled access. No identifiable
information was used in the analyses or presented in the results.
As the study relied exclusively on retrospective and anonymized
data, no patients were contacted, and no financial or other
compensation was provided.

Results

The final dataset used for prediction and analysis contained
information from 900 patients. After applying imputation and
oversampling techniques for incomplete patient records, 308
(44%) patients were recovered for model training (Table 2).
The original dataset comprised 700 patients, with 427 (61%)
representing cases of complete wound healing. Through
ADASYN, approximately 200 synthetic patient records with a
nonhealing ulcer were generated, equalizing the representation
of both classes to 450 (50%) patients.

Table 2. Statistical validity before and after imputation of empty values.

After imputation, mean (SD)Before imputation, mean (SD)Feature

70 (12)69 (12)Diastolic blood pressure (mm Hg)

97 (2)97 (2)O2 saturation (%)

66 (33)66 (33)Serum eGFRa (mL/min/1.73 m2)

7.8 (1.1)7.8 (1.2)Serum hemoglobin (mmol/L)

69 (18)69 (19)Serum HbA1c
b (mmol/mol)

137 (16)137 (18)Systolic blood pressure (mm Hg)

76 (39)77 (46)Toe systolic blood pressure (mm Hg)

3.8 (11.0)4.1 (11.6)Wound area measurement (cm2)

aeGFR: estimated glomerular filtration rate.
bHbA1c: hemoglobin A1c.

Feature selection of the dataset yielded the features that are
linearly correlated with wound healing (α=.05) and used in the

prediction of DFU healing (see Feature Selection section). Only
wound location contained variance inflation factor values greater
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than 5 due to the wide variety of locations. Seven models, LR,
KNN, SVM, RF, XGBoost, BART, and ANN, were optimized
with a grid search set within the most commonly used
boundaries (see Table 3 for hyperparameters) [39]. These models
were trained and tested, resulting in the following outcomes.
The validation of model training demonstrated a high predictive
power with an average accuracy of 0.794 (SD 0.023). However,
notable performance differences existed when comparing models
against their respective baselines. Feature importance measured
by both the RF and XGBoost models revealed critical predictors
for DFU healing outcomes. These predictors were determined
by their use in decision-making. Key predictors highlighted by
both models included toe systolic pressure on the affected side,
Hb, wound area, age, systolic blood pressure, and diastolic blood
pressure. Furthermore, BART offered enhanced insights into
uncertainty quantification through a density plot, contributing
to greater transparency in the decision-making process. The
density plot represents the probability of wound healing for a
randomly selected patient, with a 69% likelihood that healing

will occur (Figure 1). Table 4 shows the model performance
averaged over 1000 iterations in terms of accuracy, specificity,
precision, recall, and AUC metrics. SVM achieved the highest
performance with an accuracy of 0.853, followed by RF
(accuracy=0.838) and XGBoost (accuracy=0.815). KNN
(accuracy=0.789) and ANN (accuracy=0.789) scored lower,
followed by BART (accuracy=0.748), with LR (accuracy=0.725)
scoring the least in overall performance. The reliability of the
predicted probabilities was assessed using calibration curves
(Figure 2). The ideal calibration is represented by the diagonal
dotted black line, indicating perfect alignment between predicted
and actual probabilities. Deviations from this line indicate
miscalibration. Curves below the diagonal suggest
overconfidence (ie, predicted probabilities are too high), while
curves above the diagonal indicate underconfidence (ie,
predicted probabilities are too low). The Brier scores indicate
that SVM, RF, and XGBoost are better at class discrimination,
whereas LR, KNN, and ANN exhibit less reliable probability
estimates (Table 4).
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Table 3. Results of the model hyperparameter tuning.

Hyperparameters (lower bound-upper bound)Model

Logistic regression

——a

Support vector machine

0.1 (0.1-10)Gamma

7.1 (0.1-100)Cost

3 (1-5)Degree

Radial basisKernel

K-nearest neighbor

1 (1-10)K

Random forest

230 (10-300)Number of trees

90 (10-100)Depth

3 (1-25)Features

Extreme gradient boosting

30 (10-300)Number of trees

16 (10-100)Depth

0.23 (0.01-0.4)Eta

0.19 (0.01-0.2)Gamma

1.60 (0.1-2)Lambda

0.30 (0.1-2)Alpha

Bayesian additive regression trees

30 (10-100)Number of trees

90 (10-100)Depth

Artificial neural network

2 (1-5)Layers

16. 8 (64.2-32.2)Neurons

0.001 (0.1-0.001)Threshold

aNot available.
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Figure 1. Density plot for uncertainty quantification of a Bayesian additive regression trees model prediction.

Table 4. Model performance metrics with 95% CI.

Brier score
(95% CI)

AUCa (95% CI)Recall (95% CI)Precision (95% CI)Specificity (95% CI)Accuracy (95% CI)Model

0.179 (0.156-
0.202)

0.794 (0.751-
0.837)

0.739 (0.666-
0.812)

0.723 (0.669-
0.793)

0.711 (0.628-0.794)0.725 (0.679-
0.771)

Logistic regression

0.111 (0.087-
0.135)

0.922 (0.889-
0.955)

0.860 (0.799-
0.921)

0.851 (0.792-
0.910)

0.846 (0.772-0.920)0.853 (0.810-
0.896)

Support vector machine

0.131 (0.131-
0.131)

0.792 (0.747-
0.837

0.692 (0.620-
0.764)

0.870 (0.808-
0.932)

0.891 (0.831-0.951)0.789 (0.744-
0.834)

K-nearest neighbor

0.133 (0.115-
0.151)

0.917 (0.883-
0.951)

0.826 (0.761-
0.891)

0.853 (0.793-
0.910)

0.850 (0.781-0.919)0.838 (0.793-
0.883)

Random forest

0.138 (0.105-
0.171)

0.889 (0.849-
0.929)

0.809 (0.742-
0.876)

0.827 (0.768-
0.886)

0.822 (0.747-0.897)0.815 (0.768-
0.862)

Extreme gradient boost-
ing

0.169 (0.129-
0.190)

0.749 (0.702-
0.796)

0.762 (0.688-
0.836)

0.746 (0.692-
0.800)

0.736 (0.661-0.811)0.748 (0.701-
0.795)

Bayesian additive regres-
sion trees

0.202 (0.153-
0.251)

0.793 (0.744-
0.842)

0.811 (0.730-
0.892)

0.761 (0.654-
0.868)

0.770 (0.703-0.837)0.789 (0.736-
0.842)

Artificial neural network

aAUC: area under the receiver operating characteristic curve.
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Figure 2. Calibration curves: calibration performance of the machine learning models compared to the ideal calibration represented by the diagonal
dotted black line.

The DCA showed the benefit of each ML model in the
application of complete wound healing within 1 year (Figure
3). To facilitate interpretation, the threshold probability was
modeled to the estimated risk of patients not achieving complete
wound healing within 1 year. Overall, the SVM consistently
outperformed both the treat all and treat none strategies, as well
as the other ML models evaluated. This advantage was
particularly evident at the 75% risk threshold, where the SVM

demonstrated the highest net benefit. With the exception of the
ANN, the curves remained distant from the extremes of treating
all or no patients, demonstrating clear clinical benefit. The ANN
curve remained close to the treat all baseline, indicating limited
net benefit compared to the other models. The analysis
highlighted the potential of ML to support and enhance clinical
decision-making in DFU care, especially between the higher
risk threshold values (0.2-1.0).
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Figure 3. Decision curve analysis: correlation between net benefit and patient risk threshold probability of model predictions.

Finally, the model’s performance in relation to the dataset size
provided valuable insights into potential improvements in
average performance (Figure 4). While the baseline LR reached

its peak accuracy at approximately 73%, the SVM, RF,
XGBoost, and ANN exhibited promising signs of improvement
with increasing dataset size.
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Figure 4. Learning curves: correlation between model performance metrics and dataset size. AUC: area under the receiver operating characteristic
curve.

Discussion

Principal Findings
This paper offered a structured framework for applying ML
models in clinical research. Using ML in a dataset necessitated
several fundamental steps: data acquisition, contextual analysis,
handling missing values, feature selection, addressing class
imbalance, model selection, hyperparameter optimization,
evaluation and comparison of model performance, and
interpretation of results. As ML models become more accurate
with more examples in a database, developing a good model
requires significant computational power. The choice of different
statistical methods was related to the number of available
variables, the size of the studied population, and the outcomes
of interest. This study demonstrated that SVM, RF, and
XGBoost achieved the best performance in predicting outcomes
from a dataset related to a multifactorial disease.

Imputation with low variance in feature distribution ensured
statistical coherence, which is essential in medical research.
This coherence supports the accuracy of patient representation
and validates the reliability of the results, providing a
statistically coherent foundation for model training.

Preprocessing and feature selection resulted in a clean dataset
with features that were linearly correlated with complete wound
healing within a year. These features included age, smoking
status, toe systolic pressure, blood pressure, oxygen saturation,
Hb, HbA1c, eGFR, wound location, diabetes type, Texas wound
classification, neuropathy, and wound area measurement. These
features aligned with findings reported in prior literature [40,41].
Seven models were selected for comparing their predictive
power regarding complete wound healing, and each model
representing a different branch in ML [42,43]. Each model
provided distinct characteristics and unique insights, suggesting
that combining multiple models could be a valuable approach
to enhance predictive accuracy and interpretability. This study’s
comparative approach sought not only to discern the optimal
models for predicting DFU healing but also endeavored to
deepen the understanding of the underlying factors influencing
these outcomes. Feature importance therefore played a pivotal
role in understanding the relative significance of features within
each algorithm. To achieve this, the influence of features on
model predictions was explored. Specifically, the feature
importance of the RF and XGBoost models was taken into
account due to their ability to measure nonlinear correlations.
Upon comparing overall predictive scores, SVM performed
best. While the baseline LR model and BART plateaued at 0.75
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accuracy, KNN, RF, XGBoost, ANN, and even SVM itself
continued to show signs of improvement when trained on an
increasing dataset size. Although BART did not achieve high
accuracy, it demonstrated value by providing predictive
certainty, which is essential for supporting informed
decision-making, assessing risk, and enhancing transparency
in complex scenarios, where achieving complete accuracy is
not feasible. The Brier scores, which quantify overall model
calibration quality, supported the results observed in model
performance. SVM achieved the lowest Brier score, indicating
that the predicted probabilities were also well-calibrated and
were able to discriminate between classes. These findings are
further reinforced by the DCA, which demonstrated that ML
models, especially SVM, consistently yielded the highest net
benefit across the full range of threshold probabilities, validating
clinical usability. The limited performance of the ANN likely
stems from its inclination to predict predominantly a single
class, reflecting both insufficient training data and difficulty in
capturing complex patterns within the dataset. To realize
improved model performances for KNN, RF, XGBoost, ANN,
and SVM, we aim to include more patients before moving
toward clinical applicability.

Imperative Steps in Clinical ML
The fundamental steps necessary for applying ML to a dataset
are elaborated on in the Methods section. Each step serves a
distinct purpose, and omitting any of them may lead to
detrimental consequences. For instance, handling missing values
is imperative, as ignoring them can result in an inaccurate
representation of the patient population, distorting the model’s
output and leading to incorrect predictions that fail to reflect
the true clinical situation. Similarly, neglecting class imbalance
can cause the model to perform poorly in predicting the rarer
class, which may lead to incorrect treatment decisions in clinical
practice. Additionally, choosing the wrong model or failing to
optimize hyperparameters can prevent the model from
generalizing well to new data, ultimately undermining its clinical
applicability.

Comparison with Prior Work
In other DFU-related studies, 1 or a combination of up to 6
different ML models were used to predict disease outcomes
[6,11,25,44-49]. In addition to the 7 models selected for this
paper, various papers proposed the use of specialized model
variants, ensembles, or hybrids. Some examples are stacking
C, bagging, Adaboost, and light gradient boosting machine
[42,45,50]. We chose to exclude these models to uphold the
simplicity and clarity of our application.

Transferability Across Clinical Domains
The methodological framework outlined in this paper is intended
to be broadly applicable across a wide range of clinical domains
and is particularly well-suited for multifactorial diseases, such
as cardiovascular diseases, oncology, autoimmune disorders,
neurodegenerative diseases, and psychiatric conditions. These
disorders are often characterized by complex, nonlinear
interactions between numerous variables. ML models offer a
distinct advantage over conventional analytical approaches by
effectively identifying and prioritizing relevant features.

Moreover, there is growing recognition that environmental and
geographical factors significantly influence disease outcomes,
contributing to an increasing number of relevant variables in
datasets. To ensure optimal model performance and enhance
clinical applicability, it is crucial to ensure that a database
comprises a sufficiently large cohort with an adequate number
of variables. Potential challenges in applying the framework to
other clinical conditions include the presence of variables with
many distinct classes or free-text fields, rare outcomes occurring
in only a small subset of the population, a dataset with a large
proportion of imaging data, and structurally missing or
incomplete data. In certain domains, temporal dynamics play a
critical role, which may necessitate the use of more advanced
modeling techniques to appropriately capture and analyze
time-dependent patterns.

Strengths and Limitations
For this paper, a near-complete dataset was compiled,
encompassing all consecutive patients from one of the largest
hospitals in the Netherlands regarding DFU management,
comprising 199 variables. Substantial effort was dedicated to
collecting and curating the data to ensure its completeness and
quality. Additionally, 7 different ML models were applied,
making this paper a strong representation of the current
capabilities of ML in this domain.

Leveraging this extensive dataset and the application of multiple
ML models, this study highlights the advantages of ML over
conventional statistical methods in DFU management. Besides
their ability to process large amounts of data, these ML models
offer several key benefits. First, the models can identify
complex, nonlinear relationships between variables that may
be overlooked by conventional methods. In complex datasets
such as the one used in this paper, interactions between different
factors can be subtle. Second, the ML models used provided
alternative methods to extract relevant features from data,
helping researchers identify important predictive factors that
might have otherwise been overlooked. Certain variables may
unexpectedly prove important, as manually identifying the most
relevant features in high-dimensional datasets can be
challenging. Unlike traditional approaches, which rely on human
intuition and domain knowledge, both of which can introduce
bias, ML models use data-driven techniques to determine feature
importance objectively. Third, the models effectively handled
missing data through imputation, enhancing data usability and
improving predictive accuracy. It is important to note, however,
that imputation should only be applied when a small proportion
of data is missing. Applying imputation to a large number of
missing values can significantly distort the dataset, introduce
bias, and compromise the validity and reliability of the resulting
predictive models. ML models can adapt and improve, as more
data become available, continuously refining and optimizing
predictions. Integrating ML models into clinical decision support
systems can offer objective, data-driven insights for health care
providers and patients, allowing informed personalized
decisions, such as the option to wait longer for wound healing
or to pursue a different path in DFU treatment such as
amputation and early revalidation when muscle mass is not yet
decreased because of prolonged immobilization.
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The retrospective nature of this database presents a limitation
for this study, as some data were not recorded for a portion of
the patient cohort. In this regard, it would have been ideal to
analyze a prospective dataset. Furthermore, clinical applicability
would be more profound with a larger database. This could not
have been anticipated prior to the analysis, as the learning curves
demonstrate an increase in performance up to at least 900
patients (Figure 4). Learning curves provide valuable insights
into how much the model’s performance might improve with
additional training data, helping to determine whether collecting
more data is beneficial or if the model has reached its
performance plateau. When there is still room for improvement,
one must be cautious of overfitting, where models overly adapt
to training data, performing well on training data but poorly
generalizing to new, unseen data. This can result in inaccurate
predictions and decision-making in practice. This limitation
may be overcome by providing sufficient training data, reducing
the likelihood that unseen data will yield a different outcome.
In addition, implementing cross-validation helps assess
generalizable performance, while avoiding data leakage,
ensuring balanced class distributions, and minimizing the
number of features further contribute to reducing overfitting.
Moreover, there was limited availability of specific variables,
such as having a rare condition. These variables could not be
included in the feature selection, as their absence can lead to
biases in the models and inaccurate predictions. Therefore,
clinical applicability needs to be validated in an extended
database.

To ensure the added value of ML models in clinical practice, it
is an important role of computer data scientists to formulate
quality standards for clinical decision models. In addition, a

careful collaboration between the computer scientists,
statisticians, and clinicians is necessary to identify suitable
outcomes in clinical, imaging, and biochemical parameters. For
example, one would be most interested in factors that can be
clinically modified or that strongly predict good or absolutely
worst outcomes. Moreover, clinical interpretation of findings
from ML models is clearly needed. For example, Hb levels
showed a strong relationship with wound healing outcomes in
this study. However, while poor wound healing could be a direct
result of anemia, anemia may also be a consequence of a
generally ill patient because of a chronic wound.

Future Research
The next step will focus on obtaining more than 1000 complete
patient records in the DFU dataset to provide clinically relevant
features and develop a combined ML prediction model with an
accuracy exceeding 90%.

Conclusions
This study aimed to provide a framework for using ML models
to investigate factors influencing a multifactorial disease. Taken
together, the steps involved in the process include data
acquisition, contextual analysis, handling missing values, feature
selection, addressing class imbalance, model selection,
hyperparameter optimization, evaluation and comparison of
model performance, and interpretation of results. By using 7
different ML models, we have shown quality control for each
method. In the pilot DFU dataset used as an example, the SVM
performed the best, followed by RF and XGBoost. By
incorporating our framework, explanations to model behavior
can be structurally approached, providing better insights
compared to metric values alone.
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