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Abstract
Background: As the importance of person-generated health data (PGHD) in health care and research has increased, efforts
have been made to standardize survey-based PGHD to improve its usability and interoperability. Standardization efforts
such as the Patient-Reported Outcomes Measurement Information System (PROMIS) and the National Institutes of Health
(NIH) Common Data Elements (CDE) repository provide effective tools for managing and unifying health survey questions.
However, previous methods using ontology-mediated annotation are not only labor-intensive and difficult to scale but also
challenging for identifying semantic redundancies in survey questions, especially across multiple languages.
Objective: The goal of this work was to compute the semantic similarity among publicly available health survey questions to
facilitate the standardization of survey-based PGHD.
Methods: We compiled various health survey questions authored in both English and Korean from the NIH CDE repository,
PROMIS, Korean public health agencies, and academic publications. Questions were drawn from various health lifelog
domains. A randomized question pairing scheme was used to generate a semantic text similarity dataset consisting of 1758
question pairs. The similarity scores between each question pair were assigned by 2 human experts. The tagged dataset
was then used to build 4 classifiers featuring bag-of-words, sentence-bidirectional encoder representations from transformers
(SBERT) with bidirectional encoder representations from transformers (BERT)–based embeddings, SBERT with language-
agnostic BERT sentence embedding (LaBSE), and GPT-4o. The algorithms were evaluated using traditional contingency
statistics.
Results: Among the 3 algorithms, SBERT-LaBSE demonstrated the highest performance in assessing the question similar-
ity across both languages, achieving area under the receiver operating characteristic and precision-recall curves of >0.99.
Additionally, SBERT-LaBSE proved effective in identifying cross-lingual semantic similarities. The SBERT-LaBSE algorithm
excelled at aligning semantically equivalent sentences across both languages but encountered challenges in capturing subtle
nuances and maintaining computational efficiency. Future research should focus on testing with larger multilingual datasets
and on calibrating and normalizing scores across the health lifelog domains to improve consistency.
Conclusions: This study introduces the SBERT-LaBSE algorithm for calculating the semantic similarity across 2 languages,
showing that it outperforms BERT-based models, the GPT-4o model, and the bag-of-words approach, highlighting its potential
in improving the semantic interoperability of survey-based PGHD across language barriers.
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Introduction
Person-generated health data (PGHD) is becoming increas-
ingly important in managing individual health. PGHD
encompass health-related information that individuals create
and collect outside traditional clinical environments, helping
them monitor and manage their well-being [1,2]. Examples
of PGHD include biometric data from wearable devices and
self-reported information such as patient-reported outcomes.
Since PGHD has the potential for continuously capturing
health insights beyond health care settings, there is growing
interest in leveraging PGHD to support clinical care [3-5].
In parallel, PGHD is increasingly explored as a resource for
patient-centered outcomes research [6,7]. However, there are
several challenges in the effective use of PGHD, including
developing robust data management systems, ensuring data
security, deploying it seamlessly into clinical workflows, and
maintaining high data quality [5,7,8].

Standardizing survey-based PGHD is a critical step in
enabling its broader use [9]. An important aspect of stand-
ardization is to identify redundancies in the form of seman-
tic equivalencies. These redundancies may arise because the
clarity, tone, tense, directness, and formality of the language
can be phrased differently for the same purposeful inquiry
depending upon the author. For example, emotional symp-
toms may be captured by questions such as “Do you feel like
withdrawing from family or friends?” or “I don’t really want
to talk to people around me.” This variation makes identi-
fying semantically equivalent questions—and thus standard-
izing survey-based PGHD—a complex task. Efforts such
as the Patient-Reported Outcomes Measurement Information
System (PROMIS) and the National Institutes of Health
(NIH) Common Data Elements (CDE) repository aim to
provide standardized health survey questions. PROMIS, a
consensus-based item bank designed for managing patient-
reported outcomes, offers standardized measures that are
applicable across various diseases and clinical settings
[10-12]. These measures have helped health care provid-
ers across various clinical settings, including pain manage-
ment [13], orthopedics [14], and primary care [15]; in
cancer care [16]; in managing patient symptoms; in tailor-
ing treatments; and in improving communication between
patients and clinicians. The NIH CDE repository, through
metadata tagging, also plays a key role in standardizing data
elements, including health surveys [17,18]. Both PROMIS
and the CDE repository are essential for enhancing the
interoperability of health data.

In practice, the deployment of PGHD acquisition
applications requires that survey questions be drawn from
these established standardized resources. Data collected
using questions outside of these resources still require
additional efforts to achieve standardization. Although

previous studies have explored ontology-mediated methods
to identify semantically equivalent health questions [10,11],
annotating each question with ontology concepts is labor-
intensive and lacks scalability as such knowledge sources
expand. As a complementary approach, deep learning and
transformer-based methods have been applied to semantic
textual similarity (STS) tasks in clinical texts, including
radiology and pathology reports [19], clinical notes [20-22],
and medical question-answer pairs [23]. A range of models
has been explored, such as convolutional neural networks
[19]; transformer-based architectures such as bidirectional
encoder representations from transformers (BERT), robustly
optimized BERT approach, and XLNet [20-22]; and the
Siamese network [23]. Despite their promising performance,
most of these models have been limited to single-language
settings—predominantly English [20-22] or Chinese [19,23].
Consequently, cross-lingual STS remains underexplored,
highlighting the need for standardization efforts that promote
semantic interoperability across languages.

To address these challenges, we developed Standardized
PGHD Utilization Resources and Tools (SPURT), which
supports the standardization and reuse of survey-based
PGHD by identifying semantically equivalent questions
and facilitating the storage, retrieval, and sharing of these
data. Unlike PROMIS and the NIH CDE repository,
SPURT annotates and stores health survey questions in
both English and Korean while also detecting semantically
redundant questions. This ensures the use of consistent
question formats whenever possible. Technically, assessing
semantic similarity between texts is well-established and
widely applied for managing text resources [24]. However,
SPURT faces 2 unique challenges in its assigned task.
First, it must effectively assess semantic similarities within
or between 2 different languages—English and Korean.
Although multilingual embeddings can be used to address
this challenge [25,26], they often perform less effectively
for low-resource languages such as Korean compared to
high-resource languages such as English [27]. One common
solution is to translate low-resource languages into high-
resource ones before embedding, but this approach risks
losing or distorting the original meaning [28,29]. Second, it
must ensure computational efficiency for real-time seman-
tic comparisons between questions. Calculating semantic
similarity by using large language models such as BERT
is computationally expensive, with a time complexity of O
(N!). For example, computing the similarity of approximately
10,000 sentence pairs can take around 65 hours using a V100
graphics processing unit [30]. Given that SPURT is designed
to be a real-time, reactive data processing tool, achieving
reasonable response times is crucial for its functionality.

This study presents the development of a novel algo-
rithm for detecting redundant questions, addressing the
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challenges outlined above. The algorithm utilizes sentence-
BERT (SBERT), a variant of BERT designed for efficient
sentence-level semantic similarity calculations [30] along
with language-agnostic BERT sentence embedding (LaBSE)
[31] to enhance multilingual capability. Sentence-BERT is
a model specifically designed for calculating STS between
sentences, and LaBSE is an embedding that supports efficient
cross-lingual STS by mapping multilingual sentences into
a shared embedding space. The SBERT-LaBSE algorithm
integrates the strengths of both models and facilitates the
identification of semantically equivalent questions across
languages.

Methods
Corpus Description: The STS Dataset
An STS dataset contains text pairs along with predefined
similarity scores that quantify their semantic closeness
[32-36]. This study shows an STS dataset that fine-tunes
pretrained language models and evaluates our algorithms’
performance in determining the semantic similarity between
health-related questions.

We collected English and Korean questions from self-
reported questionnaires covering 5 health lifelog domains,
that is, diet, physical activity, living environment, stress

management, and sleep. English questions (n=1222) were
sourced from the NIH CDE repository, PROMIS, and
academic publications, while Korean questions (n=963) were
gathered from web-based resources provided by public health
agencies and hospitals in Korea [17,37-40].

To build the STS dataset, we began by randomly selecting
5 seed questions from each of the 5 health lifelog domains
in Korean, resulting in 25 seed questions. For each question,
correspondingly similar questions for Korean were identified,
resulting in 25 similar seed questions for each language. This
correspondence of seed questions was performed to minimize
the effects of semantic complexity on algorithm performance.
We then randomly selected 30 comparison questions for each
seed question, which yielded a total of 1500 question pairs
(750 in each language).

The gold standard for semantic similarity between the
question pairs was determined by 2 researchers with nursing
backgrounds who independently scored the similarity of
each question pair, following a standardized scoring protocol
(Table 1). The agreement between the researchers, as
measured by Cohen κ, varied by the health lifelog domains:
0.91 for diet, 0.72 for living environment, 0.83 for physical
activity, 0.86 for sleep, and 1.0 for stress management, with
an average Cohen κ of 0.86 across all the health lifelog
domains.

Table 1. Scoring protocol for semantic similarity. The seed question was “In the past month, have you ever had chest pain when you were not
performing any physical activity?”
Score Scoring protocol Examples
4 Minor differences in word choice from the seed question

but takes the same form of response
In the past month, have you had chest pain when you were not doing
physical activity?

3 Share the same key topic, although some details may be
added, altered, or omitted from the seed question

Do you feel pain in your chest when you do physical activity?

2 The key topics are similar but more specific or general
than that of the seed question

Has your doctor ever said that you have a heart condition and that
you should only perform physical activity recommended by a
doctor?

1 Does not share the core topic from the seed question or
belongs to a completely different health lifelog domain

Have you done general conditioning exercises in the past 4 weeks?

Upon completion of this annotation process, we observed that
the initial distribution of the similarity scores was imbal-
anced—skewed heavily toward lower similarity scores. Only
2.3% (7/300) of the pairs received a score of 4, and 4.9%
(15/300) received a score of 3. To address this imbalance,
we supplemented the dataset with an additional 117 Eng-
lish and 142 Korean question pairs from other sources,
chosen to increase the frequency of semantically similar (ie,
higher scores) samples in the evaluation STS dataset. These
additions brought the final evaluation set to 820 question
pairs (410 in each language) with the following distribution:
12.2% (99/810), 30.5% (247/810), 26.8% (217/810), and
30.5% (247/810) for scores 4, 3, 2, and 1, respectively.

Using a similar procedure as described above, we
compiled a second English STS dataset for fine-tuning our
pretrained language models. This fine-tuning dataset included
938 annotated English question pairs. The fine-tuning set had
a distribution of 6.2% (58/938) scoring 4, 14% (131/938)
scoring 3, 23.5% (220/938) scoring 2, and 56.4% (529/938)
scoring 1.

In total, the STS dataset consisted of 1758 question pairs,
broken down into 820 for evaluation testing (410 English
and 410 Korean) and 938 in English for classifier model
refinement (see Multimedia Appendix 1). The process of
constructing the STS dataset is illustrated in Figure 1.
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Figure 1. The process of preparing the semantic textual similarity dataset for fine-tuning and evaluation. CDE: common data elements; NIH: National
Institutes of Health; PGHD: person-generated health data; PROMIS: Patient-Reported Outcomes Measurement Information System; Rand: random
selection; STS: semantic textual similarity.

Semantic Similarity Calculation
Algorithms

Overview
We developed 4 classifiers to compare their performance
capability for distinguishing the binary task of semantic
similarity between STS question pairs. These were (1) the
bag-of-words (BoW) model, (2) SBERT with BERT-based
embeddings (SBERT-BERT), (3) LaBSE, and (4) the GPT-4o
model (GPT-4o). Among these, the SBERT-BERT algorithm
was included to serve as a translation-dependent baseline,
enabling comparison with multilingual models such as
SBERT-BERT and GPT-4o. Model fine-tuning and algorithm
development were performed using Python (version 3.11).

BoW Classifier
The BoW algorithm, a traditional language model that
represents sentences by their word frequency, serves as the
baseline [41]. The BoW model’s vocabulary was derived
from the STS dataset, comprising 1349 unique word forms
after stop-word removal and lemmatization. Each sentence
was represented as a 1349D vector based on the vocabulary.
Cosine similarity was used to calculate the semantic distance
of the question pairs. For Korean questions, translation to
English was performed using the Google Translator appli-
cation programming interface prior to similarity calculation
[42].

The SBERT-BERT Algorithm
The SBERT-BERT large language model was derived from
the pretrained BERT-based model, which has 12 layers, a
768D hidden layer, 12 attention heads, and 110 million
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parameters [30]. SBERT-BERT supports only English. We
fine-tuned the pretrained SBERT-BERT model to optimize
its performance for identifying semantic equivalency among
health questions by using the 938 English question pairs
described above. The fine-tuning was performed with a batch
size of 32, 8 epochs, and a learning rate of 2e-5, which
were deemed optimal after testing various configurations. The
AdamW optimizer was used for model optimization [43].
The fine-tuned SBERT-BERT algorithm was then evaluated
using the test STS dataset of 410 English question pairs and
410 Korean question pairs. As previously stated, the Korean
questions were translated into English using the Google
Translator application programming interface to execute the
evaluation.

The SBERT-LaBSE Algorithm
The SBERT-LaBSE algorithm differs from SBERT-BERT in
that it supports multiple languages within a single embed-
ding space [31]. The pretrained SBERT-LaBSE model was
derived from the LaBSE model, which also consists of 12
layers, a 768D hidden layer, 12 attention heads, and 110
million parameters [31]. Fine-tuning was performed in the
same manner as for SBERT-BERT. Unlike the other models,
SBERT-LaBSE can assess the semantic similarity of English
and Korean questions without requiring translation.

The GPT-4o Algorithm
The GPT-4o model, a state-of-the-art large language model,
is designed to understand and generate text in multiple

languages, including English and Korean [44]. Unlike the
SBERT-BERT and SBERT-LaBSE, which rely on fixed
embeddings for similarity calculation, the GPT-4o operates
as a generative model that dynamically evaluates semantic
similarity based on contextual understanding. However, in
this study, we utilized GPT-4o in a deterministic manner
to predict the score of sentence pairs. Each sentence pair
was presented with a specific instruction asking to evaluate
the score on a scale from 1 to 4 (Multimedia Appendix
2). Fine-tuning of the GPT-4o model was conducted using
the fine-tuning application programming interface from the
OpenAI platform [45].
Performance Evaluation
The performance of the similarity calculation algorithms
was evaluated as a binary classification problem to simplify
interpretation. The 4-point ordinal similarity scores from the
STS dataset were converted into binary labels, where scores
of 3 and 4 were categorized as similar and scores of 1 and 2
as dissimilar.

Optimal thresholds for predicting similarity were
determined for the continuous similarity scores, which ranged
from –1 to 1. Precision, recall, and F1-scores were calculated
to assess algorithm performance, and the area under the curve
for both the receiver operating characteristic and precision-
recall curves were examined. The processes used by the 3
algorithms to calculate similarity are illustrated in Figure 2.

Figure 2. Similarity calculation with the 4 algorithms. API: application programming interface; BERT: bidirectional encoder representations from
transformers; BoW: bag-of-words; Eng: English; Kor: Korean; LaBSE: language-agnostic bidirectional encoder representations from transformers
sentence embedding; SBERT: sentence-bidirectional encoder representations from transformers.

Ethical Considerations
This study does not involve human participants, intervention,
or identifiable private information. The analysis was based on
publicly available and nonidentifiable health survey questions
from open repositories and published sources. As such, it
does not fall under the scope of human subject research as
defined by the Seoul National University institutional review

board. According to Article 2 and Article 8, Paragraph 2
of the Seoul National University institutional review board
regulations (regulation 27, effective September 11, 2023),
studies that do not involve human participants or human-
derived materials are exempt from institutional review board
review. Therefore, this study was not submitted for eth-
ical review. No informed consent, compensation, or pri-
vacy protection measures were applicable, as no human
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participants were involved, and no personal data were
collected or analyzed.

Results
The performance of the 3 models for classifying similar
versus dissimilar question pairs when aggregating the 5 health
lifelog domains is summarized in Table 2 and Figure 3. In
the zero-shot trials (ie, without the model refining stage),
there were minimal differences in performance among the
3 algorithms for both English and Korean questions. All
algorithms exhibited higher recall than precision in both
languages. After fine-tuning, the SBERT-BERT algorithm
showed substantial improvement, particularly for English

questions, in which the F1-score increased from 0.65 to
0.96. For Korean questions, the improvement was moderate,
with the F1-score progressing from 0.68 to 0.73. In contrast,
SBERT-LaBSE demonstrated significant improvements for
both languages post fine-tuning. For English questions, the
F1-scores increased from 0.66 to 0.98, while for Korean,
the F1-scores increased from 0.68 to 0.98. Fine tuning for
both SBERT-BERT and SBERT-LaBSE models resulted
in noticeable balanced performance between recall and
precision. Similarly, GPT-4o exhibited improved perform-
ance following fine-tuning, with its F1-scores increasing from
0.69 to 0.79 for the English questions and from 0.67 to 0.79
for the Korean questions. However, the degree of improve-
ment was smaller than that observed in SBERT models.

Table 2. Performance metrics for the 3 algorithms, combining the health lifelog domains.
Performance
metrics

BoWa GPT-4o pretrained GPT-4o fine-tuned SBERTb with pretrained SBERT with fine-tuned

BERT-base LaBSEc BERT-base LaBSE
English question pairs (n=410)
  Accuracy 0.6112 0.6683 0.8463 0.6308 0.5917 0.9702 0.9853
  Precision 0.5279 0.5753 0.9590 0.5451 0.5111 0.9668 0.9818
  Recall 0.8161 0.8514 0.6686 0.7989 0.9253 0.9632 0.9839
  F1-score 0.6411 0.6866 0.7879 0.6480 0.6585 0.9649 0.9828
Korean question pairs (n=410)
  Accuracy 0.6610 0.6512 0.8488 0.6659 0.6878 0.7576 0.9839
  Precision 0.5732 0.5620 0.9520 0.5760 0.6054 0.6929 0.9818
  Recall 0.8057 0.8286 0.6800 0.8229 0.7714 0.7817 0.9806
  F1-score 0.6698 0.6697 0.7933 0.6776 0.6784 0.7332 0.9812

aBoW: bag-of-words.
bSBERT: sentence-bidirectional encoder representations from transformers.
cLaBSE: language-agnostic bidirectional encoder representations from transformers sentence embedding.
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Figure 3. Receiver operating characteristic and precision-recall curves for pretrained and fine-tuned embeddings on English and Korean questions,
combining the health lifelog domains. AUC: area under the curve; BERT: bidirectional encoder representations from transformers; BoW: bag-of-
words; Eng: English; Kor: Korean; LaBSE: language-agnostic bidirectional encoder representations from transformers sentence embedding; PR:
precision-recall; ROC: receiver operating characteristic; SBERT: sentence-bidirectional encoder representations from transformers.

Table 3 presents the performance of the 2 SBERT algo-
rithms across the 5 health lifelog domains. For all the
health lifelog domains, the fine-tuned SBERT-BERT and
SBERT-LaBSE algorithms demonstrated high performance
on English questions, with receiver operating characteristic
and precision-recall area under the curve values exceeding

0.95 and approaching 0.99. However, the SBERT-BERT
algorithm struggled with the English-translated Korean
questions, particularly in the physical activity domain. In
contrast, the SBERT-LaBSE algorithm consistently delivered
strong performance across all the health lifelog domains even
for Korean questions.

Table 3. Performance metrics of the sentence-bidirectional encoder representations from transformers–based algorithms with fine-tuned bidirectional
encoder representations from transformers and language-agnostic bidirectional encoder representations from transformers sentence embedding
models by the health lifelog domains.
Performance
metrics

English question pairs (n=410) Korean question pairs (n=410)

DLa

(n=80)
HLEb

(n=80)
PAc

(n=80)
Sleep
(n=85)

Stress
(n=85) All

DL
(n=80)

HLE
(n=80)

PA
(n=80)

Sleep
(n=85)

Stress
(n=85) All

BoWd

  Accuracy 0.7215 0.7250 0.6625 0.4118 0.7176 0.6112 0.7250 0.8125 0.7250 0.5765 0.5882 0.6610
  Precision 0.7000 0.6383 0.5952 0.4118 0.6279 0.5279 0.6585 0.7941 0.6275 0.0000 0.5000 0.5732
  Recall 0.6176 0.8571 0.7143 1.0000 0.7714 0.8161 0.7714 0.7714 0.9143 0.0000 0.8286 0.8057
  F1-score 0.6563 0.7317 0.6494 0.5833 0.6923 0.6411 0.7105 0.7826 0.7442 0.0000 0.6237 0.6698
  ROCe AUCf 0.7297 0.7457 0.6810 0.5820 0.7611 0.6976 0.7667 0.7937 0.7933 0.5937 0.6609 0.7174
  PRg AUC 0.7250 0.6718 0.6301 0.5025 0.6834 0.6036 0.7394 0.7373 0.7519 0.4498 0.5985 0.6267
GPT-4o fine-tuned
  Accuracy 0.9367 0.9750 0.9625 0.9765 0.9765 0.7873 0.8875 0.9375 0.7750 0.8000 0.8471 0.8293
  Precision 0.8919 0.9714 0.9444 0.9459 0.9459 0.7403 0.9643 1.0000 0.8696 0.9500 0.9583 0.7586
  Recall 0.9706 0.9714 0.9714 1.0000 1.0000 0.7701 0.7714 0.8571 0.5714 0.5429 0.6571 0.8800
  F1-score 0.9296 0.9714 0.9577 0.9722 0.9722 0.7549 0.8571 0.9231 0.6897 0.6909 0.7797 0.8148
  ROC AUC 0.9598 0.9838 0.9727 0.9863 0.9757 0.8524 0.9340 0.9444 0.8295 0.8823 0.8769 0.8737
  PR AUC 0.9138 0.9672 0.9418 0.9629 0.9354 0.7757 0.8969 0.9344 0.7510 0.7969 0.8182 0.7862
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Performance
metrics

English question pairs (n=410) Korean question pairs (n=410)

DLa

(n=80)
HLEb

(n=80)
PAc

(n=80)
Sleep
(n=85)

Stress
(n=85) All

DL
(n=80)

HLE
(n=80)

PA
(n=80)

Sleep
(n=85)

Stress
(n=85) All

SBERTh with fine-tuned BERT-basei

  Accuracy 0.9646 0.9625 0.9800 0.9906 0.9835 0.9702 0.8525 0.8125 0.7025 0.7200 0.7882 0.7576
  Precision 0.9650 0.9502 0.9784 0.9836 0.9830 0.9668 0.8037 0.7391 0.6175 0.6036 0.7108 0.6929
  Recall 0.9529 0.9657 0.9771 0.9943 0.9771 0.9632 0.8800 0.8914 0.8629 0.9543 0.8229 0.7817
  F1-score 0.9585 0.9571 0.9770 0.9887 0.9799 0.9649 0.8384 0.8062 0.7176 0.7376 0.7622 0.7332
  ROC AUC 0.9859 0.9698 0.9923 0.9929 0.9936 0.9867 0.9125 0.8563 0.7901 0.8411 0.8462 0.8412
  PR AUC 0.9858 0.9480 0.9925 0.9870 0.9918 0.9800 0.9008 0.7969 0.7640 0.8109 0.8244 0.8134
SBERT with fine-tuned LaBSE
  Accuracy 0.9848 0.9900 0.9875 0.9906 0.9906 0.9853 0.9775 0.9975 0.9850 0.9859 0.9835 0.9839
  Precision 0.9716 0.9889 0.9728 0.9944 0.9889 0.9818 0.9719 0.9944 0.9836 0.9775 0.9886 0.9818
  Recall 0.9941 0.9886 1.0000 0.9829 0.9886 0.9839 0.9771 1.0000 0.9829 0.9886 0.9714 0.9806
  F1-score 0.9826 0.9885 0.9861 0.9884 0.9887 0.9828 0.9743 0.9972 0.9828 0.9829 0.9797 0.9812
  ROC AUC 0.9965 0.9929 0.9987 0.9989 0.9979 0.9968 0.9893 0.9976 0.9962 0.9971 0.9930 0.9951
  PR AUC 0.9964 0.9901 0.9984 0.9985 0.9975 0.9960 0.9872 0.9958 0.9947 0.9957 0.9927 0.9934

aDL: dietary lifestyle.
bHLE: human living environment.
cPA: physical activity.
dBoW: bag-of-words.
eROC: receiver operating characteristic.
fAUC: area under the curve.
gPR: precision-recall.
hSBERT: sentence-bidirectional encoder representations from transformers.
iBERT: bidirectional encoder representations from transformers.

Table 4 presents the optimal cutoff values for the 3 algo-
rithms. The pretrained SBERT-BERT and SBERT-LaBSE
models showed considerable variation in the cutoff values
across the 5 health lifelog domains. However, after fine-tun-
ing, these variations decreased, indicating that fine-tuning
helped stabilize the algorithms. Despite this improvement, the
SBERT-LaBSE algorithm still exhibited more variability in

the cutoff values across the health lifelog domains compared
to SBERT-BERT, suggesting that further calibration may
be required for SBERT-LaBSE. Multimedia Appendix 3
provides example question pairs from each health lifelog
domain, along with the similarity scores assigned by human
reviewers and predicted by the 3 algorithms.

Table 4. Optimal cutoff for algorithms on bag-of-words and pretrained and fine-tuned SBERT-BERT and SBERT–LaBSE in each health lifelog
domain.
Health lifelog
domain

Bag-of-words SBERTa with pretrained SBERT with fine-tuned

BERT-baseb LaBSE BERT-base LaBSEc

English question pairs (n=410)
  Dietary lifestyle 0.2887 0.6274 0.5359 0.6349 0.6262
  Human living environment 0.1291 0.5369 0.3965 0.6151 0.6425
  Physical activity 0.3162 0.3667 0.4822 0.6304 0.6202
  Sleep 0.0000 0.6790 0.2456 0.6617 0.6574
  Stress 0.1054 0.5817 0.3807 0.6359 0.5958
  All 0.1291 0.5816 0.3796 0.6278 0.6091
Korean question pairs (n=410)
  Dietary lifestyle 0.2887 0.5990 0.3103 0.5639 0.6568
  Human living environment 0.2582 0.5475 0.5603 0.5639 0.7138
  Physical activity 0.1491 0.4778 0.6004 0.5639 0.6741
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Health lifelog
domain

Bag-of-words SBERTa with pretrained SBERT with fine-tuned

BERT-baseb LaBSE BERT-base LaBSEc

  Sleep 0.9354 0.4837 0.9215 0.5639 0.6849
  Stress 0.1091 0.6647 0.4481 0.5639 0.6586
  All 0.1336 0.5320 0.5753 0.5639 0.6531

aSBERT: sentence-bidirectional encoder representations from transformers.
bBERT: bidirectional encoder representations from transformers.
cLaBSE: language-agnostic bidirectional encoder representations from transformers sentence embedding.

Figure 4 illustrates that SBERT-LaBSE effectively deter-
mined semantic similarities between the 2 languages, with
slightly better performance in identifying the semantic
similarities of English questions relative to the Korean

seed questions. The complete results of the cross-language
semantic similarity analysis are provided in Multimedia
Appendix 4.

Figure 4. Performance of the cross-language semantic similarity determination. AUC: area under the curve; BERT: bidirectional encoder represen-
tations from transformers; BoW: bag-of-words; Eng: English; Kor: Korean; LaBSE: language-agnostic bidirectional encoder representations from
transformers sentence embedding; PR: precision-recall; ROC: receiver operating characteristic; SBERT: sentence-bidirectional encoder representa-
tions from transformers.
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Discussion
Principal Findings
This study demonstrates the utility of large language models
for determining semantic similarities among health questions
to facilitate the standardization of survey-based health data.
Our results indicate that the fine-tuned SBERT algorithms
were significantly more effective than the traditional BoW
approach in identifying semantic similarities for both English
and Korean questions. Furthermore, the SBERT-LaBSE
algorithm demonstrated superior performance particularly
for Korean questions, suggesting that it is a more effec-
tive method than the SBERT-BERT algorithm, which relies
on English translation, for assessing semantic similarity in
non-English texts. Notably, the SBERT-LaBSE algorithm
outperformed the GPT-4o algorithm, particularly in Korean.
Although it is possible that the full potential of the GPT-4o
algorithm was not realized, the results clearly show that
for the specific task examined in this study, the fine-
tuned SBERT algorithms achieved better performance than
GPT-4o, with significantly lower computational costs [46].

The SBERT-LaBSE algorithm’s success with Korean
questions can be attributed to its structural design and
the limitations of language translation. Structurally, LaBSE
aligns semantically equivalent words or sentences from
different languages into a unified embedding space, preserv-
ing semantic consistency across languages. This allows for
more accurate semantic similarity assessments. In contrast,
the SBERT-BERT algorithm’s lower performance with
Korean questions may be due to meaning loss or distor-
tion during translation, which disrupts semantic comparisons
between languages [28,29]. Although previous studies have
noted that LaBSE may struggle with subtle, sentence-level
nuances, limiting its performance in fine-grained similarity
tasks [47], our study shows that the SBERT-LaBSE algo-
rithm effectively captured the meanings in both English and
Korean sentences, outperforming the SBERT-BERT model.
However, this finding should be validated with a larger and
more diverse dataset that includes a broader range of syntactic
features.
Limitations
When implemented in the SPURT system with 1835
questions in the comparison space, the SBERT-LaBSE
algorithm evaluated the similarity of a new question in just
0.03 seconds. This was achieved on a Naver Cloud Plat-
form server with 8GB RAM and no graphics processing
unit [48]. Despite its impressive performance, LaBSE’s 440
million parameters—4 times that of BERT base—make it
a resource-intensive option, potentially increasing costs for
complex tasks. This resource demand may limit its applicabil-
ity on resource-constrained devices such as mobile platforms

[49]. To address these limitations, future work will explore
techniques such as distillation [50] and the use of small
language models [51], with the goal of reducing model size
while maintaining performance.

This study has some limitations. First, the cutoff values
for the similarity scores were not uniformly calibrated across
the 5 health lifelog domains, leading to inconsistencies in
how similarity scores were interpreted. For example, the
SBERT-LaBSE algorithm assigned a similarity score of 0.7
to the dietary question pair “I’ve binge eaten” and “Do you
ever overeat?” and identified them as similar. However, the
algorithm correctly identified the human living environment
questions, that is, “Have you moved in the past 5 years?” and
“In the last 5 years, the number of people in this commun-
ity has?” as dissimilar while assigning the same similarity
score of 0.7 to the pair. These inconsistencies may impact
the accurate interpretation of similarity scores, highlighting
the need for future work to focus on calibrating and nor-
malizing scores across the health lifelog domains to ensure
greater consistency. Second, our evaluation was conducted
on a small set of English and Korean question pairs. Future
studies should explore the feasibility of applying the SBERT-
LaBSE algorithm to a broader range of sentence types from
diverse domains. Additionally, by incorporating texts from
more diverse languages, future research can investigate the
algorithm’s potential to overcome language barriers and
facilitate semantic interoperability.
Comparison With Prior Work
Previous methods that relied on metadata tagging [17,18]
and ontology-mediated annotation [10,11] were effective in
providing structured mappings between concepts, facilitat-
ing interoperability. However, they struggled with compar-
ing the meanings of survey questions composed in multiple
languages and addressing semantically redundant questions.
This study leverages fine-tuned large language models such
as SBERT-BERT and SBERT-LaBSE to assess seman-
tic similarity. In particular, the fine-tuned SBERT-LaBSE
algorithm demonstrates the potential to enhance semantic
interoperability by capturing semantic similarities across
multiple languages with high performance.
Conclusion
This study highlights the potential of large language models
in identifying semantic redundancy in survey-based PGHD
collections. Specifically, the SBERT-LaBSE algorithm
excelled in classifying semantic similarity across diverse
question formats in 2 languages. Our findings demonstrate
that SBERT-LaBSE outperforms the traditional BERT-based
algorithm, the GPT-4o algorithm, and the conventional BoW
approach in both languages, highlighting its capacity to
improve semantic interoperability of PGHD across language
barriers.
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STS: semantic textual similarity
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