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Abstract

Background: Prolonged hospital stays can lead to inefficiencies in health care delivery and unnecessary consumption of medical
resources.

Objective: This study aimed to identify key clinical variances associated with prolonged length of stay (PLOS) in clinical
pathways using a machine learning model trained on real-world data from the ePath system.

Methods: We analyzed data from 480 patients with lung cancer (age: mean 68.3, SD 11.2 years; n=263, 54.8% men) who
underwent video-assisted thoracoscopic surgery at a university hospital between 2019 and 2023. PLOS was defined as a hospital
stay exceeding 9 days after video-assisted thoracoscopic surgery. The variables collected between admission and 4 days after
surgery were examined, and those that showed a significant association with PLOS in univariate analyses (P<.01) were selected
as predictors. Predictive models were developed using sparse linear regression methods (Lasso, ridge, and elastic net) and decision
tree ensembles (random forest and extreme gradient boosting). The data were divided into derivation (earlier study period) and
testing (later period) cohorts for temporal validation. The model performance was assessed using the area under the receiver
operating characteristic curve, Brier score, and calibration plots. Counterfactual analysis was used to identify key clinical factors
influencing PLOS.

Results: A 3D heatmap illustrated the temporal relationships between clinical factors and PLOS based on patient demographics,
comorbidities, functional status, surgical details, care processes, medications, and variances recorded from admission to 4 days
after surgery. Among the 5 algorithms evaluated, the ridge regression model demonstrated the best performance in terms of both
discrimination and calibration. Specifically, it achieved area under the receiver operating characteristic curve values of 0.84 and
0.82 and Brier scores of 0.16 and 0.17 in the derivation and test cohorts, respectively. In the final model, a range of variables,
including blood tests, care, patient background, procedures, and clinical variances, were associated with PLOS. Among these,
particular emphasis was placed on clinical variances. Counterfactual analysis using the ridge regression model identified 6 key
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variables strongly linked to PLOS. In order of impact, these were abnormal respiratory sounds, postoperative fever, arrhythmia,
impaired ambulation, complications after drain removal, and pulmonary air leaks.

Conclusions: A machine learning–based model using ePath data effectively identified critical variances in the clinical pathways
associated with PLOS. This automated tool may enhance clinical decision-making and improve patient management.

(JMIR Med Inform 2025;13:e71617) doi: 10.2196/71617
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Introduction

Prolonged length of stay (PLOS) remains a persistent challenge
in modern health care, contributing to inefficient resource use,
increased health care costs, and delayed recovery [1]. To address
these concerns, hospitals have adopted strategies such as
standardized clinical pathways designed to streamline care and
promote timely discharge [2,3]. Despite these efforts, PLOS
remains common, particularly among surgical patients, due to
factors such as postoperative complications, functional decline,
and comorbidities.

Identifying patients at high risk of PLOS is crucial for enabling
timely and targeted interventions. However, predicting PLOS
in routine clinical settings remains challenging due to the
complex and dynamic nature of patient conditions and the
multidimensional nature of clinical data. Recent advancements
in electronic clinical pathways have enabled systematic,
real-time recording of deviations from expected recovery
trajectories—referred to as “variances” [2]. These variances
may reflect meaningful clinical events and could provide
valuable insights for predicting outcomes such as PLOS.
Nevertheless, predictive systems that fully leverage variance
data remain underdeveloped.

To address this gap, we developed a novel electronic clinical
pathway system called “ePath,” which records outcomes,
outcome assessments, and associated tasks in a structured format
known as the outcomes-assessments-tasks (OAT) unit. ePath
integrates seamlessly with electronic medical records via a
custom data conversion interface and provides a standardized
data model for pathway-based care [4-6].

In this study, we applied machine learning algorithms to
real-world ePath data from patients undergoing video-assisted
thoracoscopic surgery (VATS) for lung cancer, aiming to
develop a robust model to predict PLOS risk. VATS has become
widely adopted as a minimally invasive alternative to traditional
open thoracotomy and is associated with shorter hospital stays
and lower health care costs [7-14]. These cost savings are largely
attributed to a reduction in PLOS [11,14]. However, a
considerable proportion of patients still experience prolonged
hospitalization, highlighting the need for more advanced
predictive tools.

The objective of this study was to develop an accurate and
clinically actionable PLOS prediction model using machine
learning applied to variance data captured by ePath. Establishing
such a system could enable timely interventions and support
clinical decision-making to reduce PLOS.

Methods

Ethical Considerations
The study design was approved by the Certified Review Board
of the Clinical Research Network Fukuoka (M23082-00). The
requirement for informed consent was waived, as this was a
retrospective study using anonymized records. No compensation
or incentives were provided to participants because this
retrospective study used anonymized data and did not involve
direct contact with individuals.

Study Design
This study included patients with lung cancer hospitalized at
Kyushu University Hospital in Fukuoka, Japan, who received
treatment via the VATS electronic clinical pathway. The ePath
system implemented at Kyushu University Hospital in 2018 has
been described in previous publications [4-6]. Inpatient clinical
data were electronically collected through ePath and compiled
into a dataset for outcome prediction using machine learning
models.

Clinical Outcomes
The clinical outcome of interest, PLOS, was defined as a
postoperative hospital stay exceeding 9 days based on the target
length of stay outlined in the clinical pathway at Kyushu
University Hospital.

Clinical Variables
Data collected during routine inpatient care were
comprehensively recorded in the ePath system and used as
variables. ePath is an electronic clinical pathway platform
developed to standardize and share clinical pathways across
multiple electronic medical record systems [4-6]. It facilitates
the systematic collection and analysis of related clinical data,
thereby supporting the application of artificial intelligence in
routine clinical practice. The variables included baseline patient
characteristics, functional status, pharmacotherapy, surgical
procedures, care processes, variance, and laboratory results.

Baseline patient characteristics, functional status, care
procedures, and pharmacotherapy were obtained from the
Diagnosis Procedure Combination database, Japan’s medical
billing data system, which comprises forms 1, H, and EF files.
Form 1 contains demographic information, diagnoses, and
disease severity. The H file provides daily records of physical
condition, patient care, and activities of daily living. The EF
file details daily pharmacotherapy, surgeries, and other clinical
activities.
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Care processes, outcomes, and variances were embedded in the
electronic clinical pathway and collected using the ePath system.
The clinical pathway data comprised OAT and variances for
each care process during hospitalization; these were collectively
referred to as OAT units [4-6]. The OAT units included expected
outcomes, assessments of outcomes, and tasks required for
assessments, all of which are interlinked. Deviations from
predefined care processes were recorded as variances in the
OAT units.

Laboratory results were obtained from the laboratory database
using the Standardized Structured Medical Information
eXchange, a standardized clinical data export system.

The number of discharges began to increase on postoperative
day 5. To minimize the impact of missing values due to
discharge and to reduce the risk of reverse causality, we limited
the candidate explanatory variables to those available by
postoperative day 4. From these, we first excluded variables
with high overall missingness or outcome-related missingness,
as these could introduce substantial bias. Although regularization
methods are designed to mitigate overfitting, our previous
research showed that including a large number of variables
improved apparent prediction accuracy in the derivation cohort
but reduced performance in the validation cohort, likely because
of high-dimensional noise. To optimize model performance
while maintaining generalizability, we used a 2-step variable
selection process that combined the exclusion of variables with
high missingness and univariate screening. This hybrid approach
enabled us to retain clinically important predictors, reduce noise,
and enhance the robustness of the final model [15].

Study Participants
Between July 2019 and May 2023, a total of 577 patients with
lung cancer at Kyushu University Hospital underwent VATS
treatment. Daily patient data were collected using the ePath
system, resulting in 1562 variables. To reduce potential bias,
the selection of both the explanatory variables and patients was
based on the method described above. We excluded 18 variables
with significant differences in PLOS status and 106 with a
missing rate of >10%. Of the remaining variables, from those
with a univariate significance level of P<.01 between the PLOS
groups, 63 variables from the day with the lowest P values (from
admission to postoperative day 4) were chosen as explanatory
variables. Patients with missing data for any of these 63 key
variables were excluded, resulting in a final cohort of 480
patients for complete case analysis. Figure S1 in Multimedia
Appendix 1 shows the flowchart detailing the variables and
patient selection process.

Machine Learning–Based Model
The PLOS prediction model was developed using machine
learning algorithms, including sparse linear regression models
(Lasso [16], ridge [17], and elastic net [18]) and decision tree
ensemble models (random forest [19] and extreme gradient
boosting [XGBoost] [20]), following previous research [15].
These algorithms include L1, L2, and mixed regularization
techniques for linear models; random forest as a bagging-based
decision tree ensemble model using parallel trees; and XGBoost
as a boosting-based decision tree model using sequential trees.

The algorithms used in this study were selected considering
their complementary strengths. Real-world clinical datasets
often contain variables with multicollinearity. To address this
issue, we used regularized regression models (ie, Lasso, ridge,
and elastic net), which incorporate penalty terms (based on the
absolute values, squares, or both) into their loss functions to
suppress variance inflation caused by multicollinearity. We also
used tree-based ensemble models (ie, random forest and
XGBoost), which are inherently robust to multicollinearity
because they do not rely on regression coefficients or the
inversion of a design matrix. Additionally, sparse regression
models offer interpretable, coefficient-based outputs and perform
well with high-dimensional clinical data, whereas tree-based
models are capable of capturing nonlinear interactions and
assessing variable importance.

For each algorithm, hyperparameters were optimized using grid
search with 5-fold cross-validation within the derivation cohort
(refer to Multimedia Appendix 2 for details). This process was
designed to maximize predictive performance while minimizing
the risk of overfitting.

The study period was divided into early and late phases, with
April 2022 constituting the boundary due to reimbursement
revisions and staff turnover in Japan. To assess the
generalizability of the predictive model, we used a temporal
validation approach. For temporal validation, patients admitted
during the early phase (July 2019 to March 2022) were included
in the derivation cohort, whereas those admitted during the late
phase (April 2022 to May 2023) were included in the test cohort.
The model was developed using data from July 2019 to March
2022 and validated with data from April 2022 to May 2023.

To evaluate model performance, we used the area under the
receiver operating characteristic curve (AUROC) to assess
discrimination and both calibration plots and Brier scores to
evaluate calibration (ie, the agreement between predicted
probabilities and observed outcomes). AUROC provides a
threshold-independent measure of a model’s ability to
distinguish between positive and negative cases. The Brier score
quantifies the accuracy of probabilistic predictions, while
calibration plots visually assess the alignment between predicted
and observed probabilities. These metrics are widely used in
clinical prediction research and offer complementary
perspectives on model performance.

For internal validation, the derivation data underwent 5-fold
cross-validation, and the AUROC was calculated. For external
validation, the model developed using the derivation data was
applied to the test data to calculate the AUROC. Calibration
plots were created by dividing the predicted PLOS probabilities
into 10 groups and plotting the average predicted PLOS
probability against the observed PLOS rate for each group.

Variable importance was assessed using standardized regression
coefficients in sparse regression models,
MeanDecreaseAccuracy in a random forest, and Gain in
XGBoost. All the variables in each predictive model were
ranked by importance, with percentages calculated relative to
the highest value. These percentages were then averaged across
all machine learning algorithms to determine the top-ranking
variables, and the values across the models were compared.

JMIR Med Inform 2025 | vol. 13 | e71617 | p. 3https://medinform.jmir.org/2025/1/e71617
(page number not for citation purposes)

Tou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The algorithm and variables with the best predictive
performance were selected as the final models. Using this final
model, differences in PLOS probabilities were estimated for
the test cohort based on the presence or absence of variance
within OAT units. Variance variables were selected from the
highest-ranking variables in the final model based on their
importance. This estimation involved comparing PLOS
probabilities, assuming that all patients had variances, with
actual variance values.

Statistical Analysis
Differences in frequency based on PLOS presence were tested

using the χ2 test or Fisher exact test, while continuous variables
were used for the Mann-Whitney U test. Differences in the
predicted PLOS probabilities (assuming all variances vs actual
variances) were evaluated using the Wilcoxon signed-rank test.
Machine learning model development and statistical analyses

were performed using the R statistical package (version 4.0.5;
R Foundation for Statistical Computing). Statistical significance
was defined as a 2-sided P<.05. The detailed R code is provided
in Multimedia Appendix 2.

Results

Baseline Characteristics of the Patients
The study included 480 patients with lung cancer, with a mean
age of 68.3 (SD 11.2) years, of whom 263 (54.8%) were men.
Of the 480 patients, 141 (29.4%) had PLOS (Figure S2 in
Multimedia Appendix 1). The baseline characteristics were
compared according to the PLOS status (Table 1). The patients
with PLOS were older, included a higher proportion of men,
and had a higher smoking index. In addition, a lower proportion
of patients underwent wedge resection in the PLOS group.

Table 1. Baseline characteristics of patients with and without prolonged length of stay (PLOS; n=480).

P valueWith PLOS (n=141)Without PLOS (n=339)

<.00171.5 (9.8)67.0 (11.4)Age (y), mean (SD)

.0190 (63.8)173 (51)Male, n (%)

.4522.6 (20.9-25.8)23.3 (21.0-25.2)BMI (kg/m2), median (IQR)

.4822 (15.6)43 (12.7)Diabetes mellitus, n (%)

<.001400 (0-900)0 (0-600)Smoking index, median (IQR)

.005Type of surgery, n (%)

77 (54.6)134 (39.5)Lobectomy

19 (13.5)45 (13.3)Segmentectomy

45 (31.9)160 (47.2)Wedge resection

Time Course Changes in Variables Related to PLOS
A heatmap was created to visualize the relationship between
daily clinical variables and PLOS, highlighting specific variables
associated with an increased risk of PLOS. The heatmap
provided temporal information on the timing since admission,
measurement frequency of each variable, and their association
with PLOS. Various factors, including the occurrence of
variances (Figure S3 in Multimedia Appendix 1), activities of
daily living (Figure S4 in Multimedia Appendix 1), treatments
(Figure S5 in Multimedia Appendix 1), medications (Figure S6
in Multimedia Appendix 1), and laboratory results (Figure S7
in Multimedia Appendix 1), were significantly associated with
PLOS at different time points.

Machine Learning–Based Prediction Models for PLOS
Five machine learning algorithms were used to develop
prediction models in the derivation cohort. The ridge, elastic
net, and random forest models showed high discrimination
(Figure 1; Multimedia Appendix 3), with calibration plots
indicating a good fit (Figure 2) and low Brier scores (Multimedia
Appendix 3). These models were validated in the test cohort.
Among the models, ridge regression demonstrated the best
performance with high discrimination (Figure 3; Multimedia
Appendix 4), good calibration (Figure 4), and a low Brier score
(Multimedia Appendix 4). Consequently, it was selected as the
final model, and the importance of the individual variables was
assessed.
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Figure 1. Discriminative performance of the prolonged length of stay (PLOS) prediction model in the derivation cohort. This figure demonstrates the
predictive performance of the PLOS prediction model for the derivation cohort of patients admitted in the earlier phase. Variables were selected as
predictors from each day between 2 days before VATS and 4 days after surgery based on the lowest P value in univariate analysis for each day by PLOS
status. The model was developed with 5 machine learning algorithms: Lasso (green), ridge (orange), elastic net (gray), random forest (yellow), and
extreme gradient boosting (XGBoost; blue). A 5-fold cross-validation was conducted, and the receiver operating characteristic curve is shown.

Figure 2. Calibration of the prolonged length of stay (PLOS) prediction model in the derivation cohort. This figure shows the calibration performance
of the PLOS prediction model for the derivation cohort of patients admitted in the earlier phase. The model, constructed using 5 machine learning
algorithms, namely, Lasso (A), ridge (B), elastic net (C), random forest (D), and extreme gradient boosting (XGBoost; E). The calibration plot divided
patients into 10 groups based on predicted PLOS probabilities, with the mean predicted probability on the x-axis and the observed probability on the
y-axis.
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Figure 3. Discriminative performance of the prolonged length of stay (PLOS) prediction model in the test cohort. This figure demonstrates the predictive
performance of the PLOS prediction model, initially developed in the derivation cohort, when applied to the temporally validated test cohort of patients
admitted in the later phase. The model was developed with 5 machine learning algorithms: Lasso (green), ridge (orange), elastic net (gray), random
forest (yellow), and extreme gradient boosting (XGBoost; blue).

Figure 4. Calibration of the prolonged length of stay (PLOS) prediction model in the test cohort. This figure shows the calibration performance of the
PLOS prediction model, initially developed in the derivation cohort, when applied to the temporally validated test cohort of patients admitted in the
later phase. The model constructed using 5 machine learning algorithms, namely, Lasso (A), ridge (B), elastic net (C), random forest (D), and extreme
gradient boosting (XGBoost; E). The calibration plot divided patients into 10 groups based on predicted PLOS probabilities, with the mean predicted
probability on the x-axis and the observed probability on the y-axis.
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Variable Importance in Machine Learning–Based
Prediction Models
We comprehensively analyzed the variable importance identified
by the final ridge regression model (Figures S8 and S9 in
Multimedia Appendix 1). The ridge regression analysis
highlighted several key predictors, such as drain management,
respiratory care, use of fibrin sealants, wedge resection, smoking
index, age, and levels of C-reactive protein and albumin.
Multimedia Appendix 5 shows the importance of the predictors
identified by the final model.

Key Variances Influencing PLOS
The frequency of clinical variance differed between patients
with and without PLOS (Multimedia Appendix 6). Using the

final ridge model, we calculated the predicted probability of
PLOS for each patient by comparing scenarios assuming a
specific variance to be present in all patients with its actual
occurrence in individual patients (Figure 5). This analysis
identified 6 key postoperative variables whose presence
significantly increased the predicted probability of PLOS:
abnormal respiratory sounds (P<.001), fever (P<.001),
arrhythmia (P<.001), inability to ambulate (P<.001), abnormal
drain characteristics (P<.001), and air leak (P=.005; Figure 6).
These were identified as critical variances associated with a
higher risk of PLOS in this patient population.

Figure 5. Variance presence and changes in prolonged length of stay (PLOS) probability. This figure shows predicted PLOS probability distributions
under different variance conditions: (a) assuming all patients exhibit specific variances ([A] respiratory status: no abnormal breathing sounds; [B]
infection: body temperature <37.5 ℃; [C] circulatory status: no arrhythmia; [D] activities of daily living (ADL): able to walk in the ward; [E] drain:
no redness, swelling, bleeding, and exudate after drain removal; and [F] drain: no air leak), (b) under actual variance values, and (c) assuming each
patient has variances. Box plots show PLOS probabilities for each condition per patient.

JMIR Med Inform 2025 | vol. 13 | e71617 | p. 7https://medinform.jmir.org/2025/1/e71617
(page number not for citation purposes)

Tou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Change in prolonged length of stay (PLOS) probability based on the presence or absence of variances. This figure shows the percentage
difference in predicted PLOS probabilities when the PLOS prediction model, developed in the derivation cohort, was applied to the temporally validated
test cohort under 2 scenarios: assuming all patients had variances or using the actual presence or absence of variances. The final model was constructed
using ridge regression, and the figure illustrates the estimated change in PLOS probability for each variance, assuming all patients exhibit them compared
to actual values.

Discussion

Principal Findings
In this study, we successfully collected comprehensive
real-world data using the ePath system from routine clinical
practice. A heatmap was used to visualize the timing and
emergence of factors potentially associated with PLOS. The
importance of the variables, except the top-ranked ones, varied
across machine learning algorithms. Temporal validation in the
test cohort demonstrated that the ridge regression model
performed well in both cohorts. Using this data-driven ridge
model, we identified 6 key variances in the clinical pathway
that significantly influenced the PLOS risk. Applying machine
learning to real-world data allowed us to identify the variances
contributing to PLOS, providing a foundation for potential
mitigation strategies. This system is promising as a data-driven
support tool that leverages electronic information to improve
patient care in clinical practice.

Factors Related to PLOS
Compared with open surgery, VATS is associated with fewer
postoperative complications and thus preferred for early-stage
lung cancer [7-10,12,13,21]. However, postoperative
complications can still arise, leading to potential PLOS [22-24].
Previous studies have identified various factors contributing to
PLOS in patients undergoing VATS [25-37]. Many of these
factors, such as age [25,27,31,32,34,36,37], male sex [25], BMI
[25,31], functional status [25,31], smoking history [25,36],
pulmonary function [25,28,31-34], comorbidities [25,26,30-32],
tumor status [29,36], and the American Society of
Anesthesiologists score [25,32,36], are challenging to modify
after admission. Additionally, surgical factors [27-29,31,37],
postoperative complications [28,29,37], and chest tube duration
[29,30,32] are contributing factors that require further
optimization from a surgical perspective.

In real-world settings, addressing modifiable factors before and
after VATS is critical for effectively predicting and reducing
PLOS. In this study, a heatmap was used to visualize the timing

of the relevant factors and their associations with PLOS in the
patient cohort. We assessed variable importance in machine
learning–based models to identify the key contributors to PLOS
risk. The identified factors are consistent with previously
reported ones, such as age, smoking history, and surgical
techniques (lobectomy and wedge resection), as well as
laboratory results indicative of inflammation and malnutrition.
Furthermore, we identified additional daily fluctuating factors,
described as variances in clinical pathways, that may be
associated with postoperative complications. These factors
underscore the importance of close monitoring and targeted
intervention to enable early and accurate prediction of PLOS
and mitigate its impact.

Key Variances Influencing PLOS
Previous studies on PLOS-related factors have primarily focused
on patient characteristics that are not easily modifiable during
hospitalization, leading to a lack of clarity regarding specific
in-hospital conditions associated with an increased PLOS risk.
Moreover, many factors are interrelated, highlighting the need
for a comprehensive assessment of how in-hospital conditions
affect PLOS risk while adjusting for baseline patient
characteristics. Clinical pathways capture variances or deviations
from the expected course, enabling the identification of atypical
patient trajectories. Recognizing the variances linked to higher
PLOS risk can help identify at-risk patients early, optimizing
patient care.

Although numerous factors influencing PLOS have been
reported in previous studies, their impacts may vary across
populations [25-37]. In our cohort, several variables significantly
altered the PLOS risk, including postoperative abnormal
respiratory sounds, arrhythmia, air leaks, fever, reduced
mobility, and abnormal drain characteristics. These variances
reflect underlying issues such as pulmonary air leaks,
arrhythmias (eg, atrial fibrillation), postoperative infections,
and functional impairments.

The emergence of variances may contribute to PLOS through
these underlying causes. For instance, a prolonged air leak may
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delay drain removal, arrhythmias and related complications
may necessitate prolonged treatment, infections may require
extended use of antibiotics and additional testing, and decreased
activities of daily living may slow rehabilitation progress.
Although these variances may also be interrelated, identifying
and addressing the underlying causes of the 6 key variances
may help reduce the risk of PLOS.

Once a variance occurs, prompt clinical intervention is essential.
Evaluation of potential causes may include chest x-rays, blood
tests (eg, arterial blood gas analysis, inflammatory markers, and
electrolyte panels), and inspection of the drainage system.
Interventions may include oxygen therapy, postural adjustments,
enforced rest, infection control (eg, wound irrigation,
disinfection, and dressing changes), administration of
antiarrhythmic medications, early mobilization, antibiotic
therapy for infections, or pleurodesis for persistent air leaks.
Implementing a structured, variance-specific response protocol
that integrates timely assessment and targeted intervention may
be critical in minimizing PLOS.

Nonmodifiable factors during hospitalization, such as age and
comorbidities, are beyond the scope of immediate interventions.
However, by understanding how deviations from typical
recovery (ie, variance) impact PLOS risk, we can target these
specific variances for early intervention. By quantifying changes
in the predicted PLOS probability under hypothetical scenarios
of variance, we can objectively assess their impact on patient
outcomes. Counterfactual analyses simulating changes in
outcome probabilities may help estimate population-level
effects, paving the way for clinical improvements using the
ePath system.

When key variances associated with PLOS are identified,
feedback should be provided to the medical team, followed by
discussions and consideration of potential improvements.
Wherever possible, the underlying causes of each variance
should be addressed to prevent recurrence. For variances with
significant clinical impact or those amenable to effective
intervention, specific management strategies should be
developed. Strengthening interprofessional collaboration,
providing staff education on early response protocols, and
evaluating outcomes can all contribute to continuous
improvement. In this context, ePath can facilitate a sustainable
plan-do-check-act or plan-do-study-act cycle.

In real-world clinical practice, the variances identified through
our approach may help reduce PLOS if managed with
appropriate clinical responses. For example, a variance response
bundle or an actionable protocol triggered by the model could
provide a formal structure for these interventions. Assessing
whether such structured approaches reduce PLOS is an
important next step.

Clinical Implications
Machine learning and deep learning are being increasingly
applied in health care to uncover hidden patterns in complex
datasets and generate predictive insights [38-40]. One of their
most promising clinical applications is the automated prediction
and visualization of outcomes such as PLOS, which can support
clinical decision-making and enhance operational efficiency.

However, predicting outcomes using real-world clinical data
remains challenging due to its unstructured and heterogeneous
nature [41].

To address these challenges, we developed the ePath system—an
electronic clinical pathway system designed to systematically
collect patient-level and care process data through an integrated
workflow. In this study, we adopted a data-driven approach to
explore potential causes of PLOS. As a result, we were able to
confirm several clinical risk factors. Moreover, we provide
novel insights by visualizing when and how specific changes
in patient status contribute to the risk of PLOS. This was
achieved by integrating a prediction model into the ePath
system, enabling real-time, patient-specific visualization of
PLOS risk. The structured nature of ePath facilitates robust,
data-driven analysis and model development. Recently, tools
using clustering techniques on real-world clinical data have
been developed to support the design of clinical pathways for
patients with lung cancer [42]. The integration of real-world
data with pathway analysis via electronic health information
systems may mark a new era in data-driven health care.

The novelty of our study lies in leveraging the ePath to capture
real-time postoperative clinical variances and applying machine
learning techniques to identify key factors associated with
PLOS. By embedding the predictive models into a dashboard
system, clinicians can visualize each patient’s risk and
corresponding clinical variances. When high-risk patterns are
detected, the system can generate alerts that prompt timely
interventions. Early and appropriate responses may help reduce
unnecessary hospitalization and improve patient outcomes. In
this way, the system has the potential to serve as an effective
clinical decision support tool.

Beyond its clinical utility, ePath also offers managerial value.
Hospitals can monitor the occurrence of variances and predicted
PLOS risks across patient populations in real time. This enables
data-driven decision-making for care delivery and supports the
implementation of quality improvement initiatives. By tracking
length of stay metrics before and after protocol modifications,
institutions can assess the effectiveness of interventions and
refine care pathways accordingly. Once validated, such
interventions can be standardized and scaled across the
organization.

It is important to note that factors contributing to PLOS can
vary by institution and patient population [25,31] and may
include not only clinical indicators but also social and
operational factors [34]. Therefore, models developed using an
institution’s data—as enabled by ePath—may be particularly
valuable for generating context-specific insights and designing
tailored interventions.

Nonetheless, several barriers must be addressed to implement
such a system effectively. First, a structured data collection
infrastructure, such as ePath, must be established and integrated
into clinical workflows. Second, model transparency is essential
for clinicians’ trust. While many machine learning models are
often perceived as “black boxes,” we selected ridge regression
(L2 regularization) as our final model due to its strong
performance and interpretability. This model effectively handles
multicollinearity and provides coefficients with clear direction
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and magnitude, which are easily interpretable in clinical
contexts.

To further enhance interpretability, we used visualization
techniques such as standardized coefficients and variable
importance heatmaps. These tools can assist clinicians in
understanding model outputs and recognizing the clinical
relevance of key variances. Ultimately, the integration of
predictive outputs into actionable clinical workflows—through
protocols linked to specific alerts—will be essential for
translating data insights into meaningful improvements in patient
care.

Limitations
This study has several limitations. Because it used real-world
data, issues such as missing values persisted even after dataset
preprocessing. In this study, 97 patients were excluded from
the complete case analysis (Multimedia Appendix 7), which
may have introduced potential selection bias. Additionally, the
misclassification of variables cannot be ruled out, which may
introduce bias. Given the use of machine learning models,
caution is required to address potential overfitting, which may
reduce the generalizability of the results. Although we used
methods such as 5-fold cross-validation to enhance
generalizability and conducted temporal validation, the
developed model may not be fully applicable to other patient
populations. Moreover, to minimize overfitting from excessive
noise, we performed initial variable selection by excluding
potentially noncontributory variables. However, this approach
may have excluded predictors that were not significant in
univariate analyses but could become significant in a
multivariate context, potentially reducing predictive accuracy.
Further research is warranted to refine variable selection
methods that address this methodological trade-off. Differences
in health care systems, especially with Japan’s universal health
insurance system leading to longer hospital stays than
international standards, could also affect the defined outcomes.

The postoperative length of stay following VATS varies across
countries. Numerous studies have reported a median hospital
stay of 4 to 6 days after VATS [25-37]. Although the definition
of PLOS differs in the literature—ranging from 2 to 14 days
after surgery—it is most commonly set at 4 to 7 days. In this
study, the median length of stay was 8 (IQR 7-10) days, and
we defined PLOS as 9 days or more based on our institutional
clinical pathway target. This threshold may be longer than those
used in other countries, and therefore, cross-national
comparisons should be interpreted with caution. Hospital length
of stay is influenced by a wide range of factors that vary across
hospitals, regions, and countries. In addition to patient-level
clinical characteristics, institutional and systemic factors can
significantly impact length of stay. These include health care
financing and reimbursement systems, the availability of
regional health care resources, hospital size and function, clinical
staff expertise, adherence to clinical guidelines, the robustness
of discharge planning infrastructure, access to postacute care
services, and the presence of family support systems. This study
was based on data from one university hospital, which may not
be representative of the general hospital population. To enhance
the generalizability of our findings, future research should
include model retraining and validation using multicenter
datasets, the incorporation of health care system–related
variables into the models, and the development of customizable
models that can be adapted to specific institutional or regional
contexts.

Conclusions
Using the ePath system, we systematically collected real-world
data and developed machine learning models to predict PLOS
in a data-driven manner. Successful implementation of
data-driven PLOS prediction for specific patient populations
could serve as a valuable tool for evidence-based quality
improvement in health care. However, additional validation is
necessary to implement and operationalize these prediction
systems in real-world clinical environments.
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