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Abstract

Background: Gestational diabetes mellitus (GDM) affects over 5% of pregnancies worldwide, elevating risks of type 2
diabetes post partum and complications such as fetal death, miscarriage, and congenital abnormalities. Effective GDM
management is essential to balance glycemic control and pregnancy outcomes.

Objective: We aim to develop interpretable machine learning models using GDM datasets for predicting adverse pregnancy
outcomes and identifying key factors through the Shapley additive explanations (SHAP) algorithm, thus supporting improved
maternal and infant health.

Methods: Data preprocessing and feature selection were performed, with adaptive synthetic sampling used to address class
imbalance. Classification models, including logistic regression, random forest, support vector machine, and extreme gradient
boosting, were built and enhanced through the stacking method. Model interpretability was assessed with SHAP to quantify
feature contributions.

Results: Among 1670 patients, 200 experienced adverse outcomes. The stacking model outperformed individual models,
achieving an accuracy of 85.6%, a sensitivity of 57.8%, a specificity of 95.9%, and an area under the receiver operating
characteristic curve of 0.82 on the test set. External validation on 159 patients showed a decline in performance (accuracy
83.6%, area under the receiver operating characteristic curve 0.67). SHAP analysis identified gestational age, glucose control,
and diagnosis time among the most influential predictors, providing clinically meaningful insights into risk factors. Addition-
ally, detailed SHAP-based visualization revealed the distribution of different feature values and their nonlinear impact on
outcomes, as well as interaction effects between features. These interpretable analyses enabled a deeper understanding of
individual and combined feature contributions, thereby enhancing clinical assessment capabilities.

Conclusions: This study underscores the potential of machine learning in predicting adverse outcomes in GDM, with
interpretable features offering valuable clinical insights to enhance pregnancy management and maternal-infant health.
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Introduction

Gestational diabetes mellitus (GDM) is a significant global
health concern, affecting at least 5% of pregnancies world-
wide [1]. It is characterized by impaired glucose tolerance due
to an increase in anti-insulin substances and decreased insulin
sensitivity, leading to hyperglycemia and other metabolic
disturbances [2]. Women diagnosed with GDM not only face
increased perinatal complications but are also at a signifi-
cantly higher risk of developing type 2 diabetes mellitus
postpartum [3]. Moreover, in utero exposure to hyperglyce-
mia has long-term implications for offspring, predisposing
them to metabolic disorders, obesity, and cardiovascular
diseases later in life.

Uncontrolled GDM significantly increases the risk of
adverse pregnancy outcomes, including fetal macrosomia,
preterm birth, neonatal hypoglycemia, and even perinatal
mortality [4,5]. During early pregnancy, poor glycemic
control may result in congenital malformations or spontane-
ous abortion, whereas in later stages, it can contribute to
pre-eclampsia, respiratory distress syndrome, and hyperbiliru-
binemia [6,7]. Despite advancements in clinical management,
the timely identification of high-risk pregnancies remains
a challenge. Traditional risk assessment methods, such as
clinical scoring systems and conventional regression models,
often rely on predefined risk factors and fail to capture
complex interactions within high-dimensional clinical data
[8]. This limitation highlights the need for more advanced
predictive tools that can improve early risk stratification and
optimize maternal and fetal outcomes.

Machine learning has emerged as a transformative
approach in medical research, offering superior capabilities
in analyzing complex, high-dimensional datasets [9]. Machine
learning models can effectively capture intricate patterns and
nonlinear relationships in clinical data, surpassing traditional
statistical approaches in predictive accuracy. In a retrospec-
tive analysis of 8888 deliveries, random forest classification
achieved exceptional accuracy in predicting birth asphyxia,
with critical risk factors including maternal hypertension,
anemia, preterm birth, and noncephalic presentation [10].
Similarly, deep learning showed superior predictive perform-
ance for intrauterine growth restriction in another study
of 8888 pregnancies, identifying key risk factors such
as maternal hypertension, drug addiction, and COVID-19
infection [11]. Furthermore, in an analysis of 7166 preg-
nancies, random forest demonstrated optimal prediction of
fetal heart, with significant predictors including primiparity,
placental abruption, and male fetal sex [12]. However, the
use of machine learning models in predicting GDM-rela-
ted adverse pregnancy outcomes remains relatively limited —
particularly in the field of interpretable machine learning.
Most current studies focus on model predictive accuracy,
lacking transparent analysis of feature variable impacts,
which makes it difficult to provide clinically reliable risk
factor assessments. This lack of interpretability limits the
practical application and adoption of such models in real-
world medical settings. Therefore, there is an urgent need
to develop models that combine high predictive performance
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with clinical interpretability to identify key risk factors and
assist physicians in formulating personalized intervention
strategies.

To address this gap, this study aims to develop an
interpretable machine learning model using a publicly
available GDM dataset to predict the risk of adverse
pregnancy outcomes associated with gestational diabetes.
Unlike previous studies that primarily focus on GDM
diagnosis, our approach emphasizes predicting maternal and
fetal complications, which is crucial for timely intervention.
Furthermore, we incorporate Shapley additive explanations
(SHAP) analysis to enhance model interpretability, allowing
clinicians to identify the most influential factors contribu-
ting to adverse pregnancy outcomes. By providing clinically
actionable insights, our model aims to support personal-
ized risk assessment and improve maternal and fetal health
outcomes.

Methods

Data

This study is based on the publicly available GDM data-
set. We included pregnant women who met specific diag-
nostic criteria through the publicly available dataset [13,14].
The dataset comprises anonymized electronic health records
extracted from the Cerner system at St Mary’s Hospital in
London, covering pregnancies monitored between April 2016
and November 2019. A total of 1854 records were initially
retrieved, including clinical and demographic variables such
as maternal age, BMI at booking, ethnicity, glucose tolerance
test results (0- and 120-min post-75 g glucose load), mode of
delivery, gestational age, neonatal birth weight, and stillbirth
outcomes.

To ensure data quality and reliability, patients with
missing values in key variables were excluded. Implau-
sible outliers were identified and corrected when possi-
ble; otherwise, they were removed from the dataset. Unit
inconsistencies were also standardized. These preprocessing
steps were applied to ensure consistency, accuracy, and
completeness of the data used for model development and
analysis.

Subject

To ensure the accuracy and reliability of this study’s results,
inclusion criteria (based on the results of the oral glucose
tolerance test [OGTT]) were defined as follows: the blood
glucose level of pregnant women should reach or exceed
7.8 mmol/L. and not exceed 25 mmol/L at 2 hours after
OGTT; or the blood glucose level should reach or exceed 5.6
mmol/L and not exceed 25 mmol/L at 10 minutes after OGTT
[15]. In addition, the study’s definition of adverse pregnancy
outcomes includes newborn birth weight below 2500 g,
severe prematurity, stillbirth, and Apgar score below 4 [16].
Additionally, we excluded cases with missing Apgar score
data to avoid potential biases that could arise from inaccur-
acies in assessing pregnancy outcomes. By implementing
these strict inclusion and exclusion criteria, we ensured the
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consistency of this study’s population, allowing for a more
accurate assessment of the impact of GDM on the health of
pregnant women and their offspring.

Data Preprocessing

In this study, we encountered issues with missing values for
multiple features in the dataset. To maintain data integrity and
the reliability of the analysis, we adopted a cautious approach
to handle these missing values. Specifically, when the
proportion of missing values for a particular feature excee-
ded 30%, such as “previous obstetric history,” “presence of
meconium,” and “O_Thyroid function blood,” we chose to
exclude them from the analysis. For the remaining missing
values in the features, we implemented an imputation strategy
to enhance the usability of the data.

In terms of the choice of imputation method, we adopted
a differentiated approach based on the type of feature. For
numerical features, we used the median or mean for imputa-
tion, a method that reduces the impact of extreme values
while preserving the distribution characteristics of the data.
For categorical features, we used the k-nearest neighbors
algorithm for imputation, which estimates the possible values
of missing data by finding similar observations based on
distance metrics.

Additionally, some categorical features with sparse or
heterogeneous classifications were restructured using domain

Figure 1. Pearson correlation matrix of key features for redundancy analysis.
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knowledge to improve statistical interpretability. For instance,
antenatal medical factors were originally recorded in 64
different categories. These were clinically reviewed and
consolidated into 7 meaningful groups: (1) mental health
and neurological disorders, (2) genetic disorders, (3) surgical
or operative conditions, (4) infectious and immune-related
diseases, (5) obesity-related conditions, (6) chronic diseases,
and (7) none.

Finally, to further meet the requirements of machine
learning models, we performed 1-hot encoding on all
categorical variables. This helps to avoid potential numeri-
cal encoding biases and ensures the effectiveness of model
training.

Feature Selection

To mitigate the “curse of dimensionality” and enhance the
practicality of model deployment in clinical settings, we
removed redundant features. As shown in Figure 1, we used
the Pearson correlation matrix to identify highly correlated
variables. For continuous variables, feature selection was
guided by the Pearson correlation coefficient. As the number
of categorical variables was relatively small—primarily
including “number of previous C-sections,” “obesity status,”
and “antenatal medical factors”—all were retained in the
model.

IMD: Index of Multiple Deprivation.
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During the analysis, we identified several pairs of fea-
tures with relatively high Pearson correlation coefficients,
including “Index of Multiple Deprivation (IMD) decile” and
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“IMD rank,” “gestation (days)” and “gestation,” as well as
“body mass index (BMI) at booking” and “weight measured.”
Both deprivation-related variables reflect the socioeconomic
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status of pregnant women; however, given the broader range
of values for “IMD decile” (1012 to 32,742), we considered it
more statistically informative and retained this feature.

Given the direct association between gestational age
and adverse pregnancy outcomes, gestational variables were
excluded from the model to prevent potential confounding.
Likewise, fetal birth weight—available only after deliv-
ery—was excluded to avoid outcome leakage. We recal-
culated BMI based on height and weight, as it offers a
more comprehensive measure of maternal body composition.
Consequently, the original “height” and “weight” variables
were removed due to redundancy. Additionally, although
“gestation (days),” “gestation,” and “Gravida” are strongly
associated with adverse outcomes such as preterm birth and
miscarriage, including them posed a risk of information
leakage. Based on both statistical reasoning and clinical
expert input, these features were excluded.

Lastly, “vitamin D level in blood” was removed due to
concerns over data quality and consistency. Vitamin D is
not a routine prenatal test, and the lack of standardization
in test timing introduced considerable variability, limiting its
reliability as a predictive feature.

Missing Data

The final dataset included 10 continuous variables such as
pregnancy age, blood glucose levels, and blood pressure.
The categorical variables include obesity status, number of
previous C-sections, and antenatal medical factors. Several
continuous variables had missing values, with the highest
rates observed in blood glucose levels (up to 23.1%) and
blood pressure measurements (Multimedia Appendix 1).

Model Construction

Based on our analysis results, we performed feature selection
and data preprocessing and then constructed machine learning
models. We used a variety of algorithms, including logistic
regression, random forests, support vector machines (SVM),
and extreme gradient boosting (XGBoost), to independently
build classification prediction models. To further enhance

Table 1. Hyperparameters adjusted for each algorithm.
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the predictive power of the models, we used the Stacking
ensemble learning method, taking the prediction results of
these base models as input and training them with a meta-
model (also known as a secondary model), thereby achieving
superior overall predictive performance. In our study, we
chose XGBoost as the meta-model. Considering that only
11.9% of the samples in the dataset manifested adverse
pregnancy outcomes, indicating an imbalance in the dataset,
we applied the adaptive synthetic sampling (ADASYN)
algorithm to address this imbalance and improve the model’s
generalization ability.

ADASYN is a machine learning algorithm used to address
class imbalance in classification problems [17]. In imbal-
anced datasets, there is a large difference in the number
of samples between different classes, which can result in
poor classification performance of the model for minority
classes. ADASYN balances the dataset by increasing the
number of samples of the minority class, thus improving the
model’s performance. Considering the imbalance between the
alive group and the expired group and the impact on the
accuracy of the prediction results, we applied the ADA-
SYN method to oversample the training set, while the test
set maintained the original sample ratio. To further vali-
date the model’s robustness and performance in addressing
class imbalance, we conducted supplementary experiments
by introducing another widely used oversampling method
—SMOTE (Synthetic Minority Oversampling Technique)
for comparison. SMOTE generates synthetic minority class
samples through interpolation in the feature space and has
been extensively applied in imbalanced classification tasks.
Compared with ADASYN, it is more comprehensive to
evaluate the impact of different oversampling strategies on
model performance, ensuring the selected method exhibits
stronger robustness and generalization capability in practical
applications. The overall data was split into a training set
and a test set in an 8:2 ratio. To fine-tune the hyperparame-
ters of each algorithm, we used grid search based on 5-fold
cross-validation within the training set. The hyperparameters
adjusted for each algorithm are as follows (Table 1).

Algorithm

Hyperparameters

Random forest

Extreme Gradient Boosting

Logistic regression

Support vector machine

¢ n_estimators: 10, 50, 100

* max_features: auto, sqrt, log2
* Bootstrap: true, false

¢ n_estimators: 20, 50, 100

* learning_rate: 0.1,0.2,0.3

* max_depth: 4,6, 8

* objective: binary: logistic

* subsample: 0.6,0.8, 1

e C:0.001,001,0.1,1, 10, 100, 1000
e Penalty: L1,L2

e C:0.1,1,10, 100

e Kernel: linear, rbf, poly

¢ Gamma: scale, auto
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Based on the basic models obtained from training, we
introduced the stacking strategy in our model fusion approach
to more comprehensively explore the potential correlations
between different basic models. We treated the outputs of
each basic model as new features and further trained them
using the XGBoost gradient boosting framework to construct
a highly optimized stacking model with significant synergistic
effects.

In clinical models, the interpretability of the model is
crucial because it helps doctors and researchers understand
the decision-making process of the model, thereby increasing
trust in the model and promoting its application in clin-
ical practice. SHAP is a popular machine learning inter-
pretability tool that can quantify the contribution of each
feature to the model’s prediction. In our study, we used
the SHAP algorithm to perform an interpretability analysis
on the gestational diabetes risk prediction model to increase
the model’s transparency, helping doctors better understand
the model’s decision-making process and make appropriate
interventions when necessary.

Ethical Considerations

This study is based on the publicly available GDM dataset.
We included pregnant women who met specific diagnostic

Lietal

criteria, as defined in the dataset documentation. All protected
health information has been deidentified to ensure privacy.
The dataset is accessible [14], and its use complies with the
associated public license and terms of use. Therefore, ethical
approval and individual patient consent were not required for
this study.

Results

Overview

A total of 1670 patients were selected from the GDM
database for inclusion in this study. The data inclusion
and exclusion diagram is shown in Figure 2. Among them,
200 patients had adverse pregnancy outcomes. Statistical
analysis was conducted using SPSS (version 22.0; IBM
Corp), while data cleaning, model construction, and per-
formance evaluation were carried out using Python (Python
Software Foundation). Continuous variables were expressed
as median (IQR), while categorical data were presented as
counts (percentages). The Mann-Whitney U test was used for
analyzing continuous variables, and chi-square test was used
to examine significant differences in categorical variables.
The patient’s baseline is presented in Table 2.

Figure 2. Flowchart of data inclusion and exclusion criteria. GDM: gestational diabetes mellitus.
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Table 2. Comparison of maternal characteristics by outcome group. Statistical significance was defined as P<.05.

Variable HC? Adverse outcome P value
IMDP decile, median (IQR) 4.00 (3.00-6.00) 4.00 (3.00-6.00) 25
Pregnancy age, median (IQR) 34.00 (30.00-37.00) 35.00 (31.00-38.00) 04
Glucose level (blood), median (IQR) 4.70 (4.30-5.30) 5.00 (4.45-5.80) <.001
Glucose level (0 min), median (IQR) 4.60 (4.20-5.20) 4.70 (4.30-5.65) 002
Glucose level (120 min), median (IQR) 8.40 (8.00-9.10) 8.50 (8.00-9.50) 02
Systolic blood pressure, median (IQR) 111.00 (104.00-120.00) 115.00 (107.00-125.00) <.001
Diastolic blood pressure, median (IQR) 70.00 (63.00-77.00) 72.00 (65.00-79.25) 01
Folic acid dose, median (IQR) 400.00 (0.00-400.00) 400.00 (0.00-400.00) 81
Diagnosis time (weeks), median (IQR) 10.00 (10.00-12.00) 10.00 (9.75-12.00) .82
BMI (kg/m2), median (IQR) 26.02 (22.81-29.75) 26.51 (23.71-30.05) 02
Obese? n (%) .30

No 908 (74.49) 324 (71.84)

Yes 311 (25.51) 127 (28.16)
No_of_previous_csections, n (%) .69

0 1003 (82.28) 369 (81.82)

1 187 (15.34) 72 (15.96)

2 26 (2.13) 7 (1.55)

3 2 (0.16) 2(044)

4 1 (0.08) 1(0.22)
Antenatal medical factors, n (%) .10

Chronic diseases 117 (9.60) 50 (11.09)

Genetic disorders 500.41) 0 (0)

Infectious and immune-related diseases 27 (2.21) 12 (2.66)

Mental health and neurological disorders 47 (3.86) 30 (6.65)

Obesity-related conditions 2 (0.16) 2(0.44)

Surgical or operative conditions 110 (9.02) 43 (9.53)

None 911 (74.73) 314 (69.62)

2HC: healthy control.
PIMD: Index of Multiple Deprivation.

In this study, we evaluated 5 different machine learning
models: random forest, XGBoost, logistic regression, SVM,
and a stacking ensemble model. To address class imbalance
in the training data, we applied oversampling techniques such
as ADASYN before model training. However, to preserve
the clinical authenticity and real-world applicability of the
evaluation, no oversampling was applied to the test set.

A comprehensive evaluation was conducted using multi-
ple performance metrics, including sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), positive likelihood ratio (PLR), negative likelihood
ratio (NLR), and overall accuracy. The results obtained on the
test set are summarized in Table 3 below.

Table 3. Comparative performance metrics of machine learning models for predicting GDM?-related adverse outcomes.

Model SENP SPES€ ppvd NPV® PLR! NLR& Accuracy F-score
Random forest 0.600 0.926 0.750 0.863 8.133 0.432 0.838 0.667
XGBoost! 0.567 0.955 0.823 0.857 12.570 0.454 0.850 0.671
Logistic regression 0478 0.721 0.387 0.789 1.714 0.724 0.656 0.428
SVMi 0.633 0.828 0.576 0.860 3.679 0.443 0.775 0.603
Stacking 0.578 0.959 0.839 0.860 14.098 0.440 0.856 0.684

3GDM: gestational diabetes mellitus.
PSEN: sensitivity.

CSPE: specificity.

dppPV: positive predictive value.
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°NPV: negative predictive value.
fPLR: positive likelihood ratio.

ENLR: negative likelihood ratio.
hXGBoost: extreme gradient boosting.
iSVM: support vector machine.
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The results showed that the stacking model outperformed
the individual models across several key metrics. Through
cross-validation, we evaluated accuracy, recall, precision,
and Fi-score. The results indicated that the stacking model
excelled in specificity (0.959), PPV (0.839), and PLR
(14.098). Its sensitivity (0.578) and NPV (0.860) were also
strong, with a low NLR (0.440) and an overall accuracy of
0.856, demonstrating the effectiveness of the model fusion
approach.

A total of 334 samples were contained in the test
set, including 90 cases with adverse pregnancy outcomes

(positive class) and 244 cases with favorable outcomes
(negative class). The positive-to-negative ratio is approxi-
mately 1:2.7, indicating a moderately imbalanced distribution.
Based on this dataset, the model demonstrated a satisfactory
performance in identifying adverse outcomes, achieving an
area under the receiver operating characteristic curve of 0.82.
This suggests that the model exhibits high overall discrim-
inative ability and can effectively differentiate individuals
with distinct pregnancy outcomes. The receiver operating
characteristic curve and confusion matrix for the stacking
model are presented in Figure 3.

Figure 3. ROC curve and confusion matrix of the stacking model for predicting GDM-related adverse outcomes. AUC: area under the curve; GDM:
gestational diabetes mellitus; HC: healthy control; ROC: receiver operating characteristic.
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To further investigate the effect of different oversampling
techniques on model performance, we conducted a compara-

Advle rse
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on the stacking model, which showed the best overall
performance in our main evaluation. The results are presented

tive experiment using both ADASYN and SMOTE, focusing in Table 4.
Table 4. Performance comparison of ADASYN? and SMOTE®.
Oversampling method SEN¢ SPE¢ PPV® Npvf PLRE NLRM Accuracy  Fp-score
ADASYN (stacking) 0.578 0.959 0.839 0.860 14.098 0.440 0.856 0.684
SMOTE (stacking) 0.266 0910 0.477 0.800 2.947 0.807 0.728 0.341
/ 0.658 0.506 0.292 0.827 1.332 0.676 0.542 0.405

2ADASYN: adaptive synthetic sampling.

PSMOTE: Synthetic Minority Oversampling Technique.
CSEN: sensitivity.

dSPE: specificity.

®PPV: positive predictive value.

NPV: negative predictive value.

8PLR: positive likelihood ratio.

PNLR: negative likelihood ratio.
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As shown, the stacking model trained with ADASYN
achieved superior performance across most metrics,
particularly in terms of sensitivity (0.578), PPV (0.839), and
F1-score (0.684), suggesting better identification of high-risk
cases and overall balance between precision and recall. In
contrast, the model trained with SMOTE exhibited a much
lower sensitivity (0.266) and Fi-score (0.341), indicating its
limited ability to correctly identify minority class samples in
this setting. We also report the performance of the stacking
model trained without any oversampling as a reference, which
demonstrated relatively higher sensitivity (0.658) but at the
cost of much lower precision (PPV 0.292) and specificity
(0.506), further confirming the advantage of using ADASYN
in managing class imbalance.

Additionally, by using the SHAP algorithm, we conduc-
ted an in-depth analysis of the model’s interpretability. The

Lietal

SHAP values revealed that clinical characteristics signifi-
cantly impact the prediction of gestational diabetes risk,
with specific results as follows. Through the calculation
and analysis of SHAP values, we were able to uncover the
contribution of each feature to the GDM outcome, thereby
gaining a more comprehensive understanding of the risk
factors for GDM. This interpretable analysis not only aids
in validating the robustness of the model but also provides
valuable references for subsequent clinical decision-making.
Based on the SHAP algorithm, we were able to perform
precise visual analyses for individual patients, as shown
in Figure 4, which includes a global summary of feature
importance across all patients (Figure 5A) and a local
explanation for an individual prediction (Figure 5B).

Figure 4. SHAP-based visualization of a machine learning model for predicting adverse pregnancy outcomes in patients with GDM. (A) Summary
plot of SHAP values for all features, showing their impact and direction of effect on model output across all patients. (B) Local explanation for a
single GDM case, highlighting how individual features contributed to the prediction. GDM: gestational diabetes mellitus; IMD: Index of Multiple

Deprivation; SHAP: Shapley additive explanations.
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Figure 5. SHAP-based interpretation of feature effects and interactions in the prediction model. GDM: gestational diabetes mellitus; IMD: Index of
Multiple Deprivation; SHAP: Shapley additive explanations.
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For each feature, we used the shape function to display the
distribution of its different values and their impact on the
outcome. The influence of individual features was shown
in Figure 5A, which demonstrates the specific impact of
changes in a single variable’s values on the model’s predicted
risk, revealing nonlinear relationships. Additionally, we used
visualization techniques to illustrate the interaction values
between different features, as shown in Figure 5B. These
analyses will enhance our ability to conduct clinical assess-
ments more effectively.

We further conducted feature interaction analysis to
explore the contribution of different feature combinations in
predicting adverse pregnancy outcomes in GDM. As shown
in Figure 5C, the plot illustrates the overall importance of
each feature in the model and its direction of influence,
with each dot representing the SHAP value of an individ-
ual patient. The features are ranked by their mean absolute
SHAP values, reflecting their average impact magnitude on
the model’s output. These results also highlight the signifi-
cance of key variables and their interactions in clinical risk
prediction.

External Validation

Based on the integrated model we ultimately obtained,
we collected data from some patients with GDM at Jin-
niu Maternal and Child Health Hospital (from January
2021 to March 2024) through telephone follow-up, focus-
ing on collecting data from patients with adverse pregnancy
outcomes. Due to issues such as patient cooperation and the
tightness of related human resources, the number of external
validation data is relatively small (159 cases, with a positive
to negative ratio of 27:132). We used the stacking model
for validation, which had a final accuracy of 0.836 and an
area under the receiver operating characteristic curve value of
0.669, showing a significant decline compared to the test set.
The results are shown in Multimedia Appendix 2.

Discussion

Principal Findings

According to the latest Global Diabetes Atlas (9th edi-
tion) published by the International Diabetes Federation,
the number of patients with GDM worldwide is increasing,
with approximately 20.4 (15.8%) million women enduring
hyperglycemia; among them, around 17.1 (83.6%) million
cases are due to GDM [18]. Pregnant women affected by
GDM face an elevated risk of adverse pregnancy outcomes,
which can pose significant threats to both the mother and the
infant. Therefore, predicting adverse pregnancy outcomes in
the early stages of pregnancy and providing timely feedback
and effective clinical management are particularly important.

The traditional scoring criteria for adverse pregnancy
outcomes currently used in clinical practice, such as
the TADPSG (International Association of Diabetes and
Pregnancy Study Groups) and the NICE (National Insti-
tute for Health and Care Excellence) Diagnostic Criteria,
exhibit varying levels of predictive efficacy and are prone
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to regional biases, making it difficult to achieve a consen-
sus on predictive outcomes [19,20]. Additionally, individ-
ual differences, such as physiological variations, hormonal
changes, genetics, and dietary structures, also affect the
estimated prevalence rates of GDM. However, current clinical
strategies for gestational diabetes typically use a one-size-fits-
all approach to blood glucose management. Therefore, more
comprehensive regular monitoring and earlier preventive and
intervention measures should be implemented to reduce the
potential for adverse outcomes.

In this study, we compared 5 machine learning mod-
els, random forest, XGBoost, logistic regression, SVM, and
stacking, to assess their performance in predicting outcomes
related to GDM. The results indicated that the stacking model
outperformed the other models across multiple key perform-
ance metrics, particularly excelling in specificity (0.959),
PPV (0.839), and PLR (14.098). Additionally, the stacking
model demonstrated good performance in sensitivity (0.578)
and NPV (0.860), with a low NLR (0.44) and overall
accuracy (0.856), further proving the significant advant-
age of model ensemble methods in enhancing predictive
performance. The receiver operating characteristic curve
and confusion matrix analysis also supported this conclu-
sion, emphasizing the effectiveness of the stacking model
in predicting adverse pregnancy outcomes in GDM. How-
ever, during external validation, when using domestic patient
data, the model’s performance significantly declined. This
phenomenon may be related to the inconsistent distribution
of dataset characteristics, such as differences in demographic
characteristics, lifestyle habits, and medical environments
between domestic and international datasets. These differen-
ces may lead to poor model adaptation when facing new
data distributions. Future research should further explore the
performance of these models on larger and more diverse
datasets to verify their generalization and stability. At the
same time, it is recommended to integrate clinical context by
introducing more features related to gestational diabetes for
analysis, such as real-time vital signs of pregnant women,
genetic phenotypes, and other relevant indicators, to enhance
the model’s predictive power and clinical application value.

SHAP helps clinicians understand and interpret complex
machine learning models. We noticed that adverse pregnancy
outcomes have a significant association with gestational
age. Previous studies have shown that adverse pregnancy
outcomes are directly related to blood glucose control during
the perinatal period of gestational diabetes [21]. Our results
indicate that gestational diabetes with a shorter duration
during pregnancy is associated with poorer pregnancy
outcomes, which may be related to the early detection of
hyperglycemia leading to preterm birth. Therefore, these
findings serve as an important alert for clinical practice,
suggesting that blood glucose monitoring should be initiated
earlier in pregnancy, considering the patient’s condition,
to conduct earlier glucose monitoring for different individ-
uals. Current clinical guidelines recommend screening for
gestational diabetes between 24 and 28 weeks of pregnancy,
and screening for and treating gestational diabetes during this
period can significantly reduce the risk of adverse pregnancy
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outcomes [4,22]. Meanwhile, a large cohort study found that
women diagnosed with GDM before 12 weeks of pregnancy
had worse pregnancy outcomes compared to those diagnosed
between 24-28 weeks [23]; the research by Mustafa et al
[7] also found that women with early onset (<24 weeks)
GDM had higher BMI, significantly increased demand for
insulin, and more adverse pregnancy outcomes. Therefore,
in addition to recommending universal screening at 24-28
weeks, identifying and treating GDM at an earlier stage could
reduce the potential perinatal or long-term adverse effects on
the mother and the offspring. These findings emphasize the
importance of identifying GDM earlier than current practi-
ces and exploring other interventions that might improve
outcomes beyond blood glucose control.

Pregnant women with GDM experience insulin resistance,
as previously reported in studies, which is associated with
preterm birth, and preterm newborns are at a higher risk of
being admitted to the neonatal intensive care unit or special
care baby unit [24]. Due to pregnant women with high
blood glucose levels, adverse pregnancy outcomes such as
preterm birth, large-for-gestational-age infants, and neonatal
hypoglycemia often require care in a neonatal intensive care
unit. Excess glucose in the mother’s circulation is transfer-
red across the placenta to provide the fetus with energy
substrates. The fetus’s response to the excess substrates
is to produce more insulin, leading to fetal hyperinsuline-
mia, which can result in a series of consequences, particu-
larly rapid fetal growth [25]. In pregnancies with GDM,
fetal insulin binds to insulin-like growth factor 1 receptors,
exerting growth hormone-like effects and serving as a key
factor in promoting fetal growth [26]. It is common for
children born to women with GDM to be large at birth.
Extensive research on this population has shown that the
increased birth weight of large-for-gestational-age infants is
due to an increase in fat mass, not muscle mass [27,28]. The
impact of GDM on both mother and infant does not end at
delivery. Newborns admitted to the neonatal intensive care
unit or special care baby unit due to maternal gestational
diabetes are often seen with neonatal hypoglycemia, which
may occur in 10% of healthy term infants, mainly within
the first 24 to 48 hours after birth [29]. The high glucose
consumption of the brain, coupled with the increased ratio of
brain to body mass in newborns compared to adults, increases
the demand for glucose in newborns and may expose them to
the risk of neurological damage and adverse outcomes.

Pregnancy hypertension is a common complication of
pregnancy and a leading cause of morbidity and mortality
in pregnant women and newborns, accounting for about
14% of maternal deaths worldwide [30,31]. Both pregnancy-
induced hypertension and pre-eclampsia are associated with
adverse maternal and fetal outcomes, including an increased
risk of future maternal cardiovascular diseases, and there is
approximately a 17% chance of pregnancy-induced hyperten-
sion progressing to pre-eclampsia [32]. As many women
are asymptomatic at the time of diagnosis, those who do
not receive prenatal care may present with more advanced
hypertension-related diseases, such as eclampsia, which is
associated with higher risks of morbidity and mortality [33].
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In correlation analyses, GDM is accompanied by increased
blood pressure in late pregnancy. GDM is a known risk factor
for stillbirth, fetal macrosomia, fetal structural abnormal-
ities, preterm birth, and pregnancy-induced hypertension
diseases. GDM is characterized by significantly increased
concentrations of inflammatory molecules and the imbalanced
expression of genes encoding inflammatory mediators in the
placenta, which together lead to the disruption of vascular,
metabolic, and inflammatory processes. Over time, this state
of hyperglycemia may be associated with the occurrence of
pregnancy-induced hypertension diseases and their related
complexities. Additionally, diabetes and hypertension often
coexist, sharing various risk factors and disease etiologies,
including genetics, obesity, insulin resistance, and inflamma-
tion [34]. Therefore, the management of GDM should not
only focus on blood glucose control but also consider the
potential risks associated with pregnancy-induced hyperten-
sion diseases. In GDM, oxidative stress plays a role in the
pathogenesis of the disease, as excessive secretion of insulin
during pregnancy leads to the production of lipid peroxida-
tion factors, which also mask the secretion of antioxidants,
making reactive oxygen species abundant at the cellular level.
In pre-eclampsia and gestational hypertension, oxidative
stress leads to inadequate placental perfusion, resulting in
a hypoxic placenta, which generally triggers a systemic
maternal inflammatory response [35-37].

The adverse pregnancy risks associated with GDM are
determined by the complex interplay of multiple biomedical,
behavioral, and environmental factors, rather than a single
factor. Therefore, to investigate the contribution of feature
interaction to the prognostic risks of GDM, we conduc-
ted multifeature interaction analyses. The feature interac-
tion matrix clearly shows that blood glucose levels and
time of diagnosis exhibit the highest degree of aggregation,
followed by blood pressure. Additionally, gestational age
and antenatal medical factors also demonstrate relatively
strong clustering patterns. As previously discussed, individu-
alized diagnosis and treatment should be tailored to dif-
ferent individuals. For those with a genetic predisposition
to diabetes, earlier diagnosis during pregnancy should be
implemented to achieve more timely blood glucose con-
trol. Hypertensive disorders in pregnancy and GDM are
among the most common metabolic complications during
gestation, with prevalence rates having risen significantly
over the past decade, now affecting approximately 12%-18%
of all pregnancies [38]. Pregnant women with hyperglyce-
mia generally exhibit a higher overall incidence of requir-
ing insulin therapy, which increases with maternal age,
and women over 35 years old have a significantly higher
probability of undergoing cesarean delivery [39]. Genes are
the most important factor in Antenatal Medical Factors. More
recent genome-wide association studies focusing on maternal
metabolism during pregnancy have revealed overlaps between
genes associated with metabolic traits in pregnant and
nonpregnant populations, as well as some genes that appear to
be uniquely relevant during gestation. Additionally, reduced
gene expression has been observed in transcription factors
involved in lipid metabolism, such as LXRa, PPARa, PPARd,
PPARg, RXRa, and SREBPIc. These findings indicate the
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importance of maternal oversupply of substrates in determin-
ing neonatal fat accumulation in pregnancies complicated by
obesity and GDM [40].

Limitations

This study has several limitations. As a single-center
retrospective study with a relatively small sample size, the
generalizability of the findings may be limited. Although
multiple machine learning models were used, the features
were primarily derived from structured clinical data, lacking
unstructured information such as imaging findings and
physician notes. And the external validation dataset also
limited our research; the model’s performance notably
declined on domestic datasets, suggesting potential overfitting
or insufficient adaptability to different populations. Although
we use SHAP for interpretability analysis, the model’s
clinical transparency remains constrained due to the complex
and nonlinear relationships between features and outcomes,
which may affect the interpretability of clinical decision-mak-

ing.
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Conclusion

In conclusion, our study highlights the growing prevalence of
GDM and its significant association with adverse pregnancy
outcomes, including preterm birth, large-for-gestational-age
infants, and neonatal hypoglycemia. Through the evaluation
of 5 machine learning models, we found that the stacking
model exhibited superior performance in predicting adverse
outcomes, demonstrating the potential of machine learning
to enhance clinical decision-making in managing GDM. The
findings emphasize the importance of early identification
and personalized management of GDM to mitigate the risks
to both mother and infant. Moreover, incorporating addi-
tional clinical features, such as real-time maternal vital signs
and genetic phenotypes, may further enhance the predictive
accuracy and clinical applicability of these models. Future
studies should aim to validate these findings across more
diverse datasets to ensure the generalizability and robustness
of the models, paving the way for more precise and effective
interventions in GDM management.
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