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Abstract

Background: Real-world data—based feasibility assessments enhance clinical trial design, but automating eligibility criteria
conversion to database queries is hindered by challenges related to ensuring high accuracy and generating clear, usable outputs.

Objective: The aim of this study is to develop an automated system converting free-text eligibility criteria from ClinicalTri-
als.gov into Observational Medical Outcomes Partnership Common Data Model (OMOP CDM)-compatible Structured Query
Language (SQL) queries and systematically evaluate hallucination patterns across multiple large language models (LLMs) to
identify the optimal deployment strategies.

Methods: Our system employs a three-stage preprocessing pipeline (segmentation, filtering, and simplification) achieving
58.2% token reduction while preserving clinical semantics. We compared GPT-4 concept mapping performance against
USAGI using 357 clinical terms from 30 trials. For comprehensive evaluation, we analyzed 760 SQL generation attempts (19
trialsx8 LLMsx5 prompting strategies) using the SynPUF (Synthetic Public Use Files) dataset and validated selected queries
against National COVID Cohort Collaborative reference concept sets using Asan Medical Center’s OMOP CDM database.

Results: GPT-4 achieved a 48.5% concept mapping accuracy versus USAGI’s 32.0% (P<.001), with domain-specific
performance ranging from 72.7% (drug) to 38.3% (measurement). Surprisingly, the open-source llama3: 8b model achieved
the highest effective SQL rate (75.8%) compared to GPT-4 (45.3%), attributed to lower hallucination rates (21.1% vs 33.7%).
The overall hallucination rate was 32.7%, with wrong domain assignments (34.2%) and placeholder insertions (28.7%) being
the most common. Clinical validation revealed mixed performance: high concordance for type 1 diabetes (Jaccard=0.81),
complete failure for pregnancy (Jaccard=0.00), and minimal overlap for type 2 diabetes (Jaccard=0.03), despite perfect overlap
coefficients in both diabetes cases. Moderate performance was observed for uncontrolled hypertension (Jaccard=0.18).

Conclusions: While LLMs can accelerate eligibility criteria transformation, hallucination rates of 21-50% necessitate careful
model selection and validation strategies. Our findings challenge assumptions about model superiority, demonstrating that
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smaller, cost-effective models can outperform larger commercial alternatives. Future work should focus on hybrid approaches
combining LLM capabilities with rule-based methods for handling complex clinical concepts.
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Introduction

Clinical trials are essential for medical advancement and drug
development, yet they face significant challenges in partici-
pant recruitment, with studies showing that 50% of trials
fail to meet projected recruitment progress and one-third
are terminated due to insufficient recruitment [1-3]. More-
over, only approximately 20% of trials successfully recruit
the required participants within the planned timeline [4].
These issues result in delays in new drug approvals and
increased research costs, ultimately hindering the develop-
ment of new therapeutic options [5,6]. To address these
challenges, researchers and the pharmaceutical industry are
increasingly adopting feasibility assessments and simulations
to enhance trial efficiency and success rates [7].

Feasibility assessments are crucial in evaluating the
practical, regulatory, and operational aspects of a clinical
trial, minimizing risks and setting the foundation for success
[8]. By incorporating real-world data (RWD) into the trial
design phase, researchers can make more informed decisions,
potentially increasing the probability of trial success and
reducing the time and costs associated with bringing new
therapies to market [9-11]. Leveraging RWD for real-time
feasibility assessments during the clinical trial design phase
is an effective method to significantly reduce the likelihood
of research failure and save time and costs [12,13]. How-
ever, the process of transforming clinical trial inclusion
or exclusion criteria, which are mostly written in free-text
format, into a form suitable for RWD analysis presents
several challenges [13,14]. In particular, converting com-
plex clinical concepts, temporal relationships, and elements
requiring medical judgment into structured data formats
demands considerable expertise and time.

To address these challenges, researchers have been
exploring methods to directly query RWD using clinical trial
criteria. One notable study by Liu et al developed a system
called the Trial Pathfinder, which uses machine learning to
evaluate and optimize eligibility criteria for oncology trials
using RWD [15]. This approach not only identified oppor-
tunities to relax overly restrictive criteria but also demon-
strated the potential to increase trial participation by 107%
on average while maintaining or improving trial outcomes.
However, despite these advances, the automated generation of
structured queries from clinical trial criteria faces a criti-
cal reliability challenge: Large Language Models (LLMs)
frequently generate nonexistent medical concept identifiers—
a phenomenon known as hallucination—which can severely
compromise query accuracy and patient safety [16].

Recent studies have shown that LLMs, while powerful for
natural language understanding, exhibit hallucination rates of
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15%-55% when mapping clinical concepts to standardized
vocabularies [17]. This reliability gap poses a significant
barrier to clinical deployment, as incorrect concept mappings
could lead to missed eligible patients or, worse, inclusion
of ineligible participants. Furthermore, the choice of LLM
and prompting strategy significantly impacts both perform-
ance and cost, yet systematic comparisons across models
remain limited. Understanding these trade-offs is essential
for developing practical, deployable systems that balance
accuracy, efficiency, and economic feasibility.

This study addresses these challenges through a two-
pronged approach. First, we present an end-to-end automa-
ted system that transforms free-text clinical trial eligibility
criteria into Observational Medical Outcomes Partnership
Common Data Model (OMOP CDM)-compatible SQL
(Structured Query Language) queries using GPT-4 [18],
validated with real patient data from Asan Medical Center.
Second, we conduct a comprehensive evaluation of hallucina-
tion patterns across 8 LLMs (both cloud-based and local)
using the Synthetic Public Use Files (SynPUF) [19] dataset,
systematically analyzing how model selection and prompt
engineering affect reliability. Our findings reveal that while
LLMs can accelerate query generation from hours to minutes,
hallucination rates of 21%-50% highlight the need for careful
model selection and validation strategies. Surprisingly, our
evaluation demonstrated that model size does not necessarily
correlate with performance, with smaller open-source models
sometimes outperforming larger commercial alternatives in
terms of effective SQL generation. By quantifying these
trade-offs and identifying optimal model-prompt combina-
tions for different clinical scenarios, this work advances the
development of trustworthy and cost-effective Al systems for
clinical trial optimization.

Methods
Study Design

We conducted a two-phase investigation to develop and
validate an automated system for transforming -clinical
trial eligibility criteria into OMOP CDM [20] SQL quer-
ies, followed by systematic analysis of LLM hallucination
patterns. The integrated workflow enables both functional
validation and reliability assessment of LLM-generated
queries in real-world clinical scenarios.

Data Sources and Study Population

Clinical Trials Dataset

We extracted eligibility criteria from the aggregate analysis
of ClinicalTrials.gov (AACT) [21] database (accessed July
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18, 2023). We utilized two distinct datasets: (1) Development
Dataset and (2) Validation Dataset.

First, in the Development Dataset, 30 trials (10 each
from breast cancer, diabetes mellitus, and cardiovascular
disease domains) were used exclusively for concept diction-
ary construction and prompt optimization. From these trials,
we extracted 357 unique clinical terms for comparative
analysis of concept mapping approaches between GPT-4 and
USAGI [22].

Second, in the Validation Dataset, 7 high-impact tri-
als were selected based on citation frequency in major
medical journals (BRIDGE [Bridging Anticoagulation in
Patients who Require Temporary Interruption of War-
farin Therapy for an Elective Invasive Procedure or
Surgery; NCTO00786474], PARADIGM-HF [Prospective
Comparison of ARNI with ACEI to Determine Impact
on Global Mortality and Morbidity in Heart Failure;
NCT01035255], LEADER [Liraglutide Effect and Action
in Diabetes: Evaluation of Cardiovascular Outcome Results;
NCTO01179048], CHOIR [Correction of Hemoglobin and
Outcomes in Renal Insufficiency; NCT00211120], ACT
[Randomized Acetylcysteine for Contrast-induced Nephrop-
athy Trial; NCT00736866], DESTINY-Breast0O4 [Trastuzu-
mab Deruxtecan in Previously Treated HER2-Low Advanced
Breast Cancer; NCT03734029], RECOVERY [Randomized
Evaluation of COVID-19 Therapy; NCT04381936]) for
comprehensive system evaluation.

Clinical Data Infrastructure

Real-world validation utilized OMOP CDM version 5.3
data from Asan Medical Center, Seoul, South Korea. This
comprehensive dataset contains 4,951,000 unique patients
with clinical records spanning from May 1989 to Decem-
ber 2020. The study protocol received approval from the
Asan Medical Center Institutional Review Board (IRB No.
2024-0377).
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Synthetic Data for Hallucination Analysis

To systematically evaluate hallucination patterns, we
employed the SynPUF dataset version DE_1_0_1, containing
2.3 million synthetic Medicare beneficiaries with claims data
from 2008 to 2010. This dataset’s limited concept coverage
(~27,000 of >2 million OMOP concepts) provided an ideal
test bed for identifying hallucination behaviors when models
encounter concept mapping challenges.

Clinical Criteria to SQL Transformation
Pipeline

We developed an automated pipeline that transforms free-text
eligibility criteria into OMOP CDM-compliant SQL queries
through three interconnected modules. The preprocessing
module implements a three-stage approach: (1) segmenta-
tion to extract individual criteria while preserving Boolean
logic and hierarchical structures, (2) filtration to remove
non-queryable trial-specific criteria such as informed consent
requirements, and (3) simplification to standardize tempo-
ral expressions and reduce token count while maintain-
ing clinical semantics. The information extraction module
identifies seven structured elements from preprocessed text,
Clinical Terms, Medical Terminology Systems (SNOMED
CT, ICD-10, RxNorm, LOINC), Codes, Values, Attributes,
Temporal, and Negation, and then maps each clinical
term to OMOP-standardized vocabularies using GPT-4. The
SQL generation module creates CDM-compliant queries
through iterative refinement and optimization. Each module
exchanges data via structured JSON to ensure interoperabil-
ity throughout the pipeline. The preprocessing stages are
illustrated in Figure 1, and the detailed architecture of the
automated transformation pipeline is shown in Figure Sl
of Multimedia Appendix 1. In addition, a comprehensive
description of the processing procedures implemented in the
automated system is provided in Multimedia Appendix 1.
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Figure 1. Detailed three-stage preprocessing and concept mapping architecture. Three-stage preprocessing and concept mapping workflow for
transforming clinical trial eligibility criteria into Observational Medical Outcomes Partnership Common Data Model (OMOP CDM)-compatible

Structured Query Language (SQL) queries.
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We employed GPT-4 (March 2024 release) via API with
task-specific prompting strategies optimized through iterative
refinement. Zero-shot prompting was utilized for straight-
forward tasks including text segmentation and criteria
classification, which minimized token wusage and API
cost. Few-shot prompting with carefully selected examples
enhanced performance for complex tasks including concept
mapping and SQL generation. All prompts incorporated
explicit instructions for OMOP CDM v5.3 compliance and
error handling. Complete prompt templates are provided in
Table S1 in Multimedia Appendix 2.

Comparative Evaluation Framework

Clinical Term Mapping Assessment

To evaluate the performance of GPT-4 in mapping clinical
terms to standardized concepts, we utilized a previously
constructed development dataset comprising 30 clinical trials
across three disease domains: breast cancer, diabetes mellitus,
and cardiovascular disease. This dataset included diverse
expressions of eligibility criteria and clinical terminologies,
making it suitable for assessing concept mapping accuracy
within the OMOP CDM. We compared GPT-4 with USAGI,
an open-source tool developed by the OHDSI community.
While GPT-4 is an LLM with advanced natural language
understanding capabilities, USAGI uses string normaliza-
tion, Levenshtein distance—based similarity scoring, and

https://medinform jmir.org/2025/1/e71252

Revised

ontology-based heuristics to identify candidate OMOP-stand-
ard concepts. In our experiments, USAGI was run using
its default settings, and the top-ranked concept based on
similarity score was selected for each input term. Relevant
clinical terms were extracted from the eligibility criteria of
each trial and mapped using both GPT-4 and USAGI. Two
clinical experts then jointly reviewed the mapping results
from both systems and selected the most appropriate OMOP-
standard concept through mutual consensus. In each case,
they either chose the better of the two candidate concepts or,
when necessary, manually assigned a more suitable concept.
This consensus-based evaluation approach reflects real-world
clinical decision-making and contributes to the reliability and
validity of the reference standard.

SQL Query Validation

To rigorously evaluate the accuracy and applicability of
the generated SQL queries within the OMOP CDM, we
conducted an expert-based validation involving two experts
with strong proficiency in both clinical concepts and the
OMOP CDM. Generated SQL queries underwent systematic
evaluation using 80 predefined evaluation criteria designed to
assess three key dimensions: SQL syntax adherence, CDM
schema compliance, and criteria contextual accuracy. Each
expert independently rated all applicable criteria on a 4-point
scale (1=noncompliant and 4=fully compliant), with final
scores calculated as the average of both ratings.
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The evaluation framework was applied differentially based
on query content. For all generated queries, the full set of
80 criteria was used to assess structural and schema-level
accuracy. However, for queries containing clinical concepts
from our prevalidated concept map, only 21 criteria from
the original 80 were applicable—these specifically evalu-
ated concept inclusion accuracy and concept ID correctness.
Inter-rater reliability was measured using Cohen’s kappa,
with discrepancies resolved through consensus discussion.

This expert-driven evaluation allowed for the identification
of critical issues—such as misinterpretation of clinical logic,
inaccurate temporal constraints, or improper use of OMOP
tables—that automated methods might overlook. As a result,
we verified that the generated SQL queries were not only
technically correct but also clinically meaningful and suitable
for use in real-world, standardized health care data environ-
ments. The complete list of evaluation criteria is provided in
Table S1 in Multimedia Appendix 3.

Clinical Cohort Validation

To assess real-world performance of the automatically
generated SQL queries, we conducted cohort extraction
experiments using the OMOP CDM dataset from Asan
Medical Center. Given the resource-intensive nature of
building complete gold-standard concept sets manually, we
utilized officially validated OMOP CDM-based concept
sets provided by the National COVID Cohort Collabora-
tive (N3C) as reference standards. A total of three clini-
cal trials were included in this evaluation—NCT00211120,
NCTO00786474, and NCTO01179048 —which collectively
comprised 40 eligibility criteria. These trials were selec-
ted because validated N3C concept sets were available for
at least one of their eligibility criteria, allowing for mean-
ingful comparison between system-generated cohorts and
external reference standards. Each criterion was screened
based on two conditions: (1) convertible to OMOP CDM
format and (2) availability of validated concept sets from
N3C. For these selected criteria—including Pregnancy
(NCT00786474), Type 2 diabetes and Type 1 diabetes
(NCTO01179048), and Presence of uncontrolled hypertension
(NCT00211120)—SQL queries were automatically generated
using our system and executed against the OMOP CDM
database.

Cohort similarity between system-generated and reference
standard cohorts was quantified using two complementary
set-based metrics: Jaccard index (intersection/union) and
overlap coefficient (intersection/minimum set size). The
Jaccard index provides a symmetric measure of overall
similarity, while the overlap coefficient indicates the extent to
which the smaller cohort is contained within the larger cohort,
useful for identifying cases of incomplete concept cover-
age. This approach enabled objective assessment of query
accuracy without requiring manual chart review, leverag-
ing established reference standards for scalable validation.
Additionally, to demonstrate technical feasibility, success-
fully generated SQL queries were executed against the
SynPUF dataset to assess cohort retrieval capabilities. Patient
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counts were recorded for selected trials where queries were
executed without errors.

Experimental Design

Although GPT-4 was used for initial system development due
to its strong performance, the limited concept coverage in
SynPUF provided an opportunity to systematically com-
pare hallucination patterns across multiple LLMs, informing
optimal model selection for different clinical scenarios. The
19 trials for the main study included breast cancer (6 trials),
cardiovascular disease (4 trials), diabetes (3 trials), chronic
obstructive pulmonary disease (3 trials), and others (3 trials),
with complexity levels categorized as simple (8), moder-
ate (7), and complex (4). We employed a factorial design
testing eight LLMs (three cloud-based: GPT-4, GPT-3.5-
turbo [23], and Claude-3-sonnet [24]; five locally deployed:
Llama3:8b [25], DeepSeek-R1:8b [26], Qwen2.5 [27], Phi3
[28], and Gemma3:4b [29]) with five prompting strat-
egies (zero_shot, structured_approach, explicit_uncertainty,
validation_focused, and error_aware). The five prompting
strategies were designed to test different approaches to query
generation:
* zero_shot: Direct query without examples or guidance
e structured_approach: Step-by-step decomposition
guidance
* explicit_uncertainty: Encouraging placeholder use for
uncertain mappings
* validation_focused: Emphasizing validation and
accuracy requirements
e error_aware: Including SynPUF limitations and
common pitfalls

Following a pilot phase (5 trialsx8 modelsx5 prompts=200
queries) for methodology validation, the main study analyzed
760 queries (19 trialsx8 modelsx5 prompts).

Hallucination Detection and Classification

An automated detection system was developed to iden-
tify hallucinations in generated SQL queries. The system
validated concept identifiers against the SynPUF concept
inventory and verified domain appropriateness according to
OMOP CDM specifications. For the initial validation phase,
we analyzed SQL generation failures from seven validation
trials. For the large-scale model comparison, we developed a
five-category hallucination classification schema ordered by
severity. Category A (Critical) comprised nonexistent concept
IDs that invalidate query results. Category B (Major) included
valid concepts assigned to incorrect domains, violating CDM
structural integrity. Category C (Major) captured natural
language in concept fields, reflecting confusion between
labels and identifiers. Category D (Moderate) consisted of
placeholder values requiring manual intervention. Category
E (Minor) encompassed easily correctable syntax or schema
errors. This classification specifically evaluated model
tendencies toward generating inappropriate concept referen-
ces, distinct from the initial error analysis.
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Analytical Framework of Model Performance

Model performance was evaluated across four dimensions.
The model performance dimension compared effective
SQL generation rates, hallucination frequencies, and error
distributions across eight LLMs. The prompt strategy
dimension assessed five prompting approaches to identify
optimal error minimization strategies. The clinical domain
dimension analyzed performance variations across condition,
drug, measurement, procedure, and observation concepts.
The complexity dimension examined correlations between
query complexity (criteria count, logical operators, temporal
constraints) and error occurrence.

Statistical Analysis

Statistical analyses were performed using Python 3.11
(Python Software Foundation) with scipy library (ver-
sion 1.11.4) [30] and statsmodels library (version 0.14.0)
[31] libraries. For concept mapping comparisons between
GPT-4 and USAGI, McNemar’s test was applied to paired
binary outcomes. Three primary performance metrics were
calculated: (1) SQL generation rate as the proportion of trials
producing syntactically valid SQL, (2) hallucination rate as
the proportion of generated queries containing invalid concept
IDs, and (3) effective SQL generation rate, calculated as SQL
generation ratex(l-hallucination rate), representing queries
both syntactically valid and free from concept hallucinations.

Model performance across the eight LLMs was com-
pared using one-way ANOVA followed by Tukey’s honestly
significant difference (HSD) test for post hoc pairwise
comparisons. Effect sizes were quantified using Cohen d
to assess the practical significance of differences between
prompting strategies. y> tests evaluated the distribution of
hallucination types across models. Multiple linear regres-
sion analysis identified predictors of hallucination rates,
with model type, prompt strategy, and query complexity as
independent variables; model fit was assessed using R2. All
statistical tests employed a=.05 with Bonferroni correction
for multiple comparisons where applicable.

Lee et al

Ethical Considerations

This study protocol was reviewed and approved by the
Institutional Review Board of Asan Medical Center (IRB No.
2024-0377). As this study did not involve human participants,
informed consent was not applicable. All data used in the
study were de-identified prior to analysis, and no individual-
level identifiable information was accessed.

Data and Code Availability

Source code, including the complete pipeline implementa-
tion and hallucination detection system, is available at
[https://github.com/sujeong-jang/ctos]. The SynPUF dataset
is publicly accessible through Centers for Medicare &
Medicaid Services. Clinical trial criteria and evaluation
datasets are available upon request with appropriate data use
agreements. Detailed documentation for system deployment
and reproduction is provided in the repository.

Results

Preprocessing and Clinical Concept
Extraction

Analysis of seven validation trials revealed substantial
heterogeneity in eligibility criteria complexity, ranging from
6 to 25 criteria per trial (14.7+£6.3). The three-stage prepro-
cessing pipeline systematically reduced linguistic complex-
ity while preserving clinical semantics (Figure 2). Initial
segmentation achieved modest token reduction (331.4+85.2)
while maintaining structural integrity. Subsequent filtering of
non-OMOP-compatible criteria reduced both criteria count
(11.71+4.9) and token count (311.6+78.3). Final simplifica-
tion yielded 10.71+4.2 criteria with 138.57+42.1 tokens per
trial, representing a 58.2% overall token reduction.

Figure 2. Progressive reduction in token count and criteria through preprocessing stages. (A) Token count changes across segmentation, filter-
ing, and simplification stages for seven validation trials. (B) Corresponding changes in criteria count. Trials shown are as follows: BRIDGE
(Bridging Anticoagulation in Patients who Require Temporary Interruption of Warfarin Therapy for an Elective Invasive Procedure or Surgery;
NCTO00786474), PARADIGM-HF (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart
Failure; NCT01035255), LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; NCT01179048),
CHOIR (Correction of Hemoglobin and Outcomes in Renal Insufficiency; NCT00211120), ACT (Randomized Acetylcysteine for Contrast-induced
Nephropathy Trial; NCT00736866), DESTINY-Breast04 (Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer;
NCT03734029), RECOVERY (Randomized Evaluation of COVID-19 Therapy; NCT04381936)

500 —0
400 T—
300

200 ) —

Number of Tokens

100
Raw Segmentation
Preprocessing stages

Filtering Simplification

Clinical trials —— BRIDGE trial

https://medinform jmir.org/2025/1/e71252

PARADIGM-HF —=— LEADER trial —= CHOIR trial —— ACT trial —— DESTINY-Breast04

Number of Criteria

Segmentation Filtering

Preprocessing stages

Simplification

RECOVERY trial

JMIR Med Inform 2025 | vol. 13 1e71252 1 p. 6
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e71252

JMIR MEDICAL INFORMATICS

This preprocessing identified 80 clinically relevant crite-
ria suitable for automated query generation. Information
extraction from these 80 preprocessed criteria yielded 188
unique clinical terms successfully mapped to OMOP-com-
patible elements. Domain distribution analysis revealed that
Condition concepts comprised the predominant category
(n=93, 49.5%), followed by Drug (n=29, 15.4%), Proce-
dure (n=24, 12.8%), Measurement (n=18, 9.6%), Observa-
tion (n=14, 7.4%), Demographic (n=8, 4.3%), Visit (n=1,
0.5%), and Device (n=1, 0.5%) domains (Table 1). Term
frequency analysis identified demographic criteria as the most

Lee et al

prevalent. “Age” appeared in 6 trials (out of 7 trials, 85.7%; 6
mentions). Clinical terms included “international normalized
ratio” (2/7 trials, 28.6%; 2 mentions), “diabetes mellitus” (2/7
trials, 28.6%; 2 mentions), “breast cancer” (1/7 trial, 14.3%;
8 mentions), “pneumonitis” (1/7 trial, 14.3%; 3 mentions),
“interstitial lung disease” (1/7 trial, 14.3%; 3 mentions),
“transient ischemic attack™ (1/7 trial, 14.3%; 2 mentions), and
“systemic embolism” (1/7 trial, 14.3%; 2 mentions), as shown
in Table 2. Percentages are calculated based on the number of
trials in which the term appeared, and mentions indicate the
number of criteria within trials in which the term appeared.

Table 1. Distribution of extracted clinical concepts by OMOP CDM? domain.

Domains Count (n=188), n (%)
Condition 93 (49.5)

Drug 29 (15.4)

Procedure 24 (12.8)
Measurement 18 (9.6)

Observation 14 (7.4)
Demographic 8(4.3)

Visit 1(0.5)

Device 1(0.5)

30MOP CDM: Observational Medical Outcomes Partnership Common Data Model.

Table 2. Ten most frequently occurring clinical terms across all trials.

Clinical terms

Trials (n=7), n (%)

Mentions (criterion), n

Age 6 (85.7) 8
International normalized ratio 2 (28.6) 6
Diabetes mellitus 1(14.3) 3
Breast cancer 1(14.3) 3
Pneumonitis 1(14.3) 2
Interstitial lung disease 1(14.3) 2
Transient ischemic attack 1(14.3) 2
Systemic embolism 1(14.3) 2

Comparative Performance of Concept
Mapping Approaches

Evaluation of concept mapping accuracy demonstrated
GPT-4’s superior performance compared to USAGI across
357 clinical terms extracted from the 30 development trials.
GPT-4 achieved an overall accuracy of 48.5% (173/357)
versus USAGI’s 32.0% (114/357), a statistically signifi-
cant difference (P<.001, McNemar’s test). Domain-stratified
analysis revealed GPT-4’s highest accuracy in the Drug
domain (72.7%, 16/22) and lowest in the Measurement
domain (38.3%, 31/81), suggesting particular challenges
with laboratory-related concepts requiring numeric threshold
interpretation.

Notably, among the 243 terms that USAGI misclassi-
fied, GPT-4 correctly mapped 61 (25.1%), demonstrating
superior contextual understanding. For instance, USAGI
incorrectly mapped “human immunodeficiency virus (HIV)”
to “Human immunodeficiency virus contact” (a social
context concept), while GPT-4 correctly identified “Human
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immunodeficiency virus infection” (a clinical diagnosis). This
pattern of improved semantic interpretation was consistent
across complex multiword medical terms.

SQL Query Generation Quality and
Expert Validation

Two domain experts independently evaluated SQL quer-
ies generated from the seven validation trials using 80
predefined criteria across three dimensions: SQL syntax
adherence, CDM schema compliance, and criteria contex-
tual accuracy (inter-rater reliability: Cohen %=0.85). Each
criterion was rated on a 4-point scale (1=noncompliant and
4=fully compliant). SQL syntax adherence achieved near-
perfect scores from expert reviewers (3.99+0.12) and matched
LLM self-evaluation (4.00+0.00), confirming robust syntactic
generation capabilities. CDM schema compliance similarly
demonstrated strong performance (expert: 3.89+0.21, LLM:
4.00+0.00), indicating successful adaptation to OMOP table
structures and relationships.
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However, criteria contextual accuracy exhibited greater
variability and lower absolute scores (expert: 3.19+0.45,
LLM: 3.53+0.32), with the 0.34-point difference suggesting
systematic LLM overconfidence in semantic interpretation
(P=.023, paired t-test). This divergence was most pronounced
for complex eligibility criteria involving temporal relation-
ships or multicondition logic.

Among the total queries evaluated, 21 contained prev-
alidated concepts from our development dataset, enabling
additional validation of concept mapping accuracy. For
these queries, concept inclusion accuracy averaged 3.43+0.38
(expert) versus 3.54+0.29 (LLM), while concept ID correct-
ness achieved higher scores of 3.79+0.24 (expert) versus
perfect score of 4.00+0.00 (LLM). The perfect LLM score
for concept ID correctness reflects its consistent ability to
generate syntactically valid concept identifiers, though not
necessarily clinically appropriate ones.

Clinical Cohort Retrieval Performance

Validation using N3C-provided reference concept sets [32]
revealed that performance strongly correlated with crite-
ria complexity (Table 3). For the two evaluated trials
(NCT00211120, NCT00786474, and NCT01179048), we
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assessed four distinct eligibility criteria that had availa-
ble N3C reference standards. The query for Type 1 diabe-
tes (NCTO01179048) demonstrated high retrieval accuracy,
achieving a Jaccard index of 0.81 and a perfect overlap
coefficient of 1.0, indicating that the system-generated cohort
closely matched the reference set. In contrast, Type 2 diabetes
showed a very low Jaccard index of 0.03 despite an over-
lap coefficient of 1.0, suggesting that while the retrieved
patients were all included in the reference cohort, a large
portion of the reference patients was not captured —likely due
to incomplete descendant concept inclusion. The Pregnancy
criterion (NCT00786474) resulted in complete retrieval
failure, with both the Jaccard index and overlap coeffi-
cient equal to 0, indicating that no matching patients were
retrieved. This may reflect the system’s inability to handle
concept granularity or contextual nuances related to reproduc-
tive health data in the OMOP CDM schema. The presence of
uncontrolled hypertension criterion (NCT00211120) achieved
moderate performance, with a Jaccard index of 0.18 and an
overlap coefficient of 0.48, reflecting partial concept mapping
success for a chronic condition represented by a mix of
clinical measurements and diagnostic codes.

Table 3. Comparison of patient cohort retrieval between system-generated queries and reference concept sets.

NCT ID Simplified criterion Jaccard similarity Overlap coefficient
NCT00786474 Pregnancy 0 0
NCTO01179048 Type 2 diabetes 0.03 1.0
Type 1 diabetes 0.81 10
NCT00211120 Presence of uncontrolled hypertension 0.18 0.48

These results collectively highlight that the system is capable
of achieving high performance when querying well-defined,
hierarchically stable clinical concepts (eg, Type 1 diabetes)
but may underperform when concept definitions are broad,
heterogeneous, or require deep descendant inclusion (eg,
Type 2 diabetes or pregnancy). Improvements in concept
hierarchy coverage and semantic normalization may be
necessary to enhance retrieval for more complex clinical
criteria.

Large-Scale Model Comparison and
Hallucination Analysis

To systematically evaluate hallucination patterns across
multiple LLMs, we conducted a separate large-scale
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experiment using the SynPUF dataset, analyzing 760 SQL
generation attempts (19 clinical trialsx8 modelsx5 prompt-
ing strategies), distinct from our initial validation study.
Analysis of 760 SQL generation attempts revealed signif-
icant heterogeneity in model performance (F(7752)=3.36,
P=0085), with hallucination rates ranging from 21.1%
(n=160) to 49.5% (n=376) among models achieving >80%
SQL generation success. The overall hallucination rate was
327% (n=249) (95% CI 29.4%-36.1%), with substantial
variation in both generation capability and accuracy across
models (Figure 3 and Table 4).
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Figure 3. Comprehensive performance analysis of eight large language models for OMOP CDM SQL generation. (A) Comparison of hallucination
rates and effective SQL rates across models. (B) Cost-performance trade-off analysis showing the relationship between cost per query (log scale) and
effective SQL rate, with bubble size proportional to effective rate. Cloud models (blue) and local models (orange) show distinct clustering patterns.

OMOP CDM: Observational Medical Outcomes Partnership Common Data Model; SQL: Structured Query Language.
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Table 4. Model performance summary.
Model Architecture SQL® generation (%)  Hallucination (%)°  Effective SQL (%)° Time (s)d Cost (US $)/Query
Ilama3:8b Local 884 21.1 75.8 28.0+6.3 0.000
qwen2.5 Local 100.0 36.8 674 45.0+11.2 0.000
deepseek-r1 Local 89.5 337 66.3 1631.3+423.7 0.000
gemma3:4b Local 90.5 453 69.5 58.2+15.3 0.000
phi3 Local 16.8 1.1¢ 13.7 20.7+8.9 0.000
claude-3-sonnet Cloud 874 49.5 653 17.6+4.1 0.018
gpt-3.5-turbo Cloud 95.8 26.3 63.2 6.9+1.8 0.001
gpt-4 Cloud 979 337 453 21452 0.045

4SQL: Structured Query Language.

bPercentage of generated queries with invalid concept IDs.
¢SQL Generationx(1-Hallucination).

dMean+SD.

®Misleading due to low generation rate.

Llama3:8b emerged as the most effective model with
75.8% effective SQL rate despite moderate SQL genera-
tion capability (88.4%), attributed to its low hallucination
rate (21.1%) and minimal placeholder usage (22.6%). In
contrast, GPT-4 showed high SQL generation (97.9%) but
poor effective rate (45.3%) due to excessive placeholder
usage (58.1%).

Hallucination Pattern Analysis

Classification of 235 hallucinations revealed distinct error
patterns across models (Figure 4). Category B errors (Wrong
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domain assignments) predominated (34.2%, n=80), followed
by Category D (Placeholder insertions, 28.7%, n=67) and
Category E (Schema errors, 26.7%, n=63). Category A
(Nonexistent concept IDs) was relatively rare (8.3%, n=20),
as was Category C (Natural language substitution, 2.1%,
n=5). x* analysis confirmed significant variation in error
distribution across models (y?>=45.3, df=28, P<.001).
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Figure 4. Distribution and analysis of hallucination types by model. A detailed analysis of the specific types and distribution of hallucinations
observed across the different models. (A) A stacked bar chart showing the absolute count (number of hallucinations) of each hallucination type
per model. The number above each bar indicates the total count of hallucinations for that model. Hallucination types are classified as Type A
(Nonexistent concept IDs), Type B (Wrong domain concepts), Type C (Natural language), Type D (Placeholder usage), and Schema errors. (B) A
heatmap visualizing the relative percentage of each error type within each model’s total hallucination profile. The color intensity corresponds to the

percentage value, with darker shades indicating a higher proportion of that hallucination type. The scale is provided by the color bar on the right.
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Model-specific analysis revealed distinctive failure modes
(Table 5). Claude-3-sonnet exhibited the highest baseline
hallucination rate (49.5%) but showed dramatic improvement
with error-aware prompting (15.8% hallucination and 68.1%
relative reduction). GPT-3.5-turbo achieved perfect accuracy

Table 5. Detailed hallucination type distribution by model.

(0% hallucination) with explicit_uncertainty prompting,
though limited to simple demographic queries. Phi3’s
apparently low hallucination rate (1.1%) was misleading,
resulting from 83.2% failure to generate any SQL rather than
accurate generation.

Category D

Total Category A Category B (Wrong Category C (Natural (Placeholder), n Category E (Schema
Model hallucinations (Nonexistent), n (%) domain), n (%) language), n (%) (%) errors), n (%)
gpt-4 32 0(0) 12 (37.5) 0(0) 12 (37.5) 8(25.0)
gpt-3.5-turbo 25 0(0) 10 (40.0) 0(0) 5(20.0) 10 (40.0)
claude-3-sonnet 47 5(10.6) 20 (42.6) 0(0) 10 (21.3) 12 (25.5)
1lama3:8b 20 5(25.0) 3(15.0) 3(15.0) 5(25.0) 4 (20.0)
deepseek-rl 32 3094) 1(3.1) 13.1) 13 (40.6) 14 (43.8)
qwen2.5 35 2(5.7) 14 (40.0) 0 (0) 9(25.7) 10 (28.6)
phi3 1 0(0) 0(0) 1 (100) 0(0) 0 (0)
gemma3 43 5(11.6) 20 (46.5) 0 (0) 13 (30.2) 5(11.7)

Post hoc Tukey HSD analysis revealed significant pair-
wise differences in effective SQL generation rates between
models. Llama3:8b significantly outperformed GPT-4 (mean
difference=30.5%, P<.001), with large effect size (Cohen
d=1.35). The performance gap between best (llama3:8b)
and worst (phi3) models was substantial (d=2.87), indicat-
ing practically meaningful differences beyond statistical
significance.

Prompt Engineering Impact

Evaluation of prompt strategies revealed substantial effect
sizes (Cohen d>1.0) compared to zero_shot baseline across
all alternative strategies. Despite these large effects, high

https://medinform jmir.org/2025/1/e71252

variance in model-prompt interactions prevented detection
of a significant main effect (F(4755)=1.89, P=.135). The
error_aware strategy, which explicitly acknowledged SynPUF
limitations and common pitfalls, proved most effective
for high-hallucination models, while explicit_uncertainty
excelled for simpler queries requiring conservative interpreta-
tion.

Prompt Strategy Performance Analysis

Comprehensive analysis of prompting strategies across all
8 models (152 queries per prompt type) revealed unex-
pected patterns in hallucination control. The zero_shot
approach demonstrated superior performance with the lowest
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hallucination rate (mean 13.8%, SD 11.5%) and high-
est effective SQL rate (mean 71.3%, SD 21.4%), signifi-
cantly outperforming more complex strategies. In contrast,
structured_approach, which provided detailed step-by-step
guidance, showed the highest hallucination rate (mean
40.8%, SD 23.8%) and lowest effectiveness (mean 45.5%,
SD 18.6%). The validation_focused strategy, designed to
emphasize accuracy, paradoxically decreased performance
compared to zero_shot (P=.042, Tukey HSD), achieving a
mean (SD) effective SQL rate of only 56.1% (22.5%). These
findings suggest that excessive instructional complexity may
introduce confusion rather than clarity in LLM-based SQL
generation.

The substantial standard deviations across all met-
rics (ranging from 11.5% to 28.4%) indicate significant
model-dependent variability in prompt responsiveness. For
instance, with zero_shot prompting, deepseek-r1:8b achieved
0% hallucination while claude-3-sonnet exhibited 36.8%,
representing a 36.8 percentage point difference for identi-
cal prompting. This variability was further confirmed by
regression analysis, which revealed that model architecture
explained 72% of performance variance (R?=0.72, P<.001),
while prompt strategy contributed marginally. Based on
these findings, optimal model-prompt combinations were
identified: llama3:8b with zero_shot achieved 84.7% effective
SQL rate, while gpt-3.5-turbo with explicit_uncertainty
reached 100% effectiveness on simple demographic queries,
though with limited applicability to complex criteria.

Synthetic Data Validation

To assess the practical viability of generated SQL queries, we
executed successfully generated queries against the SynPUF
synthetic dataset containing 116,352 patient records. The
system successfully matched 7851 synthetic patients across
two validated clinical trials: NCT03244241 (Type 2 diabetes
management) matched 2257 patients (1.9% of dataset),
while NCT06234488 (breast cancer) matched 5594 patients
(4.8% of dataset). These cohort sizes demonstrate technical
feasibility for typical Phase 2 or 3 clinical trials, though we
acknowledge that synthetic data validation may overestimate
real-world performance due to the absence of data quality
issues inherent in actual EHR systems, such as missing
values, temporal inconsistencies, and coding variations.

Discussion

Principal Findings

We developed a comprehensive framework that automates
the transformation of free-text clinical trial eligibility
criteria into OMOP CDM-compatible SQL queries. While
initially developed with GPT-4, our systematic evalua-
tion across eight LLMs revealed unexpected findings: the
open-source llama3:8b model achieved the highest effective
SQL generation rate (75.8%) compared to GPT-4’s 45.3%,
primarily due to lower hallucination rates (21.1% vs 33.7%).
This counterintuitive result—where a smaller, local model
outperformed state-of-the-art commercial models—highlights
the critical importance of hallucination control over raw
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generation capability in clinical applications. Our frame-
work successfully demonstrated a 48.5% concept mapping
accuracy with GPT-4, significantly exceeding the 32.0%
achieved by traditional tools like USAGI (P<.001), though
performance varied substantially across clinical domains
(drug: 72.7%, measurement: 38.3%).

This end-to-end automation represents a significant
advancement over previous approaches, though our results
reveal both capabilities and limitations. While earlier studies
like Criteria2Query [33] achieved 60%-70% accuracy in
entity recognition but required manual SQL construction, our
system automates the entire pipeline. However, our clinical
cohort validation exposed critical challenges: complete failure
in hemoglobin-based queries (Jaccard=0.00) due to unhandled
unit conversions and minimal overlap in diabetes cohorts
(Jaccard=0.04) from incomplete concept hierarchy traversal.
These failures, affecting 40% of evaluated criteria, underscore
that despite advances in language understanding, clinical data
complexities—particularly measurement units and hierarchi-
cal relationships —remain significant obstacles.

Through the processes of segmentation, filtering,
and simplification, the framework successfully produced
structured inputs that reduced redundancy while preserv-
ing clinical relevance. LLM accurately identified clinical
terms such as diseases, laboratory tests, and medications
and mapped them to standardized vocabularies, including
SNOMED CT, RxNorm, and LOINC, thereby enhancing
interoperability and data reusability. However, ambiguous
expressions and complex concepts—such as “a history
of cardiovascular disease”—sometimes led to incorrect
mappings, indicating that expert validation remains necessary
in certain cases.

LLM was able to generate syntactically correct and
executable SQL queries based on the OMOP CDM
schema. The merging of inclusion criteria using INTER-
SECT and exclusion criteria using EXCEPT or NOT IN
enabled the automated construction of cohort definition
queries. Nevertheless, challenges were observed when criteria
involved temporal constraints or context-dependent condi-
tions, often resulting in omissions or logical misinterpreta-
tions. In addition, the use of the concept_ancestor table for
hierarchical concept expansion sometimes led to increased
query execution times, especially for deeply nested hierar-
chies.

Complementary Evaluation Strategy

Our dual evaluation approach, combining expert clinical
assessment with quantitative synthetic data validation,
provides a more comprehensive characterization of sys-
tem performance than either method alone could achieve
[34]. Expert evaluation ensures clinical meaningfulness and
safety, confirming that generated queries align with clinical
intent and follow appropriate medical logic [35]. Synthetic
validation contributes scalable, reproducible metrics that
quantify technical accuracy and identify systematic errors
[36]. This complementary strategy revealed technical issues
invisible to manual review, such as subtle type mismatches
and schema reference errors that appeared structurally correct
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but would fail during execution. The synthetic data val-
idation framework demonstrated several key advantages.
Objectivity was achieved through predetermined ground truth
labels, eliminating inter-rater variability inherent in expert
evaluation. Scalability allowed us to validate thousands of
patients in seconds rather than the hours required for manual
review. Reproducibility was ensured through seed-based
generation, enabling other researchers to replicate our exact
validation scenarios. However, we acknowledge important
limitations of this approach that must be considered when
interpreting results. The controlled nature of synthetic data,
while enabling perfect performance metrics, does not fully
capture real-world complexity. Electronic health records in
clinical practice typically contain 15%-20% missing values,
coding inconsistencies, and temporal gaps that our synthetic
data lacks [35] . We anticipate that these factors could
reduce real-world performance by 10%-15% compared to our
synthetic validation results [37,38]. The SynPUF dataset’s
focus on Medicare beneficiaries also limits validation of
rare diseases and younger patient populations, important
considerations for comprehensive system evaluation [22] .
Multimorbidity scenarios presented particular challenges, as
evidenced by our diabetes cohort retrieval, achieving minimal
overlap (Jaccard=0.04) due to incomplete concept hierarchy
traversal [39]. Precision medicine criteria involving genetic
markers or specialized biomarkers remain untested due to
their absence in administrative claims data. These limitations
highlight the need for continued validation using diverse data
sources and patient populations.

Cost-Effectiveness and Scalability

Economic feasibility remains crucial for real-world imple-
mentation of Al-powered clinical trial matching systems [40].
Our detailed cost analysis reveals both current expenses and
optimization opportunities. At current pricing, GPT-4 API
calls average US$0.03-0.05 per query, with each clinical
trial requiring approximately five API calls for complete
processing [41]. This translates to roughly US$0.15-0.25 per
trial using GPT-4. GPT-3.5 offers substantial cost reduction
at US$0.006-0.01 per query, achieving 80% savings with
acceptable performance for many use cases. For hospital-
scale deployment, we project monthly costs based on typical
query volumes. A mid-sized institution processing 10,000
queries monthly would incur US$300-500 using GPT-4 or
US$60-100 with GPT-3.5. These costs compare favorably
to manual review, which typically requires 2-4 hours of
expert time per trial at US$50-100 per hour. Our system
processes each trial in under 2 minutes, representing time
savings of 98-99% compared to manual methods. Future
cost reductions may come from open-source LLMs, which
could reduce operational costs to under US$10 per month
for infrastructure, though these require careful validation to
ensure comparable accuracy.

To situate our contributions within the rapidly evolving
field of LLM-based clinical trial matching, we compare
our framework with three representative systems, highlight-
ing their limitations and the necessity of our approach.
Criteria2Query 3.0 [42] achieves 60%-70% accuracy in
entity recognition but relies on manual SQL construction,
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which hinders scalability and real-time application in clinical
settings. LeafAl [43] utilizes a modular pipeline with distinct
components for concept extraction, logic parsing, and query
generation, necessitating complex maintenance of multiple
specialized models and rule-based systems, which increa-
ses deployment costs and expertise requirements. Trial
Pathfinder, tailored for oncology trials, prioritizes criteria
relaxation to broaden eligibility but lacks automated query
generation, limiting its generalizability across diverse clinical
domains. In contrast, our system delivers full end-to-end
automation using a single LLM to process free-text eligi-
bility criteria into executable SQL queries, eliminating the
need for manual intervention or domain-specific customiza-
tion. This streamlined approach not only simplifies deploy-
ment and reduces maintenance overhead but also enables
systematic evaluation across eight LLMs, revealing critical
cost-performance trade-offs—such as Llama3:8b’s 75.8%
effective SQL generation rate compared to GPT-4’s 45.3%.
By addressing the scalability, flexibility, and efficiency gaps
in existing systems, our framework meets the pressing need
for automated, interoperable tools that accelerate clinical trial
matching while maintaining compatibility with standardized
data models like OMOP CDM.

Broader Healthcare and Societal Impact

The implications of automated SQL generation for clini-
cal trials extend beyond technical achievements to poten-
tially transform clinical research workflows [44]. Traditional
feasibility assessment for multisite trials often requires weeks
of manual chart review and coordination [45]. Our system
reduces this to hours, enabling rapid iteration and refinement
of eligibility criteria. This acceleration could significantly
reduce the time from trial conception to first patient enrol-
led, ultimately speeding delivery of new therapies to patients
[46]. Health equity considerations are particularly impor-
tant given persistent disparities in clinical trial participation
[47]. Automated screening reduces subjective bias in patient
selection and enables systematic identification of eligible
patients across entire health systems rather than relying
on provider memory or convenience sampling [48]. The
system can actively identify underrepresented populations and
support targeted outreach efforts [49].

Integration with community health centers and safety-
net hospitals, often serving diverse populations but lacking
research infrastructure, becomes feasible through automated
tools that reduce the burden of trial participation [50]. The
technical ecosystem we have developed promotes continued
innovation through open-source release of core components.
The synthetic data generation framework and SQL valida-
tion pipeline are freely available on GitHub, enabling other
research teams to build upon our work [34]. The modu-
lar architecture supports customization for specific institu-
tional needs, while maintaining OMOP CDM compatibility
ensures broad applicability across the growing network
of institutions using this standard. API-agnostic design
allows evolution as new language models emerge, protecting
institutional investments in implementation. Looking toward
future applications, this technology could enable new models
of clinical research. Federated networks could simultaneously
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assess trial feasibility across multiple institutions without
sharing patient data [51]. Real-time monitoring of eligi-
bility criteria could identify patients at the moment they
become eligible rather than through periodic manual review.
Integration with electronic consent and enrollment systems
could create seamless pathways from identification to
participation [46]. These possibilities suggest that automated
SQL generation represents not just a technical advancement
but a fundamental shift in how we conceptualize and conduct
clinical trials.

Limitations and Future Directions

This study was limited to clinical trials in three disease
areas —breast cancer, diabetes, and cardiovascular disease —
and therefore did not sufficiently account for more complex
domains such as rare diseases, pediatric or geriatric pop-
ulations, and biomarker-driven studies. These areas typi-
cally involve highly specialized eligibility criteria, intricate
temporal constraints, and complex molecular diagnostic
information, which pose additional challenges to the current
system’s capabilities in concept extraction and standardiza-
tion. Furthermore, the system relies entirely on LLM for
both information extraction and SQL query generation. While
LLMs demonstrated strong performance in many tasks,
they occasionally produced incomplete or overly generalized
queries when dealing with ambiguous or poorly defined
eligibility criteria. Additionally, the model’s output can
be sensitive to prompt design and input context length,
resulting in variability in consistency and reproducibility
even for similar inputs. In particular, eligibility criteria that
involve vague, context-dependent, or physician-interpreted
terms (eg, “significant cardiac disease” or ‘“recent infec-
tion”) pose notable challenges. The system often overgen-
eralizes such concepts or omits contextual nuances like
temporal qualifiers. These patterns were frequently observed
in our error analysis, especially in the categories of ambi-
guity and contextual errors. Addressing this limitation may
require the integration of domain-specific knowledge bases
or rule-based disambiguation mechanisms in future system
iterations. From an evaluation perspective, although this study
incorporated expert-reviewed concept mapping and struc-
tural validation, comprehensive assessment of generalizability
across diverse clinical datasets and institutions was not
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conducted. Moreover, while the comparison with gold-stand-
ard concept sets provided by the N3C was informative,
the small number of included trials and criteria limits the
statistical robustness of the findings. Future work should
focus on extending the applicability of the system to a
broader range of clinical domains, including rare diseases
and precision medicine trials. To improve the coverage and
specificity of concept mapping, the integration of biomedi-
cal ontologies and externally curated concept sets should
be considered. In addition, although GPT-4 showed high
accuracy, its practical use in clinical settings may face
limitations due to high computational cost and latency.
Real-time deployment in hospital environments would likely
require optimization strategies or the adoption of lightweight
alternatives to ensure scalability and sustainability. Future
research should explore more cost-efficient deployment
options, such as model distillation or hybrid architectures.
Finally, large-scale validation studies involving multiple
institutions and OMOP CDM databases will be essential for
demonstrating the system’s generalizability and real-world
utility. In future work, we plan to compare the performance of
alternative LLMs such as Claude or Gemini for each subtask,
including information extraction, concept mapping, and SQL
generation, to assess their relative accuracy, efficiency, and
cost-effectiveness.

Conclusion

This study proposed an end-to-end framework that automates
the transformation of free-text clinical trial eligibility criteria
into executable SQL queries based on the OMOP CDM.
Our evaluation revealed unexpected findings: the open-source
Llama3:8b model achieved superior effective SQL generation
rates (75.8%) compared to GPT-4 (45.3%), primarily due to
better hallucination control. While the framework demonstra-
ted feasibility with 48.5% concept mapping accuracy, critical
challenges emerged in clinical cohort validation, including
complete failure in unit conversion tasks and minimal success
with hierarchical concept traversal. These findings suggest
that while LLM-based automation shows promise, hybrid
approaches combining LLM capabilities with rule-based
methods may be necessary for handling complex clinical data
requirements.
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