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Abstract

Background: Hepatic encephalopathy (HE) contributes significantly to mortality among patients with liver cirrhosis. Early
prediction of HE is essential for clinical decision-making, yet remains challenging— particularly in noncancer-related cirrhosis
due to the unpredictable disease course.

Objective: This study aimed to develop a novel machine learning (ML) model to improve early prediction of HE in patients
with noncancer-related cirrhosis.

Methods: A multicenter, retrospective cohort study was conducted from January 2010 to December 2017 across all Chang
Gung Memorial Hospital branches in northern, middle, and southern Taiwan. We applied several ML models to evaluate HE
predictability and compared their performance in the training dataset and testing dataset. Optimal sensitivity and specificity
were determined using the Youden index. The best ML model was interpreted by the Shapley Additive Explanations plot.

Results: A total of 5878 patients with cirrhosis were included in the analysis, of whom 1187 (20.2%) subsequently developed
HE. Compared to the non-HE group, patients with HE were older (median age 55, IQR 46-65 vs median age 54, IQR 44-66
years; P=.04) and had higher rates of hepatitis B virus infection (351/1187, 30% vs 961/4691, 20.5%; P<.001), alcohol
use (540/1187, 45.5% vs 1512/4691, 32.2%; P<.001), sepsis (393/1187, 33.1% vs 792/4691, 16.9%; P<.001), and mortality
(425/1187, 35.8% vs 502/4691, 10.7%; P<.001), along with distinct laboratory abnormalities reflecting liver dysfunction.
Among the ML algorithms evaluated, the extreme gradient boosting algorithm demonstrated the highest predictive accuracy,
achieving an area under the curve (AUC) of 0.86 (95% CI 0.83-0.88) in the testing dataset. This performance was significantly
superior to that of the neural network (AUC 0.79, 95% CI 0.76-0.81; P<.001), support vector machine (AUC 0.77, 95%
CI 0.73-0.80; P<.001), and the model for end-stage liver disease score (AUC 0.74, 95% CI 0.71-0.77; P<.001). Using a
probability threshold of 0.25, the extreme gradient boosting model demonstrated a sensitivity of 72% (95% CI 0.67-0.77),
specificity of 80% (95% CI 0.78-0.82), a positive predictive value of 48% (95% CI 43-53), and a negative predictive value
of 92% (95% CI 90-94) in the testing set. Comparable performance was observed in the training dataset, with a sensitivity of
80% (95% C10.77-0.83), specificity of 81% (95% CI 0.80-0.82), and a negative predictive value of 94% at the same threshold.
The most influential predictive variables identified by the model included serum ammonia, aspartate transaminase, alanine
transaminase, prothrombin time, and serum potassium.
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Conclusions: We developed a novel ML model for predicting HE in patients with noncancer-related cirrhosis. This model
provides a practical guide to help physicians and these patients in shared decision-making regarding treatment strategy, with
the ultimate goal of improving clinical care and reducing the burden of HE-related morbid complications.
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Introduction

Complications of chronic liver cirrhosis affect millions of
individuals worldwide, which causes a tremendous burden
and health expenditure for these patients and their families
[1,2]. Among these cirrhosis-related complications, hepatic
encephalopathy (HE) has emerged as a severe neuropsychi-
atric manifestation contributing to substantial morbidity and
mortality, increased hospitalization, medical costs, readmis-
sion rates, and impaired health-related quality of life [1-5].
HE represents a major clinical concern for physicians to
necessitate timely intervention and to monitor and mitigate
the adverse outcomes in patients with cirrhosis. However,
the current sensitivity and specificity of diagnostic tools
used in HE vary depending on the different testing methods
used across studies and settings [6,7]. Additionally, due to
the diverse stages and unpredictable trajectories in patients
with cirrhosis, formidable challenges in disease management
and prognostication remain critical for clinicians to resolve,
especially for patients with noncancer-related cirrhosis [6].

Etiologies of noncancer-related cirrhosis vary, including
hepatitis B virus (HBV) and hepatitis C virus (HCV)
infection, alcohol-related liver disease, and nonalcoholic
steatohepatitis. A global statistics estimation revealed a
higher prevalence of noncancer-related cirrhosis than that
of cancer-related cirrhosis [1]. Moreover, a recent longitudi-
nal analysis from National Health Research Institutes data
in Taiwan between 2000 and 2017 reported only about
14.2% palliative resource use in the year prior to death in
patients with noncancer-related terminal disease compared
with 60.9% use in patients with terminal cancer in 2017
[8], which highlights that the use of palliative care services
within the year preceding death in patients with a noncancer-
related terminal illness was far less than that in patients with
cancer-related terminal illness. The National Health Insurance
system in Taiwan is a nationwide program launched by
the Taiwanese government that covers over 96% of Tai-
wan’s population registered in the census for over 6 months.
The administrative datasets are maintained electronically by
the National Health Research Institutes and the National
Health Insurance Administration of Taiwan [9-11]. Patients
with end-stage liver disease (ESLD) without hepatocellu-
lar carcinoma are significantly less likely to receive inpa-
tient specialist palliative care and to have a lower use rate
compared with those with hepatocellular carcinoma [12,13].
The distress and extreme pain experienced by patients with
noncancer-related ESLD is comparable to that of individu-
als with cancer-related terminal illnesses such as lung and
colon cancer [14]. However, given the complexities of the
etiology and unpredictability of disease trajectories in patients
with noncancer cirrhosis, these gaps in unmet clinical needs
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between patients with cancer and noncancer-related cirrho-
sis underscore the importance of the early recognition and
prognosis of cirrhosis complications, such as HE. Taken
together, these data emphasize the fact that the need for
prognostication and early prediction for incident HE in
patients with noncancer-related cirrhosis is important.

Despite advances in medical therapeutics and supportive
care, the accurate prediction and early detection of HE remain
a formidable clinical task. Traditional prognostic tools, such
as the model for end-stage liver disease (MELD) score,
offer valuable insights into disease severity and prognosis
but lack the predictive accuracy needed for optimal clinical
decision-making [6]. Moreover, MELD scores do not account
for factors such as inflammation, ammonia levels, or other
metabolic disturbances. Furthermore, tests for HE that rely
on psychometric performance can be directly influenced by
social determinants of health, smoking, diabetes, and alcohol
use, which are factors that can vary by region [7].

Machine learning (ML) algorithms have emerged as
promising tools for predictive modeling and risk stratification
in complex medical conditions. By leveraging vast datasets
and advanced computational techniques, ML algorithms have
the potential to identify subtle patterns and predictive features
that may elude traditional statistical methodologies.

In this study, we aimed to develop a novel ML approach
model to enhance the prognostication and early prediction
of incident HE in patients with noncancer-related cirrhosis
with the goal to help physicians in shared decision-making
for treatment strategy as well as to improve patient care and
reduce their distress from morbid complications.

Methods
Study Design and Participants

We conducted a multicenter retrospective cohort study
involving 8615 patients diagnosed with liver cirrhosis from 3
academic medical centers and 5 community hospitals (Taipeit,
Linkou, Keelung, Taoyuan, Chiayi, Kaohsiung, Lovers Lake,
and Yunlin) of Chang Gung Memorial Medical Foundation
in northern, middle, and southern Taiwan between 2010 and
2017. Datasets were collected from the electronic medical
record (EMR) system built by the Chang Gung Medical
Foundation. Patients with chronic liver disease with more
than 2 visits in the EMR system who were diagnosed with
cirrhosis defined using the International Classification of
Diseases (ICD)-9 and ICD-10 codes (Table S1 in Multimedia
Appendix 1) by clinical physicians with or without ESLD-
related complications, such as HE, hepatorenal syndrome,
ascites, spontaneous bacterial peritonitis, and esophageal
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varices, were enrolled. HE was defined as having ICD-9
code 572.2 and ICD-10 codes K76.82, B15.0, B16.0, B16.2,
B19.0, G934, and G94.3 recorded in the EMR system. The
exclusion criteria were patients who were younger than 18
years of age, those who had been diagnosed with malignant
neoplasms of the liver (ICD-9 code: 155.0 or ICD-10 code:
C22-C22.09) or HE at the time of enrollment, or those who
had only a one-time-visit record before being lost to follow-

up.
Ethical Considerations

This study was conducted in accordance with the ethical
standards of the Declaration of Helsinki, and the proto-
col was approved by the ethics institutional review board
of Chang Gung Memorial Hospital, Taiwan (approval:
201801291B0C504). The institutional review board approved
the waiver of informed consent because of the deidentifica-
tion of all health data collected from the EMR system. The
data were collected from patients treated at Chang Gung
Memorial Hospital between 2010 and 2017.

Data Collection and Definitions

Datasets were collected from the EMR system. Individuals
meeting the inclusion criteria and whose laboratory data
were available within enrollment were included in this study.
The laboratory measurements collected for ML included
prothrombin time (PT), activated partial thromboplastin time,
the international normalized ratio (INR), C-reactive protein
(CRP), albumin, ammonia, alanine transaminase (ALT),
aspartate transaminase (AST), serum bilirubin, y-glutamyl
transferase, serum bilirubin, creatinine, blood urea nitrogen
(BUN), sodium (Na), potassium (K), lactate, uric acid, total
cholesterol, triglyceride, fasting plasma glucose, high-den-
sity lipoprotein cholesterol levels, low-density lipoprotein
cholesterol levels, white blood count, red blood cell,
hemoglobin, and platelet. The MELD score was calculated
according to the following formula [15]: 3.78xloge(biliru-
bin [mg/dL])+11.2xlog.(INR)+9.57xloge(creatinine [mg/dL])
+6.43.

Data Preprocessing and ML Modeling

This study followed the TRIPOD (Transparent Reporting
of a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis) reporting guidelines to ensure methodologi-
cal transparency and reproducibility. A completed TRIPOD
checklist is provided as Checklist 1. The datasets were
randomly divided into training and testing datasets at a 3:1
ratio. We implemented random forest (RF), neural net-
work, support vector machine (SVM), and extreme gradient
boosting (XGBoost) for modeling in the training dataset.
The models were built and evaluated using R (version 4.0.1;
R Foundation for Statistical Computing) with the xgboost
package (version 1.4.2). The testing dataset was performed
for internal validation. Missing data were addressed through
median imputation, where the median value was used to
replace any unavailable or null value. Model training was
completed in 2024 based on structured clinical data from
EMR records.

https://medinform jmir.org/2025/1/e71229

Chen et al

The prediction target was the probability of developing
HE, with the model output ranging from O to 1. This
continuous output was transformed into a binary classifica-
tion.

Model training used 10-fold cross-validation with
hyperparameter tuning, but no alignment strategies (such as
reinforcement learning or preference optimization) were used.
Inference was based on structured variable inputs, and no
text generation, prompt engineering, or large language models
were involved in the modeling process.

Feature Selection and Imbalanced Data

To identify significant candidate features while eliminating
noisy or redundant ones that could lead to an inefficient,
impractical, or overfitting model, we used a wrapper method
using the Boruta algorithm to rank the predictive features of
HE. For practical purposes, we repeated the Boruta algorithm
300 times and selected the top 20 ranked features. To avoid
the bias toward the majority class and enhance the overall
accuracy and performance of the model, we used the synthetic
minority over-sampling technique for imbalanced datasets.

Performance Evaluation and
Interpretation

We assessed the area under the receiver operating characteris-
tic curve (AUC-ROC) to discriminate the performance of the
ML models. We further adopted the Youden index to evaluate
the best corresponding cutoff sensitivities and specificities
for the optimal performance of the ML algorithm. Then, we
analyzed the model using the Shapley Additive Explanations
(SHAP) plot to disclose the impact of the features on the
output of the model prediction.

Statistical Analysis

Continuous variables were expressed as the median (IQR),
and categorical variables by frequencies and percentages.
ML modeling was performed using the statistical software
package R (version 4.0.1) with the Boruta [16] and Caret
packages [17]. Prediction models were compared using R
with the DeLong method of the pROC package [18]. All
statistic assessments were evaluated at a 2-sided o level of
05.

Results

Overview

A total of 8615 consecutive patients who had been diag-
nosed as cirrhosis, with or without ESLD-related compli-
cations, were enrolled in this study. These patients were
identified from the EMR system in 3 academic medical
centers and 5 community hospitals of Chang Gung Memorial
Medical Foundation in Taiwan, between January 1, 2010, and
December 31, 2017. After applying the exclusion criteria—
including patients with fewer than 2 visits, those younger than
18 years of age, and those with liver cancer—5878 patients
with cirrhosis were eligible for analysis, including 1187 with
HE and 4691 without HE. Figure 1 shows a flowchart of the
enrollment process.
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Figure 1. Flowchart of the enrollment process. ICD: International Classification of Diseases; CGMH: Chang Gung Memorial Hospital; XGBoost:

extreme gradient boosting.
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Baseline Characteristics of the HE
and Non-HE Groups in Patients With
Noncancer-Related Liver Cirrhosis

The median age was slightly older in the HE group compared
to the non-HE group (median 55, IQR 46-65 vs median 54,
IQR 44-66 years; P=.04). There were no significant differen-
ces in sex or HCV infection between the groups. Specifically,
845 of 1187 (71.2%) patients in the HE group and 3227
of 4691 (68.8%) in the non-HE group were male, 342 of
1187 (28.8%) patients in the HE group and 1464 of 4691
(31.2%) in the non-HE group were female (P=.11). HCV
infection was present in 211 of 1187 (17.8%) and 882 of 4691
(18.8%) patients in the HE and non-HE groups, respectively
(P=40). In contrast, the prevalence of HBV infection was
higher in the HE group (351/1187, 30%) than in the non-HE
group (961/4691, 20.5%; P<.001). Alcohol use was reported
in 540 of 1187 (45.5%) patients with HE versus 1512 of
4691 (32.2%) patients without HE (P<.001). Sepsis occur-
red in 393 of 1187 (33.1%) patients with HE compared
to 793 of 4691 (16.9%) without HE (P<.001). Mortality
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was also significantly higher in the HE group, with 425
(35.8%) deaths versus 502 (10.7%) deaths in the non-HE
group (P<.001). In laboratory comparisons, patients in the
HE group had significantly lower platelet counts, prolonged
PT, activated partial thromboplastin time, and INR, higher
serum levels of white blood count, ALT, AST, total biliru-
bin, direct bilirubin, y-glutamyl transferase, ammonia, lactate,
BUN, and creatinine, and lower levels of serum albumin,
potassium, sodium, total cholesterol, high-density lipoprotein,
and hemoglobin. No significant differences were observed in
serum uric acid, low-density lipoprotein cholesterol, or blood
sugar levels between the 2 groups.

Overall, in our multicenter retrospective longitudinal
analysis, the HE group showed a greater tendency to have
coagulopathy, hepatorenal syndrome, and hypoalbuminuria,
which may have been the result of malnutrition or sarcope-
nia in the patients with noncancer-related liver cirrhosis. The
baseline demographic and laboratory characteristics between
the HE and non-HE groups are shown in Table 1.
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Table 1. Comparisons of baseline characteristics between non-HE?* and HE groups (n=5878).
Characteristics HE (n=1187) Non-HE (n=4691) P value®©
Age (years), median (IQR) 55 (46-65) 54 (44-66) 04
Sex, n (%) A1

Female 342 (28.8) 1464 (31.2)
Male 845 (71.2) 3227 (68.8)

Sepsis, n (%) 393 (33.1) 792 (16.9) <.001
Hepatitis B virus, n (%) 351 (30) 961 (20.5) <.001
Hepatitis C virus, n (%) 211 (17.8) 882 (18.8) 40
Alcohol use, n (%) 540 (45.5) 1512 (32.2) <.001
Death, n (%) 425 (35.8) 502 (10.7) <.001
International normalized ratio, median (IQR) 1.56 (1.30-2.00) 1.20 (1.10-1.46) <.001
Prothrombin time, median (IQR) 16.5 (13.7-21.2) 13.1 (11.4-15.7) <.001
Activated partial thromboplastin time, median (IQR) 40 (33-52) 31 (29-37) <.001
C-reactive protein, median (IQR) 22 (10-46) 17 (4-53) <.001
Albumin, median (IQR) 2.60 (2.30-2.90) 3.00 (2.50-3.64) <.001
Alanine transaminase, median (IQR) 37 (23-66) 31(19-54) <.001
Aspartate transaminase, median (IQR) 73 (45-131) 48 (29-90) <.001
Total bilirubin, median (IQR) 4(2-12) 1(1-3) <.001
Direct bilirubin, median (IQR) 3.4(0.9-10.9) 0.3(0.2-1.0) <.001
v-Glutamyl transferase, median (IQR) 66 (32-153) 60 (21-163) 02
Ammonia, median (IQR) 129 (91-182) 99 (72-138) <.001
Blood urea nitrogen, median (IQR) 20 (11-42) 15 (10-24) <.001
Creatinine, median (IQR) 0.97 (0.63-1.83) 0.82 (0.62-1.18) <.001
Lactate, median (IQR) 23 (16-45) 18 (12-48) 004
Sodium, median (IQR) 138.0 (134.0-141.0) 139.0 (136.0-141.0) <.001
Potassium, median (IQR) 3.60 (3.10-4.10) 3.80 (3.40-4.20) <.001
Uric acid, median (IQR) 5.50 (3.48-8.20) 6.00 (4.60-7.50) 08
Total cholesterol, median (IQR) 125 (98-155) 146 (117-175) <.001
High-density lipoprotein cholesterol, median (IQR) 25 (14-33) 31 (20-42) <.001
Low-density lipoprotein cholesterol, median (IQR) 67 (50-92) 76 (55-102) 07
Sugar, median (IQR) 131 (99-184) 135 (101-192) .60
White blood count (1000), median (IQR) 6.8 (4.6-10.1) 6.1 (4.2-8.7) <.001
Red blood cell, median (IQR) 3.12 (2.71-3.60) 3.53(2.98-4.19) <.001
Hemoglobin, median (IQR) 9.70 (8.50-11.00) 10.40 (8.90-12.40) <.001
Hematocrit, median (IQR) 29 (26-32) 31 (27-37) <.001
Mean corpuscular volume, median (IQR) 93 (86-99) 90 (85-96) <.001
Mean corpuscular hemoglobin, median (IQR) 31.5(29.2-33.8) 304 (28.3-32.4) <.001
Mean corpuscular hemoglobin concentration, median (IQR) 33.85(32.90-34.80) 33.50 (32.60-34.40) <.001
Red blood cell distribution width, median (IQR) 17.7 (15.9-20.3) 16.0 (14.5-18.4) <.001
Platelet (1000), median (IQR) 78 (52-115) 106 (63-179) <.001

3HE: hepatic encephalopathy.

bP values calculated using Pearson chi-square test for categorical variables [19].
P values calculated using the Wilcoxon rank sum test for nonnormally distributed continuous variables [20].

XGBoost Exhibited the Best

Discriminatory Performance Compared
With All ML Algorithms and the MELD

https://medinform jmir.org/2025/1/e71229

Score in Both the Training and Validation

Datasets

We further performed the 4 AutoML algorithms, including
RF, neural network, SVM, and XGBoost, to compare their
performance in terms of predicting HE in patients with
noncancer-related ESLD using the training dataset in the
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EMR system compared to the MELD score and performed
further validation using the testing dataset. We first dem-
onstrated that XGBoost exhibited the best discriminatory
performance (AUC-ROC 0.86, 95% CI 0.83-0.88) compared
with RF (AUC-ROC 0.82,95% CI 0.80-0.85), neural network
(AUC-ROC 0.79, 95% CI 0.76-0.81), SVM (AUC-ROC
0.77, 95% CI 0.73-0.80), and the MELD score (AUC-ROC
0.74, 95% CI 0.71-0.77; Tables 2 and 3 and Figure 2). The
cutoff value by Youden index for XGBoost for discriminating
HE was 0.25 (training dataset: sensitivity 80%, 95% CI

Chen et al

0.77-0.83; specificity 81%, 95% CI 0.80-0.82; positive
predictive value [PPV] 0.52, 95% CI 0.49-0.54; negative
predictive value [NPV] 0.94, 95% CI 0.93-0.95; positive
likelihood ratio 4.22, 95% CI 3.91-4.55; negative likelihood
ratio 0.25, 95% CI 0.21-0.28; and testing dataset: sensitivity
72%, 95% CI1 0.67-0.77; specificity 80%, 95% CI 0.78-0.82;
PPV 048, 95% CI 0.43-0.53; NPV 0.92, 95% CI 0.90-0.94;
positive likelihood ratio 3.64, 95% CI 3.18-4.16; negative
likelihood ratio 0.35, 95% CI 0.29-0.42; Table 4).

Table 2. Performance of the build prediction model in training and testing datasets.

Methods and dataset Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC-ROC? (95% CI)
Random forest

Training 1.000 (0.99-1.00) 1.00 1.00 1.00 (1.00-1.00)

Testing 0.82 (0.80-0.84) 0.32 0.95 0.82 (0.80-0.85)
Neural network

Training 0.81 (0.80-0.82) 0.22 0.96 0.80 (0.79-0.82)

Testing 0.80 (0.78-0.82) 0.25 0.94 0.79 (0.76-0.81)
Support vector machine

Training 0.82 (0.81-0.83) 0.18 0.98 0.80 (0.78-0.81)

Testing 0.81 (0.79-0.83) 0.20 097 0.77 (0.73-0.80)
XGBoost?

Training 0.85 (0.84-0.86) 042 0.96 0.88 (0.87-0.89)

Testing 0.84 (0.82-0.85) 0.38 0.95 0.86 (0.83-0.88)
MELDE score

Training N/Ad N/A N/A 0.75 (0.74-0.77)

Training N/A N/A N/A 0.74 (0.71-0.77)

2AUC-ROC: area under the receiver operating characteristic curve.
bXGBoost: extreme gradient boosting.

°MELD: model for end-stage liver disease.

dN/A: not applicable.

Table 3. Performance of the build prediction model in training and testing datasets.

Methods Dataset Accuracy (95% CI)  Sensitivity (95% CI) Specificity (95% CI) AUC-ROC? (95% CI) P value
Random forest Testing 0.82 (0.80-0.84) 0.32 0.95 0.82 (0.80-0.85) 05
Neural network Testing 0.80 (0.78-0.82) 0.25 0.94 0.79 (0.76-0.81) <.001
Support vector machine  Testing 0.81 (0.79-0.83) 0.20 0.97 0.77 (0.73-0.80) <.001
XGBoost? Testing 0.84 (0.82-0.85) 0.38 0.95 0.86 (0.83-0.88) —¢
MELD score Training N/A® N/A N/A 0.74 (0.71-0.77) <.001

2AUC-ROC: area under the receiver operating characteristic curve.
bXGBoost: extreme gradient boosting.

“Not available.

dMELD: model for end-stage liver disease.

®N/A: not applicable.
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Figure 2. Performance of the machine learning models: (A) random forest, (B) neural network, (C) support vector machine, (D) extreme gradient
boosting, and (E) model for end-stage liver disease score.
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Table 4. Performance of the extreme gradient boosting model for hepatic encephalopathy prediction in training and validation datasets (Youden

index=0.25).

Training set

Testing set

Sensitivity (95% CI)

Specificity (95% CI)

Positive predictive value (95% CI)
Negative predictive value (95% CI)

Positive likelihood ratio (95% CI)
Negative likelihood ratio (95% CI)

0.80 (0.77-0.83)
0.81 (0.80-0.82)
0.52 (0.49-0.54)
0.94 (0.93-0.95)

422 (3.91-4.55)
0.25(0.21-0.28)

0.72 (0.67-0.77)
0.80 (0.78-0.82)
0.48 (0.43-0.53)
0.92 (0.90-0.94)

3.64 (3.18-4.16)
0.35 (0.29-0.42)

Regarding performance in predicting incident HE, XGBoost

(XGBoost: accuracy 0.84, 95% CI 0.82-0.85; RF: accuracy

achieved the best accuracy in the testing dataset compared 0.82, 95% CI 0.80-0.84; neural network: accuracy 0.80,

with RF, neural network, SVM, and the MELD score
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95% CI 0.78-0.82; SVM: accuracy 0.81, 95% CI 0.79-0.83).
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These findings strongly indicate that our ML-based XGBoost
algorithm is a superior tool for predicting HE in patients with
noncancer-related cirrhosis in comparison with the other ML
models and traditional MELD scores, especially for ruling
out disease when the finding returns a negative result; this
could be an applicable tool to guide clinicians in palliative
care clinical settings (Tables 2-4 and Table S2 in Multimedia
Appendix 1).

Serum Ammonia Was the Foremost
Important Feature, Followed by Other
Variables, in the ML-Based XGBoost
Algorithm for Predicting HE in Patients
With Noncancer-Related ESLD

Additionally, we constructed a SHAP to reveal the weight
of each feature on the outcomes of the trained model’s

Chen et al

predictability based on feature importance. We demonstra-
ted the essential features’ contribution to the predictive
outcomes, including serum levels of ammonia, total bilirubin,
INR, CRP, patient age, total platelet count, BUN, PT, K,
AST, albumin, red blood cell distribution width, ALT, mean
corpuscular hemoglobin, and history of HBV infection (Table
5). Based on the SHAP values of feature importance, we
further disclosed that higher levels of serum ammonia, total
bilirubin, INR, older age, BUN, and PT, lower serum levels
of albumin and serum K, and lower platelet counts result
in a higher probability of HE in patients with noncancer-rela-
ted ESLD. Furthermore, among the 15 key variables in the
AutoML model based on the XGBoost algorithm, ammonia
was the most important feature impacting the probability of
HE risk, followed by total bilirubin, INR, CRP, age, platelet,
BUN, PT, and serum K (Figure 3).

Table 5. Feature importance from the extreme gradient boosting model based on Shapley Additive Explanations values.

Rank Clinical feature

1 Ammonia

2 Total bilirubin

3 Albumin

4 International normalized ratio
5 Platelet

6 C-reactive protein

7 Age

8 Blood urea nitrogen

9 Aspartate transaminase

10 Potassium
11 Prothrombin time

12 Red blood cell distribution width
13 Alanine transaminase

14 Mean corpuscular hemoglobin
15 Hepatitis B virus

16 Alcohol use

https://medinform jmir.org/2025/1/e71229
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Figure 3. SHAP summary plot to explain the feature importance obtained by the extreme gradient boosting algorithm. Features with higher feature
value (red) and positive SHAP value (on the right side) show a positive association, while features with higher feature value (blue) and negative
SHAP value (on the left side) show a negative association. K: potassium; SHAP: Shapley Additive Explanations.
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Taken together, compared with other ML-based models,
such as RF, neural network, and SVM, our ML-based
XGBoost algorithm demonstrated the best performance for
HE predictability in patients with noncancer-related ESLD.
Among the variables in the XGBoost model, serum ammo-
nia levels, together with other feature variables, constituted
the most important influence regarding HE predictability in
patients with noncancer-related cirrhosis.

Discussion

Principal Findings

In our multicenter retrospective longitudinal study, we
developed an ML-based prognostic model to improve
the early prediction of HE in patients with noncancer-
related cirrhosis. Among the evaluated algorithms, the
XGBoost model consistently demonstrated superior predic-
tive performance in terms of discriminability, accuracy, and
robustness —particularly in ruling out HE with high NPV —
across both training and validation datasets.

The choice of XGBoost was driven by its technical
advantages over other ML algorithms such as RF, neural
network, and SVM. Unlike RF, which may experience
overfitting in complex high-dimensional data, XGBoost
incorporates regularization techniques that reduce variance
and improve generalizability. Additionally, XGBoost handles

https://medinform jmir.org/2025/1/e71229

multicollinearity and missing values more effectively than
logistic regression and is computationally efficient for
structured tabular data. These characteristics make XGBoost
a particularly well-suited algorithm for clinical prediction
tasks using EMR datasets. Our novel ML-based XGBoost
predictive model is an applicable tool to guide clinicians
in shared decision-making of treatment strategy to further
improve patient care and reduce their distress from mor-
bid complications in clinical settings of noncancer-related
populations.

To enhance model interpretability, we conducted a
SHAP analysis to identify and visualize the contribution
of individual predictors to the model output. This analy-
sis revealed that serum ammonia is the most important
feature, followed by bilirubin, INR, age, and BUN, which
are positively associated with increased HE risk; whereas
albumin, platelet counts, and serum potassium are negatively
associated with HE risk. Notably, serum potassium and
transaminases emerged as key predictors of HE—findings
that warrant further clinical interpretation. From a pathophy-
siological perspective, hypokalemia is known to exacerbate
HE by increasing renal ammonia production and systemic
ammonia load [21,22]. This mechanistic link is supported
by our data, where lower serum potassium was associated
with increased HE risk. Similarly, elevated AST and ALT
levels reflect ongoing hepatic inflammation or necroinflam-
mation, which may impair ammonia detoxification, thereby
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promoting HE [23]. These markers, therefore, not only
reflect liver injury but also serve as early warning signs for
impending encephalopathy, reinforcing their clinical utility
in risk stratification and monitoring. Furthermore, to our
knowledge, this is the first study to predict HE in a Taiwanese
adult population using an ML algorithm. Our use of SHAP
further enhances model transparency and interpretability —
both of which are critical for clinical adoption. SHAP values
enable clinicians to understand how individual variables
influence predictions, thereby building trust and supporting
shared decision-making with patients.

Despite the pathogenesis of HE not being fully under-
stood, an increasing number of studies have shown that
various forms of inflammation, such as systemic inflamma-
tion, neuroinflammation, endotoxemia, and ammonia-inflam-
mation synergism, significantly contribute to the development
of HE [24]. Serum CRP, which is known as an inflammation
marker, is associated with the development of HE and can
serve as a predictor of adverse outcomes and increased risk of
HE in patients hospitalized with liver cirrhosis [25,26]. In our
data, the HE group exhibited a significantly increased level
of serum CRP compared with the non-HE group (P<.001)
among patients with noncancer-related ESLD. It is of note
that our SHAP for feature importance analysis did not show a
strong positive influence of serum CRP levels on the increase
in HE risk in patients with noncancer cirrhosis. One of the
possible reasons for these different study findings could be
that the baseline settings of the populations differed between
these 2 studies as well as the fact that the pathogenic etiology
of HE in populations without cancer differs significantly from
that in patients with terminal cancer. In our dataset, the results
could have been influenced by outliers of serum CRP because
the median serum CRP level in the HE group was signifi-
cantly higher than that in the non-HE group. This indicates
that CRP still plays an important role in HE occurrence.

Comparison to Prior Work

Our findings revealed notable differences in baseline
characteristics between patients with noncancer-related ESLD
with and without HE, highlighting the heterogeneity of
populations with cirrhosis and the multifactorial nature of
HE development. Specifically, patients with HE exhibited
higher prevalences of HBV infection, alcohol use, sepsis,
and mortality rates compared with their counterparts without
HE. In another study [3], among 49,164 patients diagnosed
with HE, 24,183 (49.2%) were affected by alcohol-related
cirrhosis, 18,352 (37.3%) had HCV infection, and only 2589
(5.3%) had HBV-related cirrhosis, with some cases showing
overlap. These differences may be due to the high preva-
lence of HBV infection in Taiwan. However, other research
indicates a decline in the age-standardized incidence rates
for liver cirrhosis due to HBV globally from 1990 to 2019,
while the incidence rates for nonalcoholic fatty liver disease,
alcohol use, and other causes increased during the same
period [2]. This suggests a potential shift in the etiology of
cirrhosis.

Importantly, our study demonstrates that the XGBoost
algorithm has superior discriminatory performance in
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predicting HE compared with other ML algorithms and
MELD scores. The robust sensitivity, specificity, PPV,
NPV, and accuracy of the XGBoost model underscore
its potential applicability as a valuable clinical decision
support tool for early HE detection and risk stratification
in populations with noncancer-related cirrhosis. The MELD
score, initially designed to predict survival after elective
transjugular intrahepatic portosystemic shunt placement, has
been validated for predicting survival across diverse patient
cohorts with varying liver disease severity and from different
geographic and temporal backgrounds. Moreover, the MELD
score is widely used to prioritize liver transplantation,
primarily relying on serum bilirubin, creatinine, and INR
levels. Although it provides a general assessment of liver
function, it may not fully capture the multifactorial nature of
HE development. By contrast, the capacity of ML algorithms
to manage complex interactions and nonlinear relationships
is a significant advantage that can improve the accuracy
of prediction models. Our XGBoost model incorporated a
broader range of variables, including ammonia, total bilirubin,
INR, age, BUN, albumin, platelet count, and serum K,
allowing for a more detailed and accurate prediction of HE
risk. This approach may offer valuable insights into disease
pathogenesis and prognosis.

Recent studies have demonstrated the value of ML in liver
disease prognostication. Verma et al [27] stratified patients
with acute-on-chronic liver failure into survival-based clusters
using integrated ML methods. Malik et al [28] reviewed
ML applications in predicting esophageal variceal bleeding,
while Miiller et al [29] identified early cirrhosis decompensa-
tion using ML models. Other studies used neural networks
to forecast l-year mortality after variceal bleeding [30]
or liver transplantation [31], emphasizing the trend toward
long-term outcome modeling. These findings underscore
ML’s expanding role in liver disease prediction. Our study
contributes to this field by focusing on early HE predic-
tion in noncancer-related cirrhosis using a transparent and
interpretable XGBoost framework. Another regional study
conducted on 1256 patients with cirrhosis with unbalanced
data used several ML methods, specifically SVM, logistic
regression, and CatBoost, to predict HE [32]. Although the
weighted RF model emerged with an accuracy of 0.8732
(95% CI 0.8711-0.8752) and an AUC-ROC of 0.82, in that
study, the HE predictability was far inferior to our ML-
based XGBoost model. Our XGBoost model significantly
outperformed weighted RF, achieving an accuracy of 0.84
(95% CI 0.82-0.85) and an AUC-ROC of 0.86 (95% CI
0.83-0.88). It showed advantages on XGBoost. XGBoost
uses boosting with regularization to reduce overfitting and
improve generalization. It also handles missing data and
multicollinearity effectively. XGBoost is more efficient and
interpretable for structured clinical data better than SVM and
neural networks [33,34]. Additionally, we applied SHAP to
identify and visualize the contributions of individual features
to the model’s predictions. Its consistent and locally accurate
attributions improve interpretability, facilitating clinical trust
by clarifying how key variables may influence disease
outcomes [35].
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Limitations

While our study contributes to advancing the understand-
ing of HE prediction and prognostication of patients
with noncancer-related cirrhosis, several limitations warrant
consideration. First, despite our application of the Boruta
algorithm for feature selection and the use of the synthetic
minority over-sampling technique for imbalanced datasets,
retrospective analyses still inherently carried biases related
to data completeness, documentation accuracy, and confound-
ing variables. Second, the generalizability of our findings to
diverse patient populations and health care settings may be
limited. As aforementioned, the different etiology of ESLD
may affect model application.

Future Directions

Building upon the aforementioned limitations, future research
should prioritize prospective validation in diverse popula-
tions and explore the integration of the predictive model
into clinical decision support systems. Moreover, external
validation across different institutions and geographic settings
is essential to evaluate the model’s generalizability and
transportability. Embedding the model into cloud-based
platforms or EMR systems may further enhance its acces-
sibility and facilitate real-world clinical implementation.
Additionally, regarding the other scoring systems, such as the
Bilirubin-Albumin-Beta-Blocker-Statin score and MASQ-HE
score developed by Tapper et al [36,37], both include adding
medications, such as the use of nonselective -blockers and
statins, in addition to quality of life and physical function, to
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improve the performance in terms of the predictability of HE
risk. Therefore, integrating additional clinical variables may
enhance model accuracy for the prediction of HE and thus
should be considered in the future development of ML-based
models.

Conclusions

Our ML-based XGBoost model demonstrated superior
predictive performance for the early detection and prognos-
tication of HE in patients with noncancer-related cirrhosis.
Beyond its predictive accuracy, the model shows promise
as a clinically valuable tool for use in terminal care set-
tings, outperforming previously established ML algorithms
and conventional prognostic scores such as the MELD score.
To the best of our knowledge, this is the first ML-based
model specifically developed for prognostication and HE
prediction in a Taiwanese adult population with noncancer-
related cirrhosis—a subgroup with higher prevalence and
more unpredictable disease trajectories compared to patients
with cancer-related cirrhosis. By incorporating a broader set
of clinical features and leveraging SHAP-based interpretabil-
ity, our model facilitates more precise risk stratification and
may support clinicians in making informed decisions aimed
at preventing severe complications and improving patients’
quality of life. Future studies are warranted to externally
validate this model in larger and more diverse populations
and to assess its clinical utility through prospective follow-up
of patient outcomes.
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