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Abstract

Background: Gallbladder polyps have a high prevalence and are predominantly benign lesions, often detected via ultrasound.
They impose diagnostic burdens on radiologists while generating substantial patient demand for report interpretation. Benign
polyps include nonneoplastic polyps without malignant potential and premalignant adenomas that require cholecystectomy.
Current guidelines recommending surgery for polyps ≥1.0 cm may lead to unnecessary interventions. Advanced multimodal large
language models (LLMs) such as ChatGPT-4o (OpenAI) and Claude 3.5 Sonnet (Anthropic PBC) demonstrate emerging capabilities
in medical image analysis. Implementing LLMs in gallbladder polyp ultrasound evaluation can potentially alleviate radiologists’
workload, provide patient-accessible consultation platforms, and even reduce overtreatment.

Objective: We aimed to analyze the feasibility and conduct an early-stage evaluation of using LLMs for differentiating between
adenomatous and nonneoplastic gallbladder polyps (≥1.0 cm) based on ChatGPT-4o and Claude 3.5 Sonnet, compared to
assessments by radiologists and the guideline.

Methods: Ultrasound images and reports of gallbladder polyps ≥1.0 cm with pathology were retrospectively collected from a
hospital between January 2011 and January 2022. LLM performance was evaluated using three input strategies: (1) direct image
analysis (LLMs-image), (2) feature-based text analysis (LLMs-text), and (3) scoring model-based text analysis (LLMs-model).
Both intra- and interreader agreement and diagnostic performance of LLMs were evaluated for all three strategies. The diagnostic
performance metrics—including sensitivity, specificity, accuracy, area under the receiver operating characteristic curve, and
unnecessary resection rate of nonneoplastic polyps of LLMs in the three strategies were compared with the guideline. Additionally,
the strategy LLMs-model was specifically compared with radiologists using the same scoring system (strategy readers-model).

Results: This study included 223 patients (aged 18-72 years; 132/223, 59.2% female) as the initial cohort, with 48 adenomatous
polyps and 175 nonneoplastic polyps. The external test set comprised 100 patients. The intrareader agreement coefficients for
strategy LLMs-model were significantly higher than those for strategy LLMs-image and LLMs-text (all P<.01). The interreader
agreement of the three diagnostic strategies was ranked as LLMs-model>LLMs-text>LLMs-image. The sensitivity of strategies
LLMs-image and LLMs-text was significantly lower than that of the guideline (all P<.001). When applying a scoring model
(readers/LLMs-model strategy), both radiologists and the LLMs achieved a significantly higher accuracy compared to the guideline
(0.34, 0.35, and 0.34 vs 0.22, all P<.01), and the unnecessary resection rate of nonneoplastic polyps was significantly lower (82%,
83%, and 83% vs 100%, all P<.01), while the sensitivity was comparable to the guideline (0.94, 0.98, and 0.98 vs 1.00, all P>.05).
All diagnostic performance indicators for GPT-model and Claude-model were not significantly different from those of radiologists
(all P>.05).

Conclusions: The ability of LLMs to recognize and interpret medical images requires further improvement. The text strategy
with a scoring system is currently the most appropriate diagnostic strategy for LLMs.
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Introduction

Large language models (LLMs) are deep learning models trained
on large amounts of text data, and their emergence has led to
changes in many fields [1-3]. LLMs can understand and generate
human language and have the potential to provide medical
advice, making their application in the medical field of wide
interest [4,5]. With the evolution of the LLMs, their capabilities
range from simple summarization to complex tasks such as
paper writing, medical education, and diagnosis [6-9]. Prior
investigations into the diagnostic applications of LLMs have
predominantly used two methodological frameworks: (1)
diagnostic strategies using narrative textual inputs describing
imaging findings [10], or (2) risk stratification approaches
requiring LLMs to apply established scoring systems to
textualized lesion characteristics [9]. Some LLMs, such as
ChatGPT-4o and Claude 3.5 Sonnet, can analyze and interpret
images. These two LLMs were developed by different
organizations and demonstrated competitive capabilities that
positioned them within the global elite of LLMs at the time of
our study [11,12], showing they represent the most advanced
level of general-purpose LLMs.

Gallbladder polyps are a common finding in abdominal
ultrasound examination, with a reported incidence rate of
6.1%-12.1% [13,14]. They impose diagnostic burdens on
radiologists and generate substantial patient demand for report
interpretation. The management strategy for polypoid lesions
of the gallbladder depends on their pathological type. Neoplastic
polyps, including gallbladder cancer and precancerous
gallbladder adenomas, require cholecystectomy [15,16]. Studies
report that 28%-49.5% of gallbladder adenoma may progress
to gallbladder cancer [15,17]. Nonneoplastic polyps, including
cholesterol polyps, inflammatory polyps, and fibromyoadenoid
polyps, rarely become malignant, and follow-up is recommended
[18]. Gallbladder carcinoma can be distinguished from other
polypoid lesions based on gallbladder wall continuity and
contrast-enhanced patterns [19,20]. However, differentiating
adenomatous polyps from nonneoplastic polyps remains
challenging. Guidelines recommend cholecystectomy for polyps
≥1.0 cm in size [21]. Using these criteria, 27.1%-56% of patients
undergoing cholecystectomy for gallbladder polyps are
postoperatively diagnosed with nonneoplastic polyps [22,23].
Beyond financial and psychological burdens, this may result in
complications that adversely affect quality of life [24,25].
Therefore, it is critical to distinguish neoplastic polyps from
nonneoplastic polyps, particularly for lesions ≥1.0 cm. LLMs
can potentially reduce the workload of radiologists by generating
descriptions based on ultrasound images or risk stratification
of gallbladder polyps, and provide medical consults for patients
based on ultrasound reports. If LLMs perform better than
existing guidelines or radiologists in differentiating gallbladder
polyps, they might reduce unnecessary cholecystectomies.
Recent studies have demonstrated that ChatGPT-4o and Claude

3.5 Sonnet exhibit superior performance compared to other
LLMs in diagnostic tasks involving radiological imaging
[26,27], suggesting potential for ultrasound applications. To
date, no study has systematically evaluated LLMs’ ability to
characterize sonographic features or differentiate benign
gallbladder polyps. Gallbladder polyps manifest as
nonshadowing protrusions from the gallbladder wall into the
anechoic lumen in ultrasound examinations. This anatomically
well-defined nature with intuitive spatial localization makes
them suitable for assessing LLMs’ capacity in medical image
interpretation. Furthermore, current literature lacks
methodological comparisons of LLMs’diagnostic performance
across three distinct paradigms: (1) direct image analysis, (2)
text-based diagnosis, and (3) scoring-system–based risk
stratification using textualized lesion characteristics.

The purpose of this study was to systematically evaluate the
feasibility and conduct an early stage evaluation of LLMs across
three diagnostic strategies for differential diagnosis of benign
gallbladder polyps (≥1.0 cm) based on ChatGPT-4o and Claude
3.5 Sonnet, with comparison to radiologists and the joint
guidelines between the European Society of Gastrointestinal
and Abdominal Radiology, the European Association for
Endoscopic Surgery and other Interventional Techniques, the
International Society of Digestive Surgery–European Federation,
and the European Society of Gastrointestinal Endoscopy.

Methods

Ethical Considerations
This study was approved by the Ethics Committee in our
institute, Sun Yat-sen University (No.2016083). Due to the
retrospective nature of this study, the requirement for informed
consent was waived. This study adhered to the CLAIM
(Checklist for Artificial Intelligence in Medical Imaging) [28]
for reporting (Table S1 in Multimedia Appendix 1 [29,30]).
This study provides a Reproducibility Checklist in Table S2 in
Multimedia Appendix 1 to facilitate the replication of our work.

Throughout the interaction with the LLMs, all
patient-identifiable information (including names, hospital ID
numbers, etc) was strictly removed from the ultrasound images
and reports before analysis.

Due to the retrospective design of this study, participants
received no compensation.

Patient Selection
A total of 447 patients with previous imaging findings of
gallbladder polyps who underwent cholecystectomy at our
institution were retrospectively reviewed. The initial cohort of
312 patients (January 2011 to January 2022) was used to develop
the scoring system and to evaluate the performance of the LLMs,
while the subsequent cohort of 135 patients (February 2022 to
March 2025) served as an external test set for the LLMs-model
strategy. The inclusion criteria were as follows: (1)
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transabdominal ultrasonography was performed in our hospital
before cholecystectomy, and (2) there was a definite
postoperative pathological diagnosis. The details of the
ultrasound examination protocol are shown in Multimedia
Appendix 1 (see also Multimedia Appendices 2-6). Given that
the differential diagnostic focus for gallbladder polyps
predominantly targets lesions ≥1.0 cm, and smaller polyps may
be less clearly visualized in ultrasound images, potentially
affecting the performance of LLMs, a 1.0 cm threshold was
determined as one of the conditions for patient selection. Patients
were excluded if they met any of the following criteria: (1)
missing ultrasound images; (2) no polypoid lesions detected by
the ultrasound examination in our hospital; (3) age <18 years;
and (4) size of the largest polyp <1.0 cm. The patients were
divided into an adenomatous polyp group and a nonneoplastic
polyp group. Patients with both adenomatous polyps and
nonneoplastic polyps were classified as having adenomatous
polyps.

Patient Data Collection
Preoperative clinical data of patients were collected, including
demographic information, alanine aminotransferase, and
aspartate aminotransferase levels. The latest preoperative
ultrasound images and reports were collected. Information about
polyp size and number, gallbladder wall thickness
measurements, and the presence of gallstones was obtained
from the reports. Other ultrasound features were evaluated
independently by two radiologists (with 2 years and 10 years
of experience in abdominal ultrasound, respectively) who were
blinded to the patient’s clinical features and pathology results.
Discrepancies were discussed by the two doctors to get a
consensus. When consensus could not be reached after
discussion between the two radiologists, a third radiologist with
seventeen years of experience in abdominal ultrasound made
the final determination. If the patient had more than one
gallbladder polyp, only the largest one was analyzed. In our
previous study, we proposed a new index for quantifying polyp
morphology, called the polyp morphology ratio (PMR). The
details about the definitions of PMR and other ultrasound
features are provided in Multimedia Appendix 1.

Diagnostic Strategies
This study evaluated ChatGPT-4o and Claude 3.5 Sonnet using
their standard web interfaces [31,32] between July and
September 2024 according to the following strategies. All
interactions were conducted without custom code, API calls,
or adjustments to default inference parameters. To ensure
transparency, all interactions used the platform defaults, and
the complete set of prompts is detailed in Multimedia Appendix
1. The prompts input into the two LLMs were the same. Each
prompt input does not include expected outcomes or class

distributions, nor does it judge the correctness of the LLM’s
responses. For the strategy of LLMs-image, LLMs performed
diagnoses based on ultrasound images. Before analysis, images
were cropped to remove all patient-identifiable information.
Additionally, the images were cropped to ensure the gallbladder
occupied approximately 30%-40% of the frame, with lesions
centered whenever possible while maintaining the structural
integrity of both the gallbladder and surrounding tissues. No
image enhancement or standardization was applied. The
underlying vision capabilities of the LLMs are accessed directly
through their vision application programming interface, rather
than via a third-party wrapper. The images input into the LLMs
were in JPEG format, with both horizontal and vertical
resolutions of 96 dpi. The processed 2D gray-scale ultrasound
image and color Doppler ultrasound image were input into
LLMs, and the LLMs were required to describe the ultrasound
characteristics of gallbladder polyps and provide a diagnosis.

For the strategy LLMs-text, LLMs performed diagnoses based
on the text of the ultrasound description. Based on the consensus
of the two radiologists, the description of the ultrasound
characteristics for the gallbladder polyps was organized into a
structured report. The structured report was input into the LLMs,
and the LLMs were required to give the diagnosis.

For the strategy LLMs-model, LLMs performed diagnoses based
on our previously developed diagnostic model for benign
gallbladder polyps ≥1.0 cm [33]. Before this study, a multilevel
scoring system for the differentiation between gallbladder
adenomatous polyps and nonneoplastic polyps was constructed
based on the same cases as those in this study (Table S3 in
Multimedia Appendix 1). The relevant information was
organized into structured text according to the requirements of
the scoring system. Then, only the structured text was input into
LLMs without the corresponding scores, and the LLMs were
required to calculate the total score and indicate the
corresponding grade. In addition, based on the consensus of
two radiologists, the total score and the corresponding grade of
each patient were calculated with the multilevel scoring system
(strategy readers-model).

Figure 1 shows the flow of the diagnostic strategies for LLMs.
The prompts templates in diagnostic strategies for LLMs are in
Multimedia Appendix 1. The intrareader agreement, interreader
agreement, and diagnostic performance of LLMs in the three
diagnostic strategies were evaluated. The initial outputs from
LLMs in the three strategies were used to analyze interreader
agreement and diagnostic performance. From the final enrolled
cases, 70 were randomly selected to assess intrareader
agreement. The LLMs were asked to regenerate the output for
these cases twice, that is, there were three rounds of output per
strategy per LLM for each of these 70 cases, respectively.
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Figure 1. Diagram of three diagnostic strategies for LLMs. LLM: large language model.

In-Context Learning for LLMs
For the ultrasound image-based lesion characterization tasks in
this study, the LLMs underwent supplemental in-context
learning beyond their original architecture. LLMs were trained
to recognize the degree of blood flow, blood flow pattern, and
the definition of PMR and polyp base type (sessile or
pedunculated) using ultrasound images of patients with
gallbladder polyps in our center (excluding cases included in
this study). The prompts used in in-context learning are provided
in Multimedia Appendix 1. After entering the prompt word, the
memory of the LLMs to was checked to ensure its correct
understanding.

Statistical Analysis
The interclass correlation coefficient, Cohen κ, and weighted
κ were used to evaluate the interreader agreement for
continuous, unordered, and ordered categorical variables,
respectively. Interclass correlation coefficient, Fleiss κ, and
Kendall W coefficient were used to evaluate the intrareader
agreement for continuous, unordered, and ordered categorical
variables, respectively. The interreader agreement of ultrasound
features was represented by a heatmap generated with the
pheatmap package in R (R Foundation). The levels of the
coefficient of the agreement analysis were defined as follows:
0.20 or less for slight agreement, 0.21-0.40 for fair agreement,
0.41-0.60 for moderate agreement, 0.61-0.80 for substantial
agreement, and 0.81-1.00 for almost perfect agreement. The
agreement coefficients were compared using the Z-test. The
detailed sample size calculation for intrareader agreement is
shown in Multimedia Appendix 1.

The diagnostic performance of LLMs was evaluated by
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), accuracy, area under the receiver
operating characteristic curve, and unnecessary resection rate
of nonneoplastic polyps (UNRR). Sensitivity, specificity, PPV,
and NPV were calculated and compared with the stats package
and epiR package in R. The area under the receiver operating
characteristic curves were compared using the DeLong test.
UNRR was calculated as the number of nonneoplastic polyps
recommended for cholecystectomy divided by the total number
of nonneoplastic polyps. Chi-square test was used to compare
UNRR.

For the strategy LLMs-text, univariate logistic regression was
performed on ultrasound features according to the diagnosis of
LLMs to analyze the basis for differential diagnosis of LLMs.

Two-tailed P<.05 was considered statistically significant.
Statistical analysis was performed using PASS 2025 (power
analysis and sample size; NCSS, LLC), SPSS 25.0 (IBM Corp),
and R version 4.3.1 (R Foundation).

Results

Patient Characteristics
In the initial cohort, this study analyzed 223 patients aged 18-72
(median 40, IQR 34-50) years, including 132 (59.2%) females.
Among these, 175 (78.5%) had nonneoplastic polyps and 48
(21.5%) had adenomatous polyps. Compared to the initial
cohort, the external test set showed no significant differences
in demographic characteristics or pathological type distribution
(all P >.05; Table 1). The patient selection process is shown in
Figure 2.
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Table 1. Demographic characteristics and gallbladder polyp pathology of patients.

P valueExternal test set for the LLMsa-model
strategy (n=100)

Initial cohort (n=223)Characteristic

Sex

.7143 (43)91 (40.8)Male, n (%)

.7157 (57)132 (59.2)Female, n (%)

.84Age (years)

41 (33-52)40 (34-50)Median (IQR)

19-7418-72Range

Polyp pathology

.2827 (27)48 (21.5)Adenomatous polyps, n (%)

.2873 (73)175 (78.5)Nonneoplastic polyps, n (%)

aLLM: large language model.

Figure 2. Flowchart of patient selection. LLM: large language model.

Intrareader Agreement Analysis
The intrareader agreement coefficients of LLMs across three
strategies are shown in Table 2. Compared to the intrareader
agreement for grades in strategy LLMs-model, both ChatGPT-4o
and Claude 3.5 Sonnet exhibited significantly lower intrareader
agreement for diagnoses in strategy LLMs-text (0.58 vs 0.97,
P<.001 for ChatGPT-4o; 0.61 vs 1.00, P<.001 for Claude 3.5
Sonnet) and LLMs-image (0.37 vs 0.97, P<.001 for
ChatGPT-4o; 0.47 vs 1.00, P<.001 for Claude 3.5 Sonnet).
However, there was no significant difference between strategy
LLMs-image and LLMs-text (P=.15 for ChatGPT-4o and P=.33
for Claude 3.5 Sonnet).

For the ultrasound feature identification in strategy
LLMs-image, the agreement level of blood flow degree and
pattern for ChatGPT-4o was moderate to substantial (range of
agreement coefficient 0.43 to 0.68, 95% CI 0.30 to 0.81).
Additionally, there was only slight to fair agreement for
ChatGPT-4o in other ultrasound features (range of agreement
coefficient –0.12 to 0.30, 95% CI –0.25 to 0.45). However,
except for the slight to fair agreement in PMR, comet tail sign

and gallbladder wall thickness types (range of agreement
coefficient 0.02 to 0.30, 95% CI –0.10 to 0.45), there was
moderate to almost perfect agreement for Claude 3.5 Sonnet in
other ultrasound features (range of agreement coefficient 0.43
to 0.97, 95% CI 0.30 to 1.00). The intrareader agreement
coefficients in ultrasound features for Claude 3.5 Sonnet were
all higher than those for ChatGPT-4o, except for PMR. In
addition, the intraobserver agreement coefficient in diagnosis
for Claude 3.5 Sonnet in strategy LLMs-image was 0.47, which
was also higher than 0.7 for ChatGPT-4o.

The intraobserver agreement coefficients in diagnosis for
ChatGPT-4o and Claude 3.5 Sonnet in strategy LLMs-text were
0.58, 95% CI 0.46 to 0.72, and 0.1, 95% CI 0.49 to 0.75,
respectively, indicating a moderate to substantial level, which
were higher than those in strategy LLMs-image.

In strategy LLMs-model, both ChatGPT-4o and Claude 3.5
Sonnet showed almost perfect intraobserver agreement for total
score and grade (range of agreement coefficient 0.97 to 1.00,
95% CI 0.94 to 1.00). Almost perfect intraobserver agreement
was also observed in the external test set (Table S4 in
Multimedia Appendix 1).
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Table 2. Intrareader agreement coefficients of LLMsa. Data in parentheses are 95% CIs. Except where indicated, the coefficient of agreement analysis
is the Fleiss κ coefficient.

Claude 3.5 SonnetChatGPT-4o

LLMs-image

0.02 (–0.10 to 0.14)0.30 (0.15 to 0.45)PMRb,c

0.58 (0.45 to 0.71)0.25 (–0.03 to 0.42)Echo leveld

0.75 (0.62 to 0.88)–0.12 (–0.25 to 0.01)Echo uniformity

0.30 (0.19 to 0.45)–0.01 (–0.14 to 0.12)Comet tail sign

0.74 (0.61 to 0.87)0.00 (–0.13 to 0.12)Cauliflower shape

0.43 (0.30 to 0.56)0.18 (0.05 to 0.31)Pedunculated or sessile

1.00 (—e)–0.01 (–0.14 to 0.12)Edge

0.97 (0.94 to 1.00)0.68 (0.55 to 0.81)Blood flow degreed

0.85 (0.72 to 0.98)0.43 (0.30 to 0.56)Blood flow pattern

0.15 (0.02 to 0.28)–0.04 (–0.17 to 0.09)Gallbladder wall thickness types

0.47 (0.34 to 0.60)0.37 (0.24 to 0.50)Diagnosis

LLMs-text

0.61 (0.49 to 0.75)0.58 (0.46 to 0.72)Diagnosis

LLMs-model

1.00 (—)1.00 (—)Total scorec

1.00 (—)0.97 (0.94 to 1.00)Graded

aLLM: large language model.
bPMR: polyp morphology ratio.
cThe coefficient of agreement analysis is the interclass correlation coefficient.
dThe coefficient of agreement analysis is the Kendall W coefficient.
eCIs cannot be calculated due to the perfect consistency of the three rounds’ output in each case.

Interreader Agreement Analysis
Figure 3 and Table S5 in Multimedia Appendix 1 present the
interreader agreement of human readers and LLMs in ultrasound
features. Except for the interobserver agreement level of
cauliflower shape between readers 1 and 2 being moderate
(agreement coefficient=0.57), the agreement level for other
features between readers 1 and 2 was substantial to almost
perfect (range of agreement coefficient 0.65 to 0.99). However,
the agreement level between LLMs and other observers was
only slight (range of agreement coefficient –0.11 to 0.12), except
for blood flow degree and pattern (range of agreement
coefficient 0.34 to 0.75). As shown in Table S5 in Multimedia
Appendix 1, apart from the comet tail sign, the agreement
coefficient for other features between readers 1 and 2 was
significantly higher than those between LLMs and other
observers (P<.001).

The agreement coefficient for the comet tail sign could not be
calculated because reader 1 considered that the comet tail sign
was not present in all cases in this study.

The interobserver agreement coefficients of human readers and
LLMs in diagnosis are shown in Table 3. There was slight
interobserver agreement between ChatGPT-4o and Claude 3.5
Sonnet in strategy LLMs-image (Cohen κ=0.12, 95% CI –0.01
to 0.24), and fair agreement in strategy LLMs-text (Cohen
κ=0.38, 95% CI 0.26 to 0.50). For the strategy readers or
LLMs-model, the agreement levels were all almost perfect in
readers versus ChatGPT-4o, readers versus Claude 3.5 Sonnet,
ChatGPT-4o versus Claude 3.5 Sonnet (range of agreement
coefficient 0.84 to 0.99, 95% CI 0.78 to 0.99). In the external
test set, LLMs still showed a considerable degree of interreader
agreement (Table S6 in Multimedia Appendix 1). Compared to
the interreader agreement coefficient of grades between
ChatGPT-4o and Claude 3.5 Sonnet in strategy LLMs-model,
those for diagnosis in strategy LLMs-image (P<.001) and
LLMs-text (P<.001) were significantly lower. Additionally the
interreader agreement coefficient for diagnosis in strategy
LLMs-text was significantly higher than that in strategy
LLMs-image (P=.004).
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Figure 3. Heatmap of interreader agreement in human readers and LLMs. LLM: large language model.

Table 3. Interreader agreement coefficients of human readers and LLMsa in diagnosis. Data in parentheses are 95% CIs. Except where indicated, the
coefficient of agreement analysis is Cohen κ. The total score and grade of readers are calculated based on laboratory tests and the US features consensus
of readers 1 and 2.

ChatGPT-4o versus Claude 3.5
Sonnet

Readers versus Claude 3.5 SonnetReaders versus ChatGPT-4oDiagnostic strategies

0.12 (–0.01 to 0.24)——bLLM-image

0.38 (0.26 to 0.50)——LLM-text

Readers or LLM-model

0.99 (0.98 to 0.99)0.98 (0.97 to 0.98)0.97 (0.96 to 0.97)Total scorec

0.87 (0.82 to 0.92)0.95 (0.92 to 0.99)0.84 (0.78 to 0.90)Graded

aLLM: large language model.
bNot available.
cThe coefficient of agreement analysis is the interclass correlation coefficient.
dThe coefficient of agreement analysis is weighted κ.

Diagnostic Performance
The diagnostic performance of all diagnostic strategies is
presented in Table 4. Figure 4A and B show representative cases
from strategy Claude-image and strategy GPT-model,
respectively.

The sensitivity of the guideline’s diagnostic strategy was 1.00,
indicating that no gallbladder adenomas were missed, but
surgery was recommended for all nonneoplastic polyps ≥1.0

cm (UNRR=100%). In the strategies LLMs-image and
LLMs-text, the sensitivity of GPT-image, Claude-image,
GPT-text, and Claude-text was 0.27, 0.33, 0.56, and 0.65,
respectively, which were significantly lower than the sensitivity
of the guideline (all P<.001), indicating more gallbladder
adenomas were missed.

In the strategy readers or LLMs-model, when cholecystectomy
was recommended for gallbladder polyps ≥grade 2, the
sensitivity of ChatGPT-4o, Claude 3.5 Sonnet, and radiologists
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were 0.94, 0.98, and 0.98, respectively, showing no significant
difference from the sensitivity of 1.00 achieved by the guideline
(all P<.05). However, the accuracy of ChatGPT-4o, Claude 3.5
Sonnet, and radiologists was significantly higher than that of
the guideline (0.35, 0.34, and 0.34 vs 0.22, all P<.01), and the
UNRR was significantly lower than that of the guideline (82%,

83%, and 83% vs 100%, all P<.01). In addition, there were no
significant differences observed between GPT-model,
Claude-model and readers-model in terms of sensitivity,
specificity, PPV, NPV, accuracy or UNRR across all grades
(all P>.05). Similar results were observed in the external test
set (Table S7 in Multimedia Appendix 1).

Figure 4. Examples of strategy Claude-image (A) and strategy GPT-model (B). AST: aspartate aminotransferase; TBA: total bile acid.
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Table 4. Diagnostic performance of all diagnostic strategies. Data in ranges are 95% CIs. Except where indicated, P values are for comparison with
the guideline that recommends cholecystectomy for polyps ≥1.0 cm.

UNRRc,dAccuracyNPVbPPVaSpecificitySensitivityDiagnostic strategies

175/175 (100)Polyp size ≥1.0 cm

0.22—e0.220.001.00

0.16 to 0.28—0.16 to 0.280.00 to 0.020.93 to 1.00

54/175 (31)GPT-image

0.600.780.190.690.27

0.53 to 0.670.70 to 0.840.11 to 0.310.62 to 0.760.15 to 0.42

<.001<.01—.84<.01<.01P value

80/175 (46)Claude-image

0.500.750.170.540.33

0.43 to 0.570.66 to 0.820.10 to 0.260.47 to 0.620.20 to 0.48

<.001<.01—.40<.01<.01P value

108/175 (62)GPT-text

0.420.760.200.380.56

0.36 to 0.490.66 to 0.850.14 to 0.280.31 to 0.460.41 to 0.71

<.001<.01—.83<.01<.01P value

127/175 (73)Claude-text

0.350.740.200.270.65

0.29 to 0.420.62 to 0.840.14 to 0.270.21 to 0.350.50 to 0.78

<.001<.01—.75<.01<.01P value

GPT-model

143/175 (82)≥Grade 2

0.350.910.240.180.94

0.28 to 0.410.77 to 0.980.18 to 0.310.13 to 0.250.83 to 0.99

<.001<.01—.64<.01.24P value

.78>.99.72>.99.78.61P valuef

84/175 (48)≥Grade 3

0.570.880.300.520.75

0.50 to 0.640.81 to 0.940.22 to 0.390.44 to 0.600.60 to 0.86

<.001<.01—.11<.01.01P value

.45.57>.99.93.45>.99P valuef

5/175 (3)=Grade 4

0.790.810.580.970.15

0.74 to 0.850.75 to 0.860.28 to 0.850.94 to 0.990.06 to 0.28

<.001<.01—.01<.01<.01P value

.72.91>.99.90.72>.99P valuef

Claude-model

146/175 (83)≥Grade 2

0.340.970.240.170.98

0.28 to 0.410.83 to 1.000.19 to 0.310.11 to 0.230.89 to 1.00

<.001<.01—.57<.01>.99P value
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UNRRc,dAccuracyNPVbPPVaSpecificitySensitivityDiagnostic strategies

>.99>.99>.99>.99>.99>.99P valuef

93/175 (53)≥Grade 3

0.530.860.270.470.73

0.46 to 0.590.78 to 0.930.20 to 0.360.39 to 0.550.58 to 0.85

<.001<.01—.27<.01<.01P value

>.99.85.85.92>.99.81P valuef

5/175 (3)=Grade 4

0.790.810.580.970.15

0.74 to 0.850.75 to 0.860.28 to 0.850.94 to 0.990.06 to 0.28

<.001<.01—.01<.01<.01P value

.72.91>.99.90.72>.99P valuef

Readers-model

146/175 (83)≥Grade 2

0.340.970.240.170.98

0.28 to 0.410.83 to 1.000.19 to 0.310.11 to 0.230.89 to 1.00

<.001<.01—.57<.01.99P value

92/175 (53)≥Grade 3

0.540.880.290.470.77

0.47 to 0.610.80 to 0.940.21 to 0.370.40 to 0.550.63 to 0.88

<.001<.01—.17<.01.01P value

3/175 (2)=Grade 4

0.800.810.700.980.15

0.74 to 0.850.75 to 0.860.35 to 0.930.95 to 1.000.06 to 0.28

<.001<.01—<.01<.01<.01P value

aPPV: positive predictive value.
bNPV: negative predictive value.
cUNRR: unnecessary resection rate of nonneoplastic polyps.
dn/N (%).
eNot applicable.
fP values are for comparison with the same grade in the strategy readers-model.

Interpretability of the Diagnosis in Strategy
LLMs-Text
The results of univariate analysis based on the diagnosis of
GPT-text and Claude-text are shown in Table S8 in Multimedia
Appendix 1. Both ChatGPT-4o and Claude 3.5 Sonnet
considered larger size, hypoechogenicity, heterogeneous
echogenicity, cauliflower shape, sessile base, and rough edge
as significant factors for adenomatous polyps. Additionally,
ChatGPT-4o identified higher PMR as a diagnostic indicator
for adenomatous polyps. Furthermore, Claude 3.5 Sonnet also
associated sparse and dot-like blood flow in color Doppler flow
imaging with adenomatous polyps. Both LLMs diagnosed all
lesions with abundant blood flow (6 cases) as adenomas, which
was identified as a risk feature of neoplastic gallbladder polyps
by a previous study, while this complete separation led to the
extreme or infinite CIs.

Error Analysis in Strategy LLMs-Text
In the strategy LLMs-text, 129 cases were misdiagnosed by
ChatGPT-4o, while 94 cases were correctly diagnosed. As
shown in Table S9 in Multimedia Appendix 1, lesions with the
following characteristics were more likely to be misdiagnosed
by ChatGPT-4o: hypoechoic appearance (23% vs 11%, P=.047),
heterogeneous echotexture (52% vs 22%, P<.001),
cauliflower-like morphology (24% vs 13%, P=.04), and rough
edges (56% vs 29%, P<.001).

For Claude 3.5 Sonnet, 144 cases were misdiagnosed by
ChatGPT-4o, while 79 cases were correctly diagnosed. Table
S10 in Multimedia Appendix 1 demonstrates that Claude 3.5
Sonnet was prone to misdiagnosis in lesions with these features:
larger size (1.30 cm vs 1.10 cm, P<.001), hypoechoic
appearance (21% vs 13%, P=.03), heterogeneous echotexture
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(49% vs 23%, P<.001), cauliflower-like morphology (24% vs
11%, P=.03), and rough edges (52% vs 30%, P=.002).

Discussion

Principal Findings
This study evaluated the feasibility of LLMs for the differential
diagnosis of gallbladder benign polyps. Our principal findings
indicate that the diagnostic strategy profoundly influences LLM
performance. In the strategy LLMs-image, LLMs exhibited
only slight-to-moderate intrareader agreement and poor
interreader consistency compared to radiologists. As the
ultrasonic features associated with gallbladder polyps represent
common characteristics shared by focal lesions, the finding that
current LLMs have limited capabilities in recognizing these
features suggests this limitation may have broad applicability.
For diagnosis, the diagnostic performance of LLMs-image and
the strategy LLMs-text showed significantly lower sensitivity
than clinical guidelines, leading to more missed adenomas. In
contrast, the strategy LLMs-model, which used text descriptions
within a scoring system, demonstrated high consistency and
diagnostic performance comparable to radiologists using the
same model, while significantly reducing unnecessary
cholecystectomies. Notably, the performance between two
general-purpose LLMs, ChatGPT-4o and Claude 3.5 Sonnet,
was comparable across all strategies, suggesting these findings
may generalize to other general-purpose LLMs.

Comparison With Prior Work
Our results on the poor performance of general-purpose LLMs
in direct image interpretation align with a growing body of
evidence across various medical fields. Studies using
dermoscopic images for melanoma diagnosis, orthopedic
residency examination images, and musculoskeletal radiology
images consistently report not only unsatisfactory diagnostic
accuracy (as low as 3% to 36%) but also highlight that LLM
performance is inferior to that of human specialists [34-37].
Critically, some studies report that LLMs could harm patient
care by recommending unnecessary invasive procedures, such
as biopsies, at a significantly higher rate than radiologists [38].
This collective evidence confirms that current general-purpose
LLMs remain inadequate for reliable medical image-based
diagnosis.

It is important to note that LLMs receiving specialized training
in medical images have demonstrated more competent
performance in specific domains, such as dermatology
(SkinGPT-4) and diabetes management (DeepDR-LLM) [39,40].
Universal systems such as ChatCAD+ also show promise across
multiple image types [41]. However, such specialized models
are often confined to a single disease area or a limited set of
tasks, and they may underperform advanced general LLMs such
as GPT-4 in broader medical question-answering [42]. Other
general medical LLMs capable of addressing multiple
conditions, such as MedFound, do not yet support image input
[43]. Given the critical needs for accessibility, generalizability,
and image input capabilities in real-world clinical settings, we
selected leading general-purpose LLMs (ChatGPT-4o and
Claude 3.5 Sonnet) as the subjects of this study. Our findings

contribute to the understanding of their current capabilities and
limitations.

Regarding the diagnostic performance of text-based strategies,
our findings must be viewed within the context of a highly
variable literature. Previous studies report widely varying
accuracy (40%-91.4%) for categorical diagnoses using text-only
strategies [27,44,45]. When focusing specifically on the
interpretation of radiological findings, reported diagnostic
accuracy for LLMs ranges from 25% to 73% [26,46-48]. While
some studies, such as one on real-world radiology reports of
brain tumors, found ChatGPT-4’s accuracy (73%) to be
comparable with radiologists [48], the absence of standardized
methods and reporting metrics in LLM studies introduces
significant bias risks and hinders cross-study comparisons. In
our study, the text-based strategy demonstrated superior
diagnostic performance to the image-based approach, which
aligns with the consensus and the reported performance levels.
Nevertheless, given gallbladder adenomas’ high potential for
malignancy, the moderate sensitivity achieved by the text-based
strategy in our study remains a critical limitation for clinical
application, as higher sensitivity is paramount to avoid missed
diagnoses.

The LLMs performed suboptimally in the text-based diagnostic
strategy, even though the interpretability analysis of the
LLMs-text approach indicated that the high-risk features of
adenomas identified by the LLMs are supported by previous
literature [29,49-51]. In the error analysis, we observed that
LLMs showed subpar performance in diagnosing lesions with
these same features, such as heterogeneous echotexture and
rough edges. Essentially, this finding reflects a long-standing
fundamental challenge in the imaging diagnosis of gallbladder
polyps: there is significant overlap in the sonographic features
between high-grade dysplastic adenomas and early-stage
gallbladder cancer. Trained on broader existing literature about
medical imaging, the LLMs correctly learned the strong
association between these features and common malignancy
risk (eg, gallbladder cancer). As indicated by the extreme odds
ratio in the interpretability analysis, both LLMs assigned
excessive weight to abundant blood flow. Although previous
studies confirm it is indeed a feature associated with neoplastic
polyps [52], the models’ tendency to treat it as an absolute
diagnostic rule—rather than a probabilistic indicator—reveals
their limitation in performing the task of fine-grained diagnosis,
a reflection of the inherent difficulty of the task itself. However,
when the task was confined to the relatively idealized binary
framework of “differentiating adenomatous from non-neoplastic
polyps,” the model’s heightened sensitivity to these high-risk
features created a conflict with the task objective. This may not
represent a “weakness” in the model, but rather an objective
reflection of complex clinical reality—the degree of dysplasia
in lesions exists on a spectrum, and such ambiguity in imaging
is inherent before the intervention of the pathological “gold
standard.” Meanwhile, the LLMs also demonstrated valuable
capabilities. For instance, ChatGPT-4o correctly recognized a
novel morphological index (PMR) from an unpublished study
as useful for diagnosis, and Claude 3.5 Sonnet identified sparse
and dot blood flow as a relevant feature, which aligns with
established research [29,49]. This demonstrates their potential
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in tasks requiring strong information retrieval and logical
reasoning.

Conversely, our study reinforces that LLMs exhibit excellent
performance when working with structured text data from
scoring systems. Their high accuracy and consistency in
applying such systems are supported by prior research in Liver
Imaging Reporting and Data System and Thyroid Imaging
Reporting and Data System classification [9,53]. In addition,
our findings clarify the role of general-purpose LLMs. In the
LLMs-model strategy, the LLM acts as a reliable executor of
clinical rules, not a simple calculator. It first understands text
to find key features, then applies the scoring rule. The
performance of our LLMs-model strategy, which was
comparable to radiologists, suggests that leveraging LLMs to
execute standardized clinical rules may be their most reliable
and immediate clinical application.

Strengths and Limitations
A key strength of this study is the comprehensive evaluation of
LLMs across three distinct diagnostic strategies, providing a
clear understanding of their appropriate clinical roles. We also
provided an in-depth analysis of their reasoning, identifying
both capabilities and weaknesses.

This study has several limitations. First, the task of
differentiating benign gallbladder polyps is inherently
challenging, even for radiologists, which may have contributed
to the LLMs’ suboptimal performance. Second, the evaluation
was conducted on a single disease entity; assessing broader
clinical applicability requires more diverse and complex cases.

Third, we used in-context learning with only typical cases.
While this approach simulates a realistic usage scenario and is
highly accessible, it is inherently less stable than fine-tuning
and may not capture the full spectrum of clinical presentations.
Finally, the retrospective design may introduce potential
selection biases.

Future Directions
Based on our findings, future research should focus on several
key areas. First, the development and evaluation of more
versatile and medically tuned multimodal LLMs are crucial.
Second, the performance of LLMs is heavily dependent on the
quality of the underlying scoring system; therefore, integrating
them with more robust and validated clinical models could
maximize their diagnostic utility. Finally, standardizing
evaluation methods and reporting metrics across LLM studies
is urgently needed to enable meaningful comparisons. Given
their strong performance in information retrieval and logical
reasoning, future work should also explore the role of LLMs in
medical education [54,55] and self-management counseling for
patients with chronic conditions [56].

Conclusions
In conclusion, current general-purpose LLMs have poor
reproducibility and diagnostic performance in image-based
diagnosis of gallbladder polyps, limiting their direct clinical
application. However, they demonstrate significant potential
when used in a text-based strategy that uses a clinical scoring
system, achieving performances comparable to radiologists.
This model-based approach currently represents the most
appropriate diagnostic strategy for LLMs in this domain.

Acknowledgments
Generative artificial intelligence (GenAI) was not used to generate any part of this paper. In this study, GenAI is only a part of
the research design. All prompt templates sent to the GenAI are detailed in Multimedia Appendix 1.

Funding
This work was supported by the National Natural Science Foundation of China (No. 82572248 & No. 82102057).

Data Availability
The original ultrasound images and clinical records analyzed during this study are not publicly available due to patient confidentiality
and privacy protection regulations. However, deidentified data underlying the reported results can be made available from the
corresponding author upon reasonable request. Requests should include a detailed research proposal outlining the intended use
of the data and must be approved by the institutional ethics committee that oversaw the original study.

Authors' Contributions
Conceptualization: MX, TH, LJ
Funding acquisition: TH, MX
Investigation: LJ, TH, JY, ZY, FT, X Zheng, X Zhang, XX
Methodology: LJ, TH, JY, ZY
Resources: MX, TH, XX
Supervision: MX, TH
Writing - original draft: LJ
Writing - review & editing: TH, MX

Conflicts of Interest
None declared.

JMIR Med Inform 2025 | vol. 13 | e71178 | p. 12https://medinform.jmir.org/2025/1/e71178
(page number not for citation purposes)

Jiang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
Study protocols, prompt templates, statistical details, and extended results.
[DOCX File , 339 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Example No.1. An example of dot and sparse blood flow.
[PNG File , 244 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Example No.2. An example of single and sparse blood flow.
[PNG File , 254 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Example No.3. An example of branch-like and abundant blood flow.
[PNG File , 166 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Example No.4. An example of a pedunculated polyp.
[PNG File , 377 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Example No.5. An example of a sessile polyp.
[PNG File , 277 KB-Multimedia Appendix 6]

References

1. Minaee S, Mikolov T, Nikzad N, Chenaghlu M, Socher R, Amatriain X, et al. Large language models: a survey. arXiv.
Preprint posted online on March 23, 2025. [doi: 10.48550/arXiv.2402.06196]

2. Voultsiou E, Vrochidou E, Moussiades L, Papakostas GA. The potential of large language models for social robots in
special education. Prog Artif Intell. 2025;14(2):165-189. [doi: 10.1007/s13748-025-00363-2]

3. Hang CN, Wei Tan C, Yu P. MCQGen: a large language model-driven MCQ generator for personalized learning. IEEE
Access. 2024;12:102261-102273. [doi: 10.1109/access.2024.3420709]

4. Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future
prospects, and ethical considerations. Front Artif Intell. 2023;6:1169595. [FREE Full text] [doi: 10.3389/frai.2023.1169595]
[Medline: 37215063]

5. Liu J, Wang C, Liu S. Utility of ChatGPT in clinical practice. J Med Internet Res. 2023;25:e48568. [FREE Full text] [doi:
10.2196/48568] [Medline: 37379067]

6. Chintagunta B, Katariya N, Amatriain X, Kannan A. Medically aware GPT-3 as a data generator for medical dialogue
summarization. Association for Computational Linguistics; 2021. Presented at: Proceedings of the Second Workshop on
Natural Language Processing for Medical Conversations; November 30, 2025:66-76; Online. [doi:
10.18653/v1/2021.nlpmc-1.9]

7. Margetts TJ, Karnik SJ, Wang HS, Plotkin LI, Oblak AL, Fehrenbacher JC, et al. Use of AI language engine ChatGPT 4.0
to write a scientific review article examining the intersection of Alzheimer's disease and bone. Curr Osteoporos Rep.
2024;22(1):177-181. [FREE Full text] [doi: 10.1007/s11914-023-00853-z] [Medline: 38225472]

8. Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D. The role of large language models in medical education:
applications and implications. JMIR Med Educ. 2023;9:e50945. [FREE Full text] [doi: 10.2196/50945] [Medline: 37578830]

9. Wu S, Tong W, Li M, Hu H, Lu X, Huang Z, et al. Collaborative enhancement of consistency and accuracy in US diagnosis
of thyroid nodules using large language models. Radiology. 2024;310(3):e232255. [doi: 10.1148/radiol.232255] [Medline:
38470237]

10. Ueda D, Mitsuyama Y, Takita H, Horiuchi D, Walston SL, Tatekawa H, et al. ChatGPT's diagnostic performance from
patient history and imaging findings on the diagnosis please quizzes. Radiology. 2023;308(1):e231040. [doi:
10.1148/radiol.231040] [Medline: 37462501]

11. Chiang W, Zheng L, Sheng Y, Angelopoulos A, Li T, Li D. Chatbot Arena: an open platform for evaluating LLMs by
human preference. arXiv. Preprint posted online on March 7, 2024. [doi: 10.48550/arXiv.2403.04132]

12. Li T, Chiang W, Song Y, Jain N, Dunlap L, Li D. Chatbot Arena Categories. 2024. URL: https://blog.lmarena.ai/blog/2024/
arena-category/ [accessed 2025-12-04]

JMIR Med Inform 2025 | vol. 13 | e71178 | p. 13https://medinform.jmir.org/2025/1/e71178
(page number not for citation purposes)

Jiang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app1.docx&filename=d747d07f87ff144cc3a17e5e83aff644.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app1.docx&filename=d747d07f87ff144cc3a17e5e83aff644.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app2.png&filename=d60a3962d98f62a32fb6f718de62322a.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app2.png&filename=d60a3962d98f62a32fb6f718de62322a.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app3.png&filename=4e973d4e141177946a72a768760e060d.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app3.png&filename=4e973d4e141177946a72a768760e060d.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app4.png&filename=e860bf64e9615dce58e410a1de543505.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app4.png&filename=e860bf64e9615dce58e410a1de543505.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app5.png&filename=f34773f38fe6cbc3c48375083f64ff0d.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app5.png&filename=f34773f38fe6cbc3c48375083f64ff0d.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app6.png&filename=5fc349b8a080229ab8ac64da2b17501f.png
https://jmir.org/api/download?alt_name=medinform_v13i1e71178_app6.png&filename=5fc349b8a080229ab8ac64da2b17501f.png
http://dx.doi.org/10.48550/arXiv.2402.06196
http://dx.doi.org/10.1007/s13748-025-00363-2
http://dx.doi.org/10.1109/access.2024.3420709
https://europepmc.org/abstract/MED/37215063
http://dx.doi.org/10.3389/frai.2023.1169595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37215063&dopt=Abstract
https://www.jmir.org/2023//e48568/
http://dx.doi.org/10.2196/48568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37379067&dopt=Abstract
http://dx.doi.org/10.18653/v1/2021.nlpmc-1.9
https://europepmc.org/abstract/MED/38225472
http://dx.doi.org/10.1007/s11914-023-00853-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38225472&dopt=Abstract
https://mededu.jmir.org/2023//e50945/
http://dx.doi.org/10.2196/50945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37578830&dopt=Abstract
http://dx.doi.org/10.1148/radiol.232255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38470237&dopt=Abstract
http://dx.doi.org/10.1148/radiol.231040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37462501&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2403.04132
https://blog.lmarena.ai/blog/2024/arena-category/
https://blog.lmarena.ai/blog/2024/arena-category/
http://www.w3.org/Style/XSL
http://www.renderx.com/


13. Lin W, Lin D, Tai D, Hsieh S, Lin C, Sheen I, et al. Prevalence of and risk factors for gallbladder polyps detected by
ultrasonography among healthy Chinese: analysis of 34 669 cases. J Gastroenterol Hepatol. 2008;23(6):965-969. [doi:
10.1111/j.1440-1746.2007.05071.x] [Medline: 17725602]

14. Heitz L, Kratzer W, Gräter T, Schmidberger J, EMIL study group. Gallbladder polyps - a follow-up study after 11 years.
BMC Gastroenterol. 2019;19(1):42. [FREE Full text] [doi: 10.1186/s12876-019-0959-3] [Medline: 30885181]

15. Roa I, de Aretxabala X, Araya JC, Roa J. Preneoplastic lesions in gallbladder cancer. J Surg Oncol. 2006;93(8):615-623.
[doi: 10.1002/jso.20527] [Medline: 16724345]

16. Branch of Biliary Surgery‚ Chinese Society of Surgery‚ Chinese Medical Association, Chinese Medical Doctor Association
in Chinese Committee of Biliary Surgeons. [Consensus on the surgical management of benign gallbladder diseases(2021
edition)]. Zhonghua Wai Ke Za Zhi. 2022;60(1):4-9. [doi: 10.3760/cma.j.cn112139-20210811-00373] [Medline: 34839607]

17. Albores-Saavedra J, Chablé-Montero F, González-Romo MA, Ramírez Jaramillo M, Henson DE. Adenomas of the
gallbladder. Morphologic features, expression of gastric and intestinal mucins, and incidence of high-grade
dysplasia/carcinoma in situ and invasive carcinoma. Hum Pathol. 2012;43(9):1506-1513. [doi:
10.1016/j.humpath.2011.11.011] [Medline: 22386521]

18. Taskin OC, Bellolio E, Dursun N, Seven IE, Roa JC, Araya JC, et al. Non-neoplastic polyps of the gallbladder: a
clinicopathologic analysis of 447 cases. Am J Surg Pathol. 2020;44(4):467-476. [FREE Full text] [doi:
10.1097/PAS.0000000000001405] [Medline: 31725469]

19. Yuan H, Cao J, Kong W, Xia H, Wang X, Wang W. Contrast-enhanced ultrasound in diagnosis of gallbladder adenoma.
Hepatobiliary Pancreat Dis Int. 2015;14(2):201-207. [doi: 10.1016/s1499-3872(15)60351-4] [Medline: 25865694]

20. Zhang H, Bai M, Gu J, He Y, Qiao X, Du L. Value of contrast-enhanced ultrasound in the differential diagnosis of gallbladder
lesion. World J Gastroenterol. 2018;24(6):744-751. [FREE Full text] [doi: 10.3748/wjg.v24.i6.744] [Medline: 29456413]

21. Foley KG, Lahaye MJ, Thoeni RF, Soltes M, Dewhurst C, Barbu ST, et al. Management and follow-up of gallbladder
polyps: updated joint guidelines between the ESGAR, EAES, EFISDS and ESGE. Eur Radiol. 2022;32(5):3358-3368.
[FREE Full text] [doi: 10.1007/s00330-021-08384-w] [Medline: 34918177]

22. Wennmacker SZ, van Dijk AH, Raessens JHJ, van Laarhoven CJHM, Drenth JPH, de Reuver PR, et al. Polyp size of 1 cm
is insufficient to discriminate neoplastic and non-neoplastic gallbladder polyps. Surg Endosc. 2019;33(5):1564-1571. [FREE
Full text] [doi: 10.1007/s00464-018-6444-1] [Medline: 30203209]

23. Pickering O, Pucher PH, Toale C, Hand F, Anand E, Cassidy S, et al. Prevalence and sonographic detection of gallbladder
polyps in a western European population. J Surg Res. 2020;250:226-231. [doi: 10.1016/j.jss.2020.01.003] [Medline:
32106001]

24. Vetrhus M, Berhane T, Søreide O, Søndenaa K. Pain persists in many patients five years after removal of the gallbladder:
observations from two randomized controlled trials of symptomatic, noncomplicated gallstone disease and acute cholecystitis.
J Gastrointest Surg. 2005;9(6):826-831. [doi: 10.1016/j.gassur.2005.01.291] [Medline: 15985239]

25. Farrugia A, Attard JA, Khan S, Williams N, Arasaradnam R. Postcholecystectomy diarrhoea rate and predictive factors: a
systematic review of the literature. BMJ Open. 2022;12(2):e046172. [FREE Full text] [doi: 10.1136/bmjopen-2020-046172]
[Medline: 35177439]

26. Kurokawa R, Ohizumi Y, Kanzawa J, Kurokawa M, Sonoda Y, Nakamura Y, et al. Diagnostic performances of Claude 3
Opus and Claude 3.5 sonnet from patient history and key images in radiology's "diagnosis please" cases. Jpn J Radiol.
2024;42(12):1399-1402. [doi: 10.1007/s11604-024-01634-z] [Medline: 39096483]

27. Sonoda Y, Kurokawa R, Nakamura Y, Kanzawa J, Kurokawa M, Ohizumi Y, et al. Diagnostic performances of GPT-4o,
Claude 3 Opus, and Gemini 1.5 Pro in "diagnosis please" cases. Jpn J Radiol. 2024;42(11):1231-1235. [doi:
10.1007/s11604-024-01619-y] [Medline: 38954192]

28. Tejani AS, Klontzas ME, Gatti AA, Mongan JT, Moy L, Park SH, et al. CLAIM 2024 Update Panel. Checklist for artificial
intelligence in medical imaging (CLAIM): 2024 update. Radiol Artif Intell. 2024;6(4):e240300. [FREE Full text] [doi:
10.1148/ryai.240300] [Medline: 38809149]

29. Fei X, Li N, Zhu L, Han P, Jiang B, Tang W, et al. Value of high frame rate contrast-enhanced ultrasound in distinguishing
gallbladder adenoma from cholesterol polyp lesion. Eur Radiol. 2021;31(9):6717-6725. [doi: 10.1007/s00330-021-07730-2]
[Medline: 33569621]

30. Gupta P, Dutta U, Rana P, Singhal M, Gulati A, Kalra N, et al. Gallbladder reporting and data system (GB-RADS) for risk
stratification of gallbladder wall thickening on ultrasonography: an international expert consensus. Abdom Radiol (NY).
Feb 2022;47(2):554-565. [doi: 10.1007/s00261-021-03360-w] [Medline: 34851429]

31. ChatGPT. OpenAI. URL: https://chatgpt.com/ [accessed 2025-12-04]
32. Claude. ANTHROPIC PBC. URL: https://claude.ai/new [accessed 2025-12-05]
33. Jiang L, Xu M, Yao J, Yang Z, Zhang X, Wu W, et al. Multilevel scoring systems based on ultrasound for differentiating

between gallbladder adenomatous polyps and non-neoplastic polyps. Clin Radiol. 2025;89:107024. [doi:
10.1016/j.crad.2025.107024] [Medline: 40795450]

34. Shifai N, van Doorn R, Malvehy J, Sangers TE. Can ChatGPT vision diagnose melanoma? An exploratory diagnostic
accuracy study. J Am Acad Dermatol. 2024;90(5):1057-1059. [FREE Full text] [doi: 10.1016/j.jaad.2023.12.062] [Medline:
38244612]

JMIR Med Inform 2025 | vol. 13 | e71178 | p. 14https://medinform.jmir.org/2025/1/e71178
(page number not for citation purposes)

Jiang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1111/j.1440-1746.2007.05071.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17725602&dopt=Abstract
https://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-019-0959-3
http://dx.doi.org/10.1186/s12876-019-0959-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30885181&dopt=Abstract
http://dx.doi.org/10.1002/jso.20527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16724345&dopt=Abstract
http://dx.doi.org/10.3760/cma.j.cn112139-20210811-00373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34839607&dopt=Abstract
http://dx.doi.org/10.1016/j.humpath.2011.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22386521&dopt=Abstract
https://europepmc.org/abstract/MED/31725469
http://dx.doi.org/10.1097/PAS.0000000000001405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31725469&dopt=Abstract
http://dx.doi.org/10.1016/s1499-3872(15)60351-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25865694&dopt=Abstract
https://www.wjgnet.com/1007-9327/full/v24/i6/744.htm
http://dx.doi.org/10.3748/wjg.v24.i6.744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29456413&dopt=Abstract
https://europepmc.org/abstract/MED/34918177
http://dx.doi.org/10.1007/s00330-021-08384-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34918177&dopt=Abstract
https://europepmc.org/abstract/MED/30203209
https://europepmc.org/abstract/MED/30203209
http://dx.doi.org/10.1007/s00464-018-6444-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30203209&dopt=Abstract
http://dx.doi.org/10.1016/j.jss.2020.01.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32106001&dopt=Abstract
http://dx.doi.org/10.1016/j.gassur.2005.01.291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15985239&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=35177439
http://dx.doi.org/10.1136/bmjopen-2020-046172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35177439&dopt=Abstract
http://dx.doi.org/10.1007/s11604-024-01634-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39096483&dopt=Abstract
http://dx.doi.org/10.1007/s11604-024-01619-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38954192&dopt=Abstract
https://escholarship.org/uc/item/qt9zf6q2rb
http://dx.doi.org/10.1148/ryai.240300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38809149&dopt=Abstract
http://dx.doi.org/10.1007/s00330-021-07730-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33569621&dopt=Abstract
http://dx.doi.org/10.1007/s00261-021-03360-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34851429&dopt=Abstract
https://chatgpt.com/
https://claude.ai/new
http://dx.doi.org/10.1016/j.crad.2025.107024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40795450&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0190-9622(24)00076-8
http://dx.doi.org/10.1016/j.jaad.2023.12.062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38244612&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


35. Massey PA, Montgomery C, Zhang AS. Comparison of ChatGPT-3.5, ChatGPT-4, and orthopaedic resident performance
on orthopaedic assessment examinations. J Am Acad Orthop Surg. 2023;31(23):1173-1179. [FREE Full text] [doi:
10.5435/JAAOS-D-23-00396] [Medline: 37671415]

36. Horiuchi D, Tatekawa H, Oura T, Shimono T, Walston SL, Takita H, et al. ChatGPT's diagnostic performance based on
textual vs. visual information compared to radiologists' diagnostic performance in musculoskeletal radiology. Eur Radiol.
2025;35(1):506-516. [doi: 10.1007/s00330-024-10902-5] [Medline: 38995378]

37. Huppertz MS, Siepmann R, Topp D, Nikoubashman O, Yüksel C, Kuhl CK, et al. Revolution or risk?-Assessing the potential
and challenges of GPT-4V in radiologic image interpretation. Eur Radiol. 2025;35(3):1111-1121. [doi:
10.1007/s00330-024-11115-6] [Medline: 39422726]

38. Chen Z, Chambara N, Wu C, Lo X, Liu SYW, Gunda ST, et al. Assessing the feasibility of ChatGPT-4o and Claude 3-Opus
in thyroid nodule classification based on ultrasound images. Endocrine. 2025;87(3):1041-1049. [doi:
10.1007/s12020-024-04066-x] [Medline: 39394537]

39. Zhou J, He X, Sun L, Xu J, Chen X, Chu Y, et al. Pre-trained multimodal large language model enhances dermatological
diagnosis using SkinGPT-4. Nat Commun. 2024;15(1):5649. [FREE Full text] [doi: 10.1038/s41467-024-50043-3] [Medline:
38969632]

40. Li J, Guan Z, Wang J, Cheung CY, Zheng Y, Lim L, et al. Integrated image-based deep learning and language models for
primary diabetes care. Nat Med. 2024;30(10):2886-2896. [doi: 10.1038/s41591-024-03139-8] [Medline: 39030266]

41. Zhao Z, Wang S, Gu J, Zhu Y, Mei L, Zhuang Z, et al. ChatCAD+: toward a universal and reliable interactive CAD using
LLMs. IEEE Trans Med Imaging. 2024;43(11):3755-3766. [doi: 10.1109/TMI.2024.3398350] [Medline: 38717880]

42. Chen Z, Cano AH, Romanou A, Bonnet A, Matoba K, Salvi F, et al. MEDITRON-70B: scaling medical pretraining for
large language models. arXiv. Preprint posted online on November 27, 2023. [doi: 10.48550/arXiv.2311.16079]

43. Liu X, Liu H, Yang G, Jiang Z, Cui S, Zhang Z, et al. A generalist medical language model for disease diagnosis assistance.
Nat Med. 2025;31(3):932-942. [doi: 10.1038/s41591-024-03416-6] [Medline: 39779927]

44. Rao A, Pang M, Kim J, Kamineni M, Lie W, Prasad AK, et al. Assessing the utility of ChatGPT throughout the entire
clinical workflow: development and usability study. J Med Internet Res. 2023;25:e48659. [FREE Full text] [doi:
10.2196/48659] [Medline: 37606976]

45. Giuffrè M, Kresevic S, You K, Dupont J, Huebner J, Grimshaw AA, et al. Systematic review: the use of large language
models as medical chatbots in digestive diseases. Aliment Pharmacol Ther. 2024;60(2):144-166. [doi: 10.1111/apt.18058]
[Medline: 38798194]

46. Fervers P, Hahnfeldt R, Kottlors J, Wagner A, Maintz D, Pinto Dos Santos D, et al. ChatGPT yields low accuracy in
determining LI-RADS scores based on free-text and structured radiology reports in German language. Front Radiol.
2024;4:1390774. [FREE Full text] [doi: 10.3389/fradi.2024.1390774] [Medline: 39036542]

47. Cesur T, Güneş YC. Optimizing diagnostic performance of ChatGPT: the impact of prompt engineering on thoracic radiology
cases. Cureus. 2024;16(5):e60009. [FREE Full text] [doi: 10.7759/cureus.60009] [Medline: 38854352]

48. Mitsuyama Y, Tatekawa H, Takita H, Sasaki F, Tashiro A, Oue S, et al. Comparative analysis of GPT-4-based ChatGPT's
diagnostic performance with radiologists using real-world radiology reports of brain tumors. Eur Radiol.
2025;35(4):1938-1947. [doi: 10.1007/s00330-024-11032-8] [Medline: 39198333]

49. Sadamoto Y, Oda S, Tanaka M, Harada N, Kubo H, Eguchi T, et al. A useful approach to the differential diagnosis of small
polypoid lesions of the gallbladder, utilizing an endoscopic ultrasound scoring system. Endoscopy. 2002;34(12):959-965.
[doi: 10.1055/s-2002-35859] [Medline: 12471539]

50. Wang Y, Peng J, Liu K, Sun P, Ma Y, Zeng J, et al. Preoperative prediction model for non-neoplastic and benign neoplastic
polyps of the gallbladder. Eur J Surg Oncol. 2024;50(2):107930. [FREE Full text] [doi: 10.1016/j.ejso.2023.107930]
[Medline: 38159390]

51. Liu J, Qian Y, Yang F, Huang S, Chen G, Yu J, et al. Value of prediction model in distinguishing gallbladder adenoma
from cholesterol polyp. J Gastroenterol Hepatol. 2022;37(10):1893-1900. [doi: 10.1111/jgh.15928] [Medline: 35750491]

52. Kim SY, Cho JH, Kim EJ, Chung DH, Kim KK, Park YH, et al. The efficacy of real-time colour Doppler flow imaging on
endoscopic ultrasonography for differential diagnosis between neoplastic and non-neoplastic gallbladder polyps. Eur Radiol.
2018;28(5):1994-2002. [doi: 10.1007/s00330-017-5175-3] [Medline: 29218621]

53. Gu K, Lee JH, Shin J, Hwang JA, Min JH, Jeong WK, et al. Using GPT-4 for LI-RADS feature extraction and categorization
with multilingual free-text reports. Liver Int. 2024;44(7):1578-1587. [doi: 10.1111/liv.15891] [Medline: 38651924]

54. Hui Z, Zewu Z, Jiao H, Yu C. Application of ChatGPT-assisted problem-based learning teaching method in clinical medical
education. BMC Med Educ. 2025;25(1):50. [FREE Full text] [doi: 10.1186/s12909-024-06321-1] [Medline: 39799356]

55. Ch'en PY, Day W, Pekson RC, Barrientos J, Burton WB, Ludwig AB, et al. GPT-4 generated answer rationales to multiple
choice assessment questions in undergraduate medical education. BMC Med Educ. 2025;25(1):333. [FREE Full text] [doi:
10.1186/s12909-025-06862-z] [Medline: 40038669]

56. Bazzari AH, Bazzari FH. Assessing the ability of GPT-4o to visually recognize medications and provide patient education.
Sci Rep. 2024;14(1):26749. [FREE Full text] [doi: 10.1038/s41598-024-78577-y] [Medline: 39501020]

JMIR Med Inform 2025 | vol. 13 | e71178 | p. 15https://medinform.jmir.org/2025/1/e71178
(page number not for citation purposes)

Jiang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://europepmc.org/abstract/MED/37671415
http://dx.doi.org/10.5435/JAAOS-D-23-00396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37671415&dopt=Abstract
http://dx.doi.org/10.1007/s00330-024-10902-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38995378&dopt=Abstract
http://dx.doi.org/10.1007/s00330-024-11115-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39422726&dopt=Abstract
http://dx.doi.org/10.1007/s12020-024-04066-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39394537&dopt=Abstract
https://doi.org/10.1038/s41467-024-50043-3
http://dx.doi.org/10.1038/s41467-024-50043-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38969632&dopt=Abstract
http://dx.doi.org/10.1038/s41591-024-03139-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39030266&dopt=Abstract
http://dx.doi.org/10.1109/TMI.2024.3398350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38717880&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2311.16079
http://dx.doi.org/10.1038/s41591-024-03416-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39779927&dopt=Abstract
https://www.jmir.org/2023//e48659/
http://dx.doi.org/10.2196/48659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37606976&dopt=Abstract
http://dx.doi.org/10.1111/apt.18058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38798194&dopt=Abstract
https://doi.org/10.3389/fradi.2024.1390774
http://dx.doi.org/10.3389/fradi.2024.1390774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39036542&dopt=Abstract
https://europepmc.org/abstract/MED/38854352
http://dx.doi.org/10.7759/cureus.60009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38854352&dopt=Abstract
http://dx.doi.org/10.1007/s00330-024-11032-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39198333&dopt=Abstract
http://dx.doi.org/10.1055/s-2002-35859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12471539&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0748-7983(23)01568-8
http://dx.doi.org/10.1016/j.ejso.2023.107930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38159390&dopt=Abstract
http://dx.doi.org/10.1111/jgh.15928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35750491&dopt=Abstract
http://dx.doi.org/10.1007/s00330-017-5175-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29218621&dopt=Abstract
http://dx.doi.org/10.1111/liv.15891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38651924&dopt=Abstract
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-024-06321-1
http://dx.doi.org/10.1186/s12909-024-06321-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39799356&dopt=Abstract
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-025-06862-z
http://dx.doi.org/10.1186/s12909-025-06862-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40038669&dopt=Abstract
https://doi.org/10.1038/s41598-024-78577-y
http://dx.doi.org/10.1038/s41598-024-78577-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39501020&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Abbreviations
CLAIM: Checklist for Artificial Intelligence in Medical Imaging
LLM: large language model
NPV: negative predictive value
PASS: power analysis and sample size
PMR: polyp morphology ratio
PPV: positive predictive value
UNRR: unnecessary resection rate of nonneoplastic polyps
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