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Abstract

Background: Operative notes are frequently mined for surgical concepts in clinical care, research, quality improvement, and
billing, often requiring hours of manual extraction. These notes are typically analyzed at the document level to determine the
presence or absence of specific procedures or findings (eg, whether a hand-sewn anastomosis was performed or contamination
occurred). Extracting several binary classification labels simultaneously is a multilabel classification problem. Traditional
natural language processing approaches —bag-of-words (BoW) and term frequency-inverse document frequency (tf-idf) with
linear classifiers—have been used previously for this task but are now being augmented or replaced by large language models
(LLMs). However, few studies have examined their utility in surgery.

Objective: We developed and evaluated LLMs for the purpose of expediting data extraction from surgical notes.

Methods: A total of 388 exploratory laparotomy notes from a single institution were annotated for 21 concepts related to
intraoperative findings, intraoperative techniques, and closure techniques. Annotation consistency was measured using the
Cohen % statistic. Data were preprocessed to include only the description of the procedure. We compared the evolution of
document classification technologies from BoW and tf-idf to encoder-only (Clinical-Longformer) and decoder-only (Llama
3) transformer models. Multilabel classification performance was evaluated with 5-fold cross-validation with F{-score and
hamming loss (HL). We experimented with and without context. Errors were assessed by manual review. Code and implemen-
tation instructions may be found on GitHub.

Results: The prevalence of labels ranged from 0.05 (colostomy, ileostomy, active bleed from named vessel) to 0.50 (running
fascial closure). Llama 3.3 was the overall best-performing model (micro Fj-score 0.88, 5-fold range: 0.88-0.89; HL 0.11,
5-fold range: 0.11-0.12). The BoW model (micro Fi-score 0.68, 5-fold range: 0.64-0.71; HL 0.14, 5-fold range: 0.13-0.16)
and Clinical-Longformer (micro F-score 0.73, 5-fold range: 0.70-0.74; HL 0.11, 5-fold range: 0.10-0.12) had overall similar
performance, with tf-idf models trailing (micro Fi-score 0.57, 5-fold range: 0.55-0.59; HL 0.27, 5-fold range: 0.25-0.29).
F1-scores varied across concepts in the Llama model, ranging from 0.30 (5-fold range: 0.23-0.39) for class III contamina-
tion to 0.92 (5-fold range: 0.98-0.84) for bowel resection. Context enhanced Llama’s performance, adding an average of
0.16 improvement to the Fi-scores. Error analysis demonstrated semantic nuances and edge cases within operative notes,
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particularly when patients had references to prior operations in their operative notes or simultaneous operations with other
surgical services.

Conclusions: Off-the-shelf autoregressive LLMs outperformed fined-tuned, encoder-only transformers and traditional natural
language processing techniques in classifying operative notes. Multilabel classification with LLMs may streamline retrospec-

tive reviews in surgery, though further refinements are required prior to reliable use in research and quality improvement.

JMIR Med Inform 2025;13:e71176; doi: 10.2196/71176
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Introduction

Methods

Operative notes represent the most thorough narrative of
a surgical case in the electronic health record, containing
information that is largely inaccessible outside of manual
human review [1,2]. This limitation impedes retrospective
studies on surgical technique and intraoperative findings that
impact outcomes, as well as the ability to perform prospec-
tive validation and real-time implementation of decision-sup-
port systems. Natural language processing (NLP) and large
language models (LLMs) may offer a streamlined approach
to information extraction for clinical workflow, education,
research, performance improvement, and billing purposes [3].

The terms and phrases used to characterize surgical
techniques and intraoperative findings often contain complex
dependencies that span multiple sentences and are best
understood in the context of an entire operative note.
Furthermore, in retrospective reviews focused on patient
outcomes, operative notes serve as a vehicle to identify
study participants, with subsequent attention to downstream
outcomes often represented in structured data (ie, mortality,
surgical site infection, or anastomotic leaks defined by the
International Classification of Disease codes) [4,5].

For this reason, we frame our problem in terms of a
multilabel document classification task [6] where operative
notes take on a series of binary labels as to whether or not
a certain intraoperative finding (eg, bleeding and contamina-
tion) or technique (eg, bowel resection, hand-sewn anastomo-
sis, and style of fascial closure) occurred during the case.
Traditional NLP methods, using word frequencies, generally
perform well on this task, though can fail to capture context
and negation, a noted strength of the attention mechanism in
LLMs [7]. Several studies have investigated LLMs for text
classification in clinical notes, though to our knowledge, few
studies have examined multilabel classification, only one has
used generative models, and none have done so in surgical
specialties [8-12]. There is a similar paucity of publications
using real-world data outside of curated datasets, which, in
addition to representing idealized clinical documentation, are
also conspicuously devoid of operative notes [13-15].

Generative LLMs may offer “off-the-shelf” abilities to
capture the multidependency nature of intraoperative findings
and surgical techniques. We hypothesize that generative
LLMs can outperform fine-tuned encoder-only LLMs and
traditional NLP methods in classifying operative notes as
containing specific findings and techniques [16].

https://medinform jmir.org/2025/1/e71176

Data

Using the University of Florida Health Integrated Data
Repository as an honest broker, we assessed 2 single-cen-
ter, longitudinal electronic health record datasets for all
adult patients admitted to a surgical service at University of
Florida Health Gainesville and Jacksonville, both quaternary
referral centers, between June 1, 2014, and August 22, 2022.
We randomly selected 420 fully deidentified exploratory
laparotomy operative reports using SQL queries. In total, 32
were found to be mislabeled as “exploratory laparotomy,”
with no evidence that the abdominal cavity was entered,
and so were excluded, leaving 388 notes. As our scope
was limited to the operative notes themselves, no surgical
outcome, operative metadata, or sociodemographic data were
collected.

Ethical Considerations

This study was approved by the University of Flor-
ida Institutional Review Board and Privacy Office
(IRB#201600262) as an exempt study with a waiver of
informed consent. All data used in this study were dei-
dentified. No compensation was provided. This study was
performed in accordance with the TRIPOD+LLM (Trans-
parent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis+Large Language Model)
reporting guideline [17].

Data Preparation

The project workflow is shown in Figure 1. A team of 8
annotators, consisting of medical students (TRB, LMB, YP,
A Bilgili, AP, CEC, RU, and DMV) and one surgical resident
(JAB), were trained on the project’s objectives and annota-
tion software. A detailed annotation manual is provided with
definitions, categories, and illustrative examples (Multime-
dia Appendix 1). An annotated operative note is shown in
Multimedia Appendix 2. Emphasis was placed on achieving a
high level of consistency, with the goal of reaching a Cohen
% coefficient of above 0.8 for interrater reliability [18]. The
first author (JAB) served as the ground truth. A total of 20
operative notes were set aside for annotator training and were
reviewed by all annotators. Following training, annotators
participated in regular discussions to address any challenges
and were reviewed by the first author. Annotations were
performed with Label Studio (version 1.8.2; HumanSignal).
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Figure 1. Workflow schema. Exploratory laparotomy notes are first extracted and annotated. After preprocessing, they are passed to 4 machine-learn-
ing models for multilabel document classification. Models are compared using several performance metrics. Finally, error analysis is performed and
all annotation, preprocessing, prompts, and model architectures are modified as necessary on training data to optimize the F'j-score prior to evaluation
on test data. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; BoW: bag-of-words; CL:
Clinical-Longformer; PPV: positive-predictive value; SN: sensitivity; SP: specificity; tf-idf: term frequency-inverse document frequency.

Training data

i

Operative notes

+ 15,952 exploratory
laparotomies

* 420 randomly
selected for labeling

Labels

Notes were annotated for structure, intraoperative findings,
and surgical techniques. Whole text spans were highligh-
ted based on note structure: patient or staff or anesthe-
sia personnel information; procedures performed; pre- and
postoperative diagnoses; intraoperative findings; indication or
history; description of the procedure; ins, outs, and speci-
mens; disposition; and complications. Intraoperative findings
included: contamination (class I, II, III, and IV) as defined
in the peer-reviewed literature [19]; and bleeding, differenti-
ating between active bleed from a named vessel and active
bleed from a solid organ. Whole-document labels were
performed for: bowel resection, primary repair of enteroto-
mies, colostomy formation, ileostomy formation, hand-sewn
anastomosis, stapled anastomosis, placement of mesh, fascia
closure techniques (running or continuous, interrupted, and
left open), and skin closure techniques (full, Prevena, partial,
and left open). For the training set, Cohen % across indi-
vidual labels ranged from 0.39 to 1.0 with a mean and
median agreement of 0.67 (SD 0.33) and 0.77 (IQR 0.52-1.0),
respectively (Table S1 in Multimedia Appendix 3). The =
scores across all medical students are shown in Table S1
Multimedia Appendix 3. Because this was below our stated
goal, additional training was provided with emphasis on
these concepts, and each op note in the dataset was person-
ally reviewed by the lead author. A total of 50 notes were
annotated by each of the annotators, with the lead author
annotating an additional 50.

Data Splitting and Stratification for Class
Imbalance

Standard techniques in multilabel classification tasks with
label-specific class imbalances may result in datasets missing
rare, positive labels [20,21]. To account for this, we per-
formed iterative stratification from scikit-multilearn, splitting
the data into 5-fold of training (80%) and test (20%) sets
[20-22]. The distributions of the labels in each train and test
set are shown in Table S2 in Multimedia Appendix 3.

Unlike other models, the Llama models were not fine-
tuned on a hold-out training set. They were instead used to
evaluate only the test set in each cross-validation fold.

https://medinform jmir.org/2025/1/e71176
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We studied the traditional NLP multilabel document

classification techniques with bag-of-words (BoW) and term
frequency-inverse document frequency (tf-idf) approaches
paired with logistic regression classifiers, as well as pre-
trained transformer models, the encoder-only Clinical-Long-
former [23], and the decoder-only Llama herd (Llama 3.1 -3b,
8b, 70b, 3.2, and 3.3) [24].

BoW takes tokenized words and performs a classifica-
tion task based on the frequency of the terms in a partic-
ular document. tf-idf applies a weight-based filter on the
frequency of a term across a corpus of documents and
evaluates the uniqueness of a word to a specific class.

Transformer-based models can leverage contextual
information [25]. Encoder models process the entire
document by systematically masking these tokens and
predicting their values. While encoder models typically excel
at classification tasks, their utility is often limited by length,
as most models cannot process more than 512 tokens at a time
[26]. Longformer models extend that range using both global
and sliding-window attention mechanisms [27]. Li et al [23]
fine-tuned a Clinical-Longformer model on clinical text from
the Medical Information Mart for Intensive Care-III dataset
[15] with a context of 4096 tokens, which outperformed
Bidirectional Encoder Representations from Transformers
(BERT) [28], ClinicalBERT [29], and BioBERT [30] on
inference, question-answering, and classification tasks [23].
Finally, autoregressive decoder—only transformers estimate
the probability distribution of the next token in a sequence
based on the preceding tokens. As they are self-hosted, Llama
allows for the secure handling of sensitive patient information
and for this reason, these models were selected for this study
[24]. The results shown below are the best-performing Llama
3.3 model.

Preprocessing

Notes were reduced to the “description of procedure” as other
parts of the note may contain information from previous
procedures that may bias the model. For the tf-idf and BoW
models, all texts were converted to lowercase, and common
stop words (eg, “the,” “and,” and “is,”), punctuation, and
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numbers were removed. Stemming and lemmatization were
performed to reduce words to their root forms (eg, “maturing”
to “mature”). The text was then vectorized as combinations
of unigrams, bigrams, trigrams, and 4-grams. We introduced
padding to ensure that all sequences had a uniform length.
The Clinical-Longformer and Llama models were tokenized
using the Hugging Face autotokenizer [31].

Model Hyperparameters

For BoW and tf-idf, we used logistic regression as our
classifier. Hyperparameter search within each fold of the
training data revealed marginally increased performance with
L2-regularization strength of 0.1 and 10 for BoW and
TFIDF overall, respectively. No other hyperparameters were
modified based on the results of the test set. In the Clinical-
Longformer model, we weighted the binary cross-entropy loss
for each label inversely proportional to its prevalence in the
training set given class imbalance. The model was optimized
for the micro F-score and trained for up to 500 epochs with
early stopping, using a patience of 10 to prevent overfitting.
The inference was run on an NVIDIA A100 8GB graph-
ics processing unit in the University of Florida HiPerGator
cluster. The Llama 3.3 model had the longest runtime, at 723
minutes.

A custom Python script was developed using the Llamaln-
dex framework for the Llama model [32]. Each task was
a modified version of the annotation instructions, and the
model was prompted with the operative note, the context
of the task, few-shot instructions, a question, and a desired
response format (Multimedia Appendix 4). A general context
document was also provided and included brand names of
mesh types, a description of types of skin closure, and other
domain-specific knowledge that could aid in understanding
patient notes and tasks (Multimedia Appendix 5). Given the
5-fold cross-validation design, all notes appeared in at least
one test set. As a result, prompts were adjusted based on the
model’s generated rationale for randomly selected errors on
the whole dataset (eg, differentiating “primary repair” from
“anastomosis” or clarifying the use of “prolene” in mesh
vs suture contexts). Performance metrics were not evaluated
during prompt tuning to avoid test set leakage.

Model Evaluation

Overall performance was evaluated using the micro F-score,
which calculates the harmonic mean of precision and recall

Table 1. Prevalence of labels in the dataset.

Balch et al

across all classes, and hamming loss (HL), which measures
the fraction of misclassified labels relative to the total ground
truth labels (with O indicating perfect classification). The
mean and range of scores over 5 folds were reported. Optimal
cutoffs were determined by maximizing the Fi-score in
0.01 increments. Sensitivity, positive predictive value (PPV),
specificity, area under the receiver operating curve, and area
under the precision-recall curve were also reported. Individual
label Fj-scores were calculated using the “binary” average.

Error Analysis

A total of 5 false positive and 5 false negative labels with the
highest predicted probabilities were reviewed for each label
using the best-performing Clinical-Longformer and Llama
model. Several annotation errors were encountered during
each iteration which resulted in manual reannotation by the
lead author, repeat BoW, tf-idf, and Clinical-Longformer
model training, and rerunning of the evaluation pipeline. The
reported metrics reflect the latest training and evaluation.

Data Availability and Code

Code and implementation instructions may be found on
GitHub [33]. A toy dataset is provided using GPT-generated
op notes and random labels.

Results

Data

Of the 388 operative notes, note length ranged from 73
to 1713 words, with a mean of 500 (SD 291) words and
a median of 421 (IQR 292-603) words. Most notes were
composed by the Trauma and Acute Care Surgery Depart-
ment (n=267, 68.8%), with the remaining notes in Trans-
plant Surgery (n=83, 21.4%) and Urology (n=30, 7.7%)
along with combination cases with Vascular Surgery (n=24,
6.2%), Cardiothoracic Surgery (n=16, 4.1%), and Neurosur-
gery (n=8, 2.1%). We noted the class imbalance in the labels,
as shown in Table 1.

Label Prevalence
Intraoperative findings

Active bleeding from the named vessel 0.05

Active bleeding from solid organ 0.11

Class I 0.34

Class II 048

Class III 0.16

Class IV 0.14

https://medinform jmir.org/2025/1/e71176
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Label Prevalence

Intraoperative techniques
Bowel resection 0.30
Primary repair 0.05
Serosal tear repair 0.05
Colostomy 0.12
Ileostomy 0.08
Hand-sewn anastomosis 0.12
Stapled anastomosis 0.15

Closure techniques
Fascia closed (interrupted) 0.10
Fascia closed (running or continuous) 0.50
Fascia left open 0.32
Skin closed (full with Prevena) 0.04
Skin closed (full) 041
Skin closed (partial) 0.05
Skin left open 043
Synthetic 0.06

Collective Performance Across All Labels

Overall mean micro Fp-scores, along with minimum and
maximum score per fold, are shown in Table 2. BoW (0.68,
5-fold range: 0.64-0.71) outperformed tf-idf (0.57, 5-fold
range: 0.55-0.59) overall with an increase in micro Fj-score
of 0.1 and a decrease in HL of two-fold. Comparing the
encoder-only and decoder-only model architectures, Llama
3.3 (0.88, 5-fold range: 0.88-0.89) had generous improvement

overall in the micro F'{-score with equivalent HL. to BoW and
Clinical-Longformer.

We compared the Llama 3 series of models and observed a
general trend of improved performance with increasing model
size. An exception was Llama 3.2, which performed poorly —
consistent with prior reports of its reduced effectiveness on
medical datasets [34]. Results are presented in Figure S1 in
Multimedia Appendix 6.

Table 2. Mean overall performance of models across all labels across all 5-folds®.

Model Micro F-score, mean (range) Hamming loss, mean (range)
Bowb 0.68 (0.64-0.71) 0.14 (0.13-0.16)
tf-idf® 0.57 (0.55-0.59) 0.27 (0.25-0.29)
Clinical-Longformer 0.73 (0.70-0.74) 0.11 (0.10-0.12)
Llama 3.3 0.88 (0.88-0.89) 0.12 (0.11-0.12)

2Values in parentheses indicate the minimum and maximum performance.

bBow: bag-of-words.
Ctf-idf: term frequency-inverse document frequency.

Individual Label Performance

F1-scores with ranges for the individual labels are visualized
in Figure 2 and shown numerically in Tables 3-5. Intraopera-
tive bleeding was well categorized by the Llama model, while
surgical wound class was often better served by Clinical-
Longformer or BoW models (Figure 2A). For the intraopera-
tive technique (Figure 2B), the Llama model was the highest
performer, with the Clinical-Longformer and BoW models
performing with overlapping Fi-scores. Intraoperative and
skin and fascial closure techniques were best served by the
generative model. We noted excellent performance for the
Llama 3.3 model in several categories with F|-scores =0.8.
Of note, there was surprisingly poor performance on the

https://medinform jmir.org/2025/1/e71176

Prevena label across all models, given that the brand name
should often cue a positive class. Interrupted fascial closure
was also noticeably poor, despite how this is often specifi-
cally stated in the operative note.

Tables 3-5 demonstrate numeric values of the Fy-scores
alongside sensitivity and PPVs. The Llama model was again
the best performing overall with the notable exception of
class II and stapled anastomosis labels. While the PPV
of Llama was overall better, it performed poorly in 2
skin closure tasks, class III contamination task, and stapled
anastomosis task. Full metrics across all models and labels are
shown in Table S3 in Multimedia Appendix 3.
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Figure 2. Fj-scores with error bars representing range over 5-fold cross-validation. BoW: bag-of-words; CL: Clinical-Longformer; ti-idf: term
frequency-inverse document frequency.
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Table 3. Comparison of model performance across performance metrics for intraoperative findings.
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Intraoperative findings

Active bleeding from named vessel ~ Active bleeding from solid organ Class I Class I1 Class I Class IV

F1-score

Bow? 0.31 0.64 0.62 0.62 0.35 042

tf-idf® 0.36 0.6 0.66 0.68 041 048

CL¢ 044 0.63 0.73 0.72 046 048

Llama 0.61 0.84 0.36 0.75 03 048
SN¢

BoWw 0.27 0.61 0.71 0.66 0.35 043

tf-idf 0.55 0.8 0.89 0.86 0.55 0.59

CL 0.55 0.72 0.77 0.76 0.54 0.53

Llama 0.55 0.96 0.24 09 1 0.95
PPV®

BoW 0.37 0.71 0.56 0.59 0.38 0.46

tf-idf 042 0.51 0.53 0.56 0.34 041

CL 0.51 0.58 0.69 0.68 041 046

Llama 0.72 0.77 0.79 0.65 0.18 0.33

4BoW: bag-of-words.

btf-idf: term frequency-inverse document frequency.

°CL: Clinical-Longformer.
dSN: sensitivity.
®PPV: positive predictive value.

Table 4. Comparison of model performance across performance metrics for intraoperative techniques.

Intraoperative techniques

Bowel resection Primary repair

Serosal tear repair Colostomy

Ileostomy Hand-sewn anastomosis

Stapled anastomosis

F1-score
Bow? 0.86
tf-idf® 0.81
CL® 0.83
Llama 0.92
SN¢
BoW 0.86
tf-idf 0.93
CL 0.87
Llama 0.95
PPV®
BoW 0.87
tf-idf 0.72
CL 0.8
Llama 09

0.22
0.25
0.37
0.5

0.23
03
042
04

0.22
0.24

035
0.7

042
043
0.37
0.82

0.32
0.39
031
0.95

0.72
0.65

0.6
0.73

0.51
0.65
0.76
0.7

042
0.7

0.78
0.67

0.73
0.65

0.79
0.75

045
0.69
0.78
092

0.39
0.7

0.79
0.87

0.63
0.75

0.83
1

0.61
0.59
0.65
0.71

0.58
0.72
0.84
0.73

0.68
0.54

0.56
0.71

0.65
0.61
0.7

0.83

0.66
0.8
0.77
0.85

0.65
0.5

0.65
0.83

4BoW: bag-of-words

bf_idf: term frequency-inverse document frequency.

°CL: Clinical-Longformer.
dSN: sensitivity.
®PPV: positive predictive value.
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Table 5. Comparison of model performance across performance metrics for closure and mesh techniques.

Closure and mesh techniques

Fascia closed Fascia closed  Fascia left Skin closed  Skin closed Skin closed Skin left open  Synthetic mesh
interrupted continuous open (Prevena) (full) (partial)
F1-score
Bow? 0.34 0.86 0.82 0.15 0.78 02 0.77 0.55
tf-idf® 042 0.82 0.78 0.07 0.74 0.12 0.76 0.6
CL¢ 0.31 0.88 0.84 0.13 0.81 0.23 0.8 0.81
Llama 0.6 0.89 0.92 0.61 0.89 047 09 0.71
SN¢
BoW 0.36 09 0.88 0.2 0.84 0.19 0.83 0.51
tf-idf 0.55 0.96 0.94 0.1 0.92 0.09 091 0.6
CL 027 0.95 0.89 0.1 091 0.18 0.81 0.87
Llama 0.7 0.83 0.92 0.51 0.88 0.74 0.94 0.87
PPV®
BoW 0.46 0.83 0.77 0.12 0.74 023 0.73 0.7
tf-idf 04 0.71 0.67 0.05 0.63 025 0.66 0.68
CL 04 0.83 0.8 0.2 0.73 033 0.81 0.8
Llama 0.56 0.95 0.92 0.8 091 0.37 0.87 0.62

4BoW: bag-of-words.

bf_idf: term frequency-inverse document frequency.
°CL: Clinical-Longformer.

dSN: sensitivity.

€PPV: positive predictive value.

Context

We evaluated performance on the Llama 3.1-70b model with
and without the context document. The model performed
better overall with the context, with an average improvement
of 0.16 in the Fy-score (Figure S2 in Multimedia Appendix
6). The context offered the greatest improvement in serosal
tear repair (+0.4) and the context hurt model performance in
class III (=0.19) and stapled-anastomosis (—0.08) labels.

Error Analysis

A manual review of 5 false negative and positive per
label in the encoder-only and decoder-only models revealed
several trends in errors, though often it was unclear why a
model made a particular prediction. Overall, 88 annotations
(0.01% of all annotations) were changed upon review, mostly
in bowel resection (n=21), hand-sewn anastomosis (n=19),
active bleed from solid organ (n=17), and serosal tear repair
(n=13).

Examining the 3 overarching categories, for the encoder-
only LLM, bleeds were often picked up, though generally
any presence of bleeding was marked positive, regardless
of its origins. For intraoperative techniques, false negative
instances of bowel resection labels had a clear bowel
resection performed in the case. False positives, however,
occurred when previous bowel resections were mentioned in
the operative report. This was especially true for take-back
surgeries when the abdomen is left open because of the
need for further surgery. For the ostomy concepts, the most
common error was secondary to an ileostomy or colostomy
take down (as opposed to creation) or a situation in which
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the bowel was left in discontinuity with discussion in the
operative report of placing an ostomy later. For anastomosis,
errors were often likely due to the presence of a stapled
resection or the use of the stapler to create a common channel.
For closure, fascial closure errors occurred in several cases
where a thoracotomy was performed in the same operation
as a laparotomy, resulting in the closure of one anatomic
fascia and not another. Skin closure failures appeared to be
confounded when multiple services operated on the same
patient. Partial skin closures were underrepresented in the
dataset and the model tended to predict partial closure on both
full-closure and open skin with equal affinity.

For the decoder-only model, we had Llama provide
explanations for its choice and the explanations along with
the findings drove changes in prompting strategies. Perform-
ance on bleeding was overall excellent, however, “oozing”
from an organ bed or resection was often assigned as “active
bleed,” which our annotators and prompts were instructed
to mark as negative. For intraoperative techniques, there
were commonalities in errors with the Clinical-Longformer
model, with prior bowel resections, ostomy takedowns, and
instances where both stapled and hand-sewn anastomoses
were performed in the same operation. Fascial closures were
obscured by the presence of interrupted retention sutures.
Several open skin closures were marked as both open and
partial skin closures. For skin closure with Prevena and with
the exception of some runs of Llama 3.3, the model appeared
to simply not understand the instructions despite multiple
prompting attempts.
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Contamination was difficult to assess for both annotators
and models and this information is not always clearly stated
in operative reports. Identifying breaches in sterile techni-
ques, purulent versus nonpurulent inflammation, and whether
entry into a hollow organ resulted in spillage requires careful
description. The generative model often assumed any entry
to the abdominal cavity made for Class II or above, despite
modifications to prompting techniques. Future studies will
extract the attending surgeon attestation for ground truth
labels of wound class, which may improve model perform-
ance.

Discussion

Principal Results

Generative LLMs outperformed fine-tuned encoder-only
LLMs and traditional NLP models in a multilabel classifi-
cation task across the majority of labels. Overall F-scores
ranged from 0.57 for tf-idf to 0.88 for Llama 3.3. On
individual labels, we had Fi-scores of =0.8 for multiple
classes.

Retrospective analyses drive decision support, quality
improvement initiatives, and billing workflows, yet they are
limited not only by the intensive manual review process
but also by the variable interrater reliability with human
labeling [35,36]. To overcome these limitations, we frame
operative concept identification as a multilabel document
classification task and observe that the autoregressive Llama
3.3 model outperformed both traditional NLP techniques, the
Longformer encoder model, and previous versions of the
Llama herd.

State-of-the-art clinical NLP tasks rely on transformer-
based, foundational LLMs [2537,38]. They have been
used in the well-studied NLP tasks of medical question-
ing and answering [25,39-41], summarization [16,2342],
named-entity recognition [30,43-46], and document classifi-
cation [23.47-49]. Studies have largely focused on progress
notes, histories and physicals, and discharge summaries,
with an interest in the concepts of medications, diseases,
and social determinants of health. There are fewer studies
on operative notes and available research focuses on word
embeddings for prediction tasks rather than individual entities
[50-52]. Furthermore, even fewer works have been published
using state-of-the-art transformers and foundational LLMs in
surgery [53]. This is to our detriment as surgeons, as LLMs
are capable of zero-shot learning (the ability to perform
tasks without prior examples) and, if performing reliably,
may obviate the need for manual chart review in retrospec-
tive research [38]. To our knowledge, this paper is the first
to explore operative concepts using LLMs as a multilabel
classification task in surgery.

Comparison With Prior Work

Compared with other document classification tasks, our
model compared well. A previous multilabel documentation
task on chest x-ray reports showed that pretrained models
had Fi-score ranges of 0.29 to 0.48 [23]. Notably, traditional
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BoW-based approaches performed well across many classes.
This is not surprising, as depending on the concept, the
presence of a word or phrase in operative notes is often
sufficient to identify it in text. tf-idf likely underperformed
compared to BoW due to the dataset size: limited term
frequencies and few documents may favor equal representa-
tions of words compared with weighted representations [54].
For many tasks, context may simply not be important. For
example, negation is less commonly used, as surgeons will
typically describe what they did rather than explain what
they did not. In terms of the Fi-score, the generative model
offered the most benefit in identifying active bleeding, bowel
resection, serosal tear repair, and closure techniques, which
are highly context-dependent and rely on the integration of up
to several sentences of information. Notably, Clinical-Long-
former did not offer much benefit over the BoW model.
This may be secondary to the fact that Medical Information
Mart for Intensive Care-III does not contain comprehensive
operative notes [15].

Limitations

This study has several limitations. First, exploratory
laparotomies represent a difficult case for both human and
machine understanding. These operations are, by definition,
exploratory, often performed in an emergent setting, can
require input from multiple surgical services, and present
challenging traumatic and aberrant anatomy. Thus, the
language may be less consistent than elective procedures.
Nevertheless, we chose basic operative concepts and a
common procedure to start our investigation into multila-
bel document classification. Second, understanding opera-
tive reports requires highly technical knowledge. Training
annotators, including those with clinical experience, presents
challenges, and, despite regular review, there may be
instances of inaccurate labeling. To maximize the number
of notes, we did not perform a second round of interrater
reliability testing, though each note was reviewed by the lead
author. As with many other studies, this points to the potential
for variability in human annotation, and granting consistency
of model outputs may show the potential advantages of
LLM augmentation for this task. Third, we acknowledge
that the 5-fold training and testing mechanism may result
in overly optimistic performance in the BoW, tf-idf models,
and Clinical-Longformer models. However, despite this, the
untrained Llama model still outperformed the three other
classifiers. Fourth, during prompt tuning, we evaluated a
random limited subset of the data during exploration, raising
the possibility of data leakage. However, we did not examine
performance metrics during prompt tuning and focused on
model reasoning rather than the label choice itself. Fifth, the
distribution of predictions varied by label in BoW, tf-idf,
and Clinical-Longformer, though many were left-skewed,
suggesting low confidence. More data may improve the
performance of these models.

Conclusions

Given the performance of the off-the-shelf generative model,
future studies will incorporate multiple labeled datasets from
previous and ongoing retrospective studies at our institution
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with the goal of human-in-the-loop, streamlined extraction
of operative concepts integrated into the research workflow.
Future work in agentic retrieval augmented generation with
hybrid approaches of keyword search and semantic matching
may fit this purpose well [55,56]. We noted improvements
in model performance using larger Llama models, a trend we

Balch et al

While the use of multilabel document classification may
be used to reliably capture select operative concepts with
LLMs, further investigation of edge cases and alternative
model architectures, such as retrieval augmented generation,
will be required prior to deployment for research and quality
improvement purposes.

expect to continue as more advanced models are released.
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