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Abstract
Background: Recent advances in large language models have highlighted the need for high-quality multilingual medical
datasets. Although Japan is a global leader in computed tomography (CT) scanner deployment and use, the absence of
large-scale Japanese radiology datasets has hindered the development of specialized language models for medical imaging
analysis. Despite the emergence of multilingual models and language-specific adaptations, the development of Japanese-spe-
cific medical language models has been constrained by a lack of comprehensive datasets, particularly in radiology.
Objective: This study aims to address this critical gap in Japanese medical natural language processing resources, for which
a comprehensive Japanese CT report dataset was developed through machine translation, to establish a specialized language
model for structured classification. In addition, a rigorously validated evaluation dataset was created through expert radiologist
refinement to ensure a reliable assessment of model performance.
Methods: We translated the CT-RATE dataset (24,283 CT reports from 21,304 patients) into Japanese using GPT-4o
mini. The training dataset consisted of 22,778 machine-translated reports, and the validation dataset included 150 reports
carefully revised by radiologists. We developed CT-BERT-JPN, a specialized Bidirectional Encoder Representations from
Transformers (BERT) model for Japanese radiology text, based on the “tohoku-nlp/bert-base-japanese-v3” architecture, to
extract 18 structured findings from reports. Translation quality was assessed with Bilingual Evaluation Understudy (BLEU)
and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scores and further evaluated by radiologists in a dedicated
human-in-the-loop experiment. In that experiment, each of a randomly selected subset of reports was independently reviewed
by 2 radiologists—1 senior (postgraduate year [PGY] 6‐11) and 1 junior (PGY 4‐5)—using a 5-point Likert scale to rate: (1)
grammatical correctness, (2) medical terminology accuracy, and (3) overall readability. Inter-rater reliability was measured via
quadratic weighted kappa (QWK). Model performance was benchmarked against GPT-4o using accuracy, precision, recall,
F1-score, ROC (receiver operating characteristic)—AUC (area under the curve), and average precision.
Results: General text structure was preserved (BLEU: 0.731 findings, 0.690 impression; ROUGE: 0.770‐0.876 findings,
0.748‐0.857 impression), though expert review identified 3 categories of necessary refinements—contextual adjustment of
technical terms, completion of incomplete translations, and localization of Japanese medical terminology. The radiologist-
revised translations scored significantly higher than raw machine translations across all dimensions, and all improvements
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were statistically significant (P<.001). CT-BERT-JPN outperformed GPT-4o on 11 of 18 findings (61%), achieving perfect
F1-scores for 4 conditions and F1-score >0.95 for 14 conditions, despite varied sample sizes (7‐82 cases).
Conclusions: Our study established a robust Japanese CT report dataset and demonstrated the effectiveness of a specialized
language model in structured classification of findings. This hybrid approach of machine translation and expert validation
enabled the creation of large-scale datasets while maintaining high-quality standards. This study provides essential resources
for advancing medical artificial intelligence research in Japanese health care settings, using datasets and models publicly
available for research to facilitate further advancement in the field.
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Introduction
Recent advances in large language models (LLMs) have
demonstrated remarkable capabilities across various domains
[1], thereby increasing the focus on developing multilingual
models to serve diverse linguistic communities [2]. This
trend is exemplified by the release of specialized language
models, such as Gemma-2-JPN, a Japanese-specific variant of
Google’s open LLM Gemma [3,4]. However, the devel-
opment of such specialized models critically depends on
the availability of high-quality domain-specific datasets in
the target language. This requirement becomes particularly
crucial in specialized fields, such as medical imaging [5-7],
where the interpretation of diagnostic findings demands both
technical precision and linguistic accuracy.

Computed tomography (CT) is indispensable in mod-
ern medical diagnostics, facilitating disease staging, lesion
evaluation, and early detection. Japan has the highest number
of CT scanners per capita and an annual scan volume
surpassing that of most developed nations, presenting a vast
reservoir of medical imaging data [8,9]. The extensive use of
CT technology has positioned Japan as a pivotal contributor
to global medical imaging resources. However, despite the
proliferation of multilingual models and growing emphasis
on language-specific adaptations, there remains a notable
absence of large-scale Japanese radiology report datasets
[10], which is a critical gap hindering the development of
Japanese-specific medical language models.

To address this challenge, we constructed “CT-RATE-
JPN,” a Japanese version of the extensive “CT-RATE”
dataset [11], which consists of CT scans and interpreta-
tion reports collected from 21,304 patients in Turkey.
Although general academic knowledge benchmarks have
been successfully adapted for Japanese, as evidenced by
JMMLU (Japanese Massive Multitask Language Understand-
ing) [12] and JMMMU (Japanese Massive Multi-discipline
Multimodal Understanding) [13], which are Japanese versions
of MMLU (Massive Multitask Language Understanding)
[14,15] and MMMU (Massive Multi-discipline Multimodal
Understanding) [16], respectively, and medical benchmarks,
such as JMedBench [17], have emerged by combining
translated English resources and Japanese medical data-
sets, a large-scale Japanese dataset specifically focusing on
radiology reports, remains notably absent.

CT-RATE-JPN uses an innovative dataset construction
approach by leveraging LLM-based machine translation to
efficiently generate a large volume of training data. This
addresses the fundamental challenge of the dataset scale
in medical artificial intelligence (AI) development while
maintaining quality through a strategic validation approach.
A subset of the data undergoes careful revision by radi-
ologists to create a rigorously verified validation dataset.
This dual-track methodology, which combines machine-trans-
lated training data with specialist-validated evaluation data,
establishes a robust pipeline for both training data acquisition
and performance evaluation.

Both CT-RATE and CT-RATE-JPN retain licenses that
allow free use for research purposes, thereby supporting
broader research initiatives in medical imaging and language
processing. To demonstrate the practical use of the CT-
RATE-JPN dataset, we developed CT-BERT-JPN, a deep
learning–based language model specifically designed for
extracting structured labels from Japanese radiology reports.
By converting unstructured Japanese medical text into
standardized, language-agnostic structured labels, CT-BERT-
JPN provides a scalable framework for integrating Japanese
radiology data into the global medical AI development,
thereby addressing a critical need in the rapidly evolving
landscape of multilingual medical AI.

Methods
Dataset Overview
CT-RATE is a comprehensive dataset comprising 25,692
noncontrast chest CT volumes of 21,304 unique patients
from the Istanbul Medipol University Mega Hospital [11].
We selected this dataset because it is uniquely positioned
as the only publicly available large-scale dataset that pairs
CT volumes with radiology reports and permits the redistrib-
ution of derivative works. This dataset includes correspond-
ing radiology text reports (consisting of a detailed findings
section documenting observations and a concise impression
section summarizing key information), multi-abnormality
labels, and metadata. The dataset is divided into 2 cohorts,
20,000 patients for the training set and 1304 patients for
the validation dataset, allowing robust model training and
evaluation across diverse patient cases [18,19]. The train-
ing dataset, comprising 22,778 unique reports, was used in
constructing CT-RATE-JPN, a Japanese-translated version of
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the dataset created using machine translation. Independently,
we randomly sampled 150 reports from the validation cohort
(n=1304); this validation subset was never used during
model training and was reserved solely for inference-time

evaluation. Those 150 reports were first machine translated
and then manually revised and refined by radiologists. The
data selection process is illustrated in Figure 1.

Figure 1. Data selection process for CT-RATE-JPN training and validation datasets. The training dataset included all 22,778 radiology reports from
CT-RATE without exclusion. For the validation dataset, 150 reports were randomly sampled from 1505 available reports, with 1355 reports excluded
to avoid patient overlap between training and validation sets.

The CT-RATE dataset was annotated using 18 structured
labels covering key findings relevant to chest CT analy-
sis. These labels included “Medical material,” “Arterial
wall calcification,” “Cardiomegaly,” “Pericardial effusion,”
“Coronary artery wall calcification,” “Hiatal hernia,”
“Lymphadenopathy,” “Emphysema,” “Atelectasis,” “Lung
nodule,” “Lung opacity,” “Pulmonary fibrotic sequela,”
“Pleural effusion,” “Mosaic attenuation pattern,” “Peribron-
chial thickening,” “Consolidation,” “Bronchiectasis,” and
“Interlobular septal thickening.” The creators of the CT-
RATE dataset developed a structured findings model based
on the RadBERT architecture [20,21], trained on a manually
labeled subset to label the remaining cases. This model
achieved an F1-score ranging from 0.95 to 1.00, demon-
strating its efficacy in accurately structuring radiological
findings from CT reports. This approach underscores the
reliability of CT-RATE’s structured annotations for develop-
ing high-performance diagnostic models. These structured
labels were also used in the development of a Japanese
structured findings model for CT-RATE-JPN, enabling the
accurate structuring of radiological findings in Japanese CT
reports.

Ethical Considerations
Given that CT-RATE is a publicly available dataset with
deidentified patient information, and that our study focused
on the translation and linguistic analysis of the exist-
ing dataset without accessing any additional patient data,
institutional review board approval was not required for this
research.
Translation for CT-RATE-JPN
For CT-RATE-JPN, machine translation was conducted using
GPT-4o mini (API version, “gpt-4o-mini-2024-07-18”) [22],
which is a lightweight, fast version of OpenAI’s GPT-4o
model [23]. The GPT-4o mini produces high-accuracy
translations at an affordable rate, making it suitable for
large-scale dataset translations. Each radiological report was
processed by translating the findings into short impression
sections. The complete translation prompts used for GPT-4o
mini are provided in Figures S1 (original Japanese prompt)
and S2 (English translation) in Multimedia Appendix 1.
Figure 2 shows the study workflow.
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Figure 2. Workflow for translation and validation in constructing CT-RATE-JPN. The figure outlines machine translation application using GPT-4o
mini for the training dataset and 2-phase manual correction for the 150 validation reports. Phase 1 involved initial revisions by radiology residents.
Phase 2 consisted of expert review and refinement by board-certified radiologists.

To ensure the accuracy and reliability of the evaluation
data, we conducted a comprehensive manual correction
process on 150 reports from the validation dataset. This
process consisted of 2 distinct phases. In the first phase,
we assembled a team of 5 radiology residents, all between
their fourth and sixth postgraduate years, to conduct an
initial review and revision of the machine translations. The
reports were systematically distributed among team members
to optimize workflow efficiency. We intentionally chose a
larger team to incorporate diverse clinical perspectives and
minimize potential translation bias during the review process.
The second phase involved a thorough expert review by 2
board-certified radiologists with extensive experience (10 and
11 postgraduate years). The senior radiologists divided the
revised translations into final confirmation and refinement.
The structured approach to task allocation combined with this
rigorous 2-step review process ensured that the validation
dataset for CT-RATE-JPN met the high-quality standards
necessary for a robust model assessment.

For the training dataset, all translations were gener-
ated using GPT-4o mini without manual correction. This
dataset was specifically designed for machine learning model
training. The decision to rely exclusively on machine-transla-
ted data for the training set balanced the scale and practical
constraints of the manual annotation.

Both CT-RATE and CT-RATE-JPN were released under
a Creative Commons Attribution (CC BY-NC-SA) license,
allowing free use for noncommercial research purposes with
proper citation and shared terms for derivative works.

Development of CT-BERT-JPN for
Structured Finding Classification
For model training, we randomly split the dataset in a 4:1
ratio, with 80% used for training and 20% for internal
evaluation. The pretrained “tohoku-nlp/bert-base-japanese-
v3” model from Hugging Face was used [24]. This model
follows the architecture of the original BERT base model
with 12 layers, 768 hidden dimensions, and 12 attention
heads. It was pretrained on extensive Japanese datasets,
including the Japanese portion of the CC-100 corpus [25,26]
and Japanese version of Wikipedia [27]. BERT-based models
have demonstrated significant success in downstream tasks in
the medical domain [28,29], making them a promising choice
for our research.

Training was conducted on Google Colaboratory equipped
with an NVIDIA L4 GPU using the transformers library
(version 4.46.2) with a learning rate of 2×10⁻⁵, batch size
of 8 for both training and evaluation, and weight decay
of 0.01. Binary cross-entropy loss was applied to optimize
the model for multilabel classification. Given the domain
shift between the validation dataset (machine-translated) and
test dataset (radiologist-revised), hyperparameter tuning was
deliberately omitted to avoid overfitting, as such optimiza-
tion may not contribute to performance improvement under
domain shift conditions [30,31]. The model was trained over
4 epochs with internal evaluation and checkpoint savings at
each epoch. The total training time was approximately 51.5
minutes (3090.54 s) across 4 epochs, with an average of 12.9
minutes (772.64 s) per epoch. The best-performing model on
the internal evaluation data was selected and subsequently
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used for testing on the validation dataset of CT-RATE-JPN,
to ensure a reliable performance assessment. Figure 3 shows
the overall workflow for developing CT-BERT-JPN.

Figure 3. CT-BERT-JPN development workflow showing data preprocessing and model fine-tuning for structured computed tomography (CT)
classification of findings.

Translated Radiology Reports Evaluation
by Automatic Metrics
For basic text analysis, we examined the structural character-
istics of the translated reports, including character, word, and
sentence count, as well as lexical diversity. Unlike English,
Japanese does not use spaces to delimit words. Therefore, we
used MeCab (version 1.0.10) [32], one of the most widely
used morphological analyzers for Japanese text processing,
to accurately segment and count words. These metrics were
calculated for both machine-translated and radiologist-revised
texts to assess the consistency of textual characteristics across
different stages of dataset creation.

For translation quality assessment, we computed the
bilingual evaluation understudy (BLEU) [33] and recall-
oriented understudy for gisting evaluation (ROUGE)-1,
ROUGE-2, and ROUGE-L scores [34] using NLTK (version
3.9.1) and rouge-score (version 0.1.2) libraries.

The BLEU metric evaluates the accuracy of machine-
translated text by comparing it to a reference translation. It
measures how many words and short phrases in the machine
translation match those in the reference translation, to assess
the degree of similarity in wording and phrasing between the
two texts.

The ROUGE metric assesses the quality of summaries or
translations by measuring the overlap between machine-gen-
erated and reference texts. ROUGE-1 considers the overlap
of individual words; ROUGE-2 examines the overlap of
pairs of consecutive words; and ROUGE-L focuses on the
longest matching sequence of words between two texts. These
metrics emphasize recall by evaluating how much of the
important content from the reference text is captured in the
machine-generated text. These metrics were calculated by
comparing machine-translated texts with radiologist-revised
reference translations in the validation dataset.
Translated Radiology Reports Evaluation
by Radiologists
To assess the quality of machine-translated radiology reports,
we implemented a systematic evaluation by radiologists. A
subset of reports was randomly assigned to radiologists for

review, with each report evaluated by 2 reviewers: 1 senior
radiologist (designated as rater 1, PGY 6‐11) and 1 jun-
ior radiologist (designated as rater 2, PGY 4‐5). To main-
tain objectivity, radiologists were never assigned to evaluate
reports they had previously reviewed or corrected.

The evaluation used a 5-point Likert scale (1=poor to
5=excellent) across 3 distinct dimensions:

1. Grammatical correctness: Assessment of linguistic
accuracy, including proper Japanese grammar and
natural language usage. Presence of nonexistent words,
unnatural English terms, or grammatical errors resulted
in lower scores. Specialized terminology errors were
evaluated separately.

2. Medical terminology: Evaluation of the accuracy and
appropriateness of medical and radiological terminol-
ogy in Japanese. This dimension specifically focused on
technical terms and domain-specific language.

3. Overall readability: Subjective assessment of how
comprehensible and fluent the translated text appeared
to radiologists in clinical practice. While this dimension
relates to the previous two categories, it captured the
holistic impression of the text’s utility in a clinical
setting.

Inter-rater reliability was calculated using quadratic weighted
kappa (QWK) to ensure consistency in evaluations across
different radiologists, as this metric is particularly suitable
for ordinal data such as Likert scales. This multi-dimen-
sional evaluation approach provided comprehensive insights
into both the technical accuracy and practical usability of
machine-translated radiology reports in a Japanese clinical
context.
CT-BERT-JPN Performance Evaluation
To evaluate the performance of the classification model
in CT findings extraction, we used a test dataset compris-
ing 150 radiology reports revised by radiologists to ensure
accuracy. The key metrics calculated for model assessment
included accuracy, precision, recall, F1-score, area under
the receiver operating characteristic curve (AUC-ROC), and
average precision (AP). 95% CIs for these metrics were
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calculated using 1000 bootstrap resampling iterations. The
Scikit-learn library (version 1.5.2) was used for the analyses.
Baseline Comparison With GPT-4o
To establish a baseline, we performed structured labeling
using GPT-4o (API version, “gpt-4o-2024-11-20”), as it is
widely adopted in various radiology tasks as a representa-
tive closed-source commercial LLM. We specifically chose
GPT-4o because, to our knowledge, no existing open-source
models were available for this particular task at the time
of the study. We used a zero-shot prompting strategy that
instructed GPT-4o to extract binary labels (0/1) for each of
the 18 target findings from Japanese radiology reports and
output results in JSON format, without additional prompt
engineering or few-shot examples. The input prompts used
for GPT-4o are presented in Figures S3 (original Japa-
nese version) and S4 (English translations) in Multimedia
Appendix 1.
Statistical Analysis
The statistical comparisons were analyzed using the
Wilcoxon signed-rank test. This nonparametric test was

applied in two contexts: (1) comparing paired predic-
tions from CT-BERT-JPN and GPT-4o on identical valida-
tion cases, and (2) comparing CT-BERT-JPN performance
between radiologist-revised translated reports versus raw
machine-translated reports as input, where each pair consisted
of model outputs on the same test sample under different
conditions. The Wilcoxon signed-rank test was chosen as it
does not require the assumption of normal distribution and
is appropriate for comparing paired model outputs. Statistical
analysis was conducted using the scipy.stats library (version
1.11.3).

Results
Dataset Overview
The basic text statistics of the translated reports are sum-
marized in Table 1, in separate sections for Findings and
Impression. The training (n=22,778) and validation data-
sets (consisting of 150 machine-translated reports and 150
radiologist-revised reports) showed a consistent text structure
across all metrics.

Table 1. Text statistics on CT-RATE-JPN across different datasets, including “Findings” and “Impression.”

Section n
Characters, mean
(SD) Words, mean (SD)

Sentences, mean
(SD)

Unique words,
mean (SD)

Findings
  Training (MTa) 22,778 467.0 (148.0) 303.3 (95.4) 15.5 (4.6) 126.8 (29.5)
  Validation (MTa) 150 475.0 (130.1) 307.0 (83.6) 15.7 (3.9) 128.9 (27.8)
  Validation (Refinedb) 150 455.6 (122.6) 297.7 (80.8) 15.7 (4.0) 126.2 (27.4)
Impression
  Training (MTa) 22,778 89.1 (68.9) 55.7 (43.6) 3.1 (2.2) 38.1 (23.4)
  Validation (MTa) 150 101.3 (76.0) 63.2 (48.1) 3.5 (2.6) 41.7 (24.3)
  Validation (Refinedb) 150 97.8 (72.8) 61.2 (46.0) 3.6 (2.6) 40.9 (24.0)

aMT: machine-translated text using GPT-4o mini.
bRefined indicates text subjected to radiologist review and refinement.

The Findings section had character counts averaging around
455.6‐475.0 characters, with slightly lower counts in
radiologist-revised texts compared to machine translations.
Word count followed a similar pattern, averaging approx-
imately 300 words per report across all datasets. The
Impression section was notably more concise, as expected
from summary statements. Character counts averaged around
89.1‐101.3 characters, with word counts of approximately
55.7‐63.2 words per report. The sentence structure was also
more condensed, with approximately 3.1‐3.6 sentences per
report.

Notably, in both sections, the overall text struc-
ture remained consistent between machine-translated and
radiologist-revised versions, with similar patterns in sentence

length and organization. Although the refined versions had
slightly lower character and word counts than their machine-
translated counterparts, the basic structural characteristics of
the reports were preserved throughout the translation and
refinement processes.

Figure 4 shows that the analysis of the label distributions
revealed a significant class imbalance in both the training and
validation datasets. In the training set, “Lung nodule” appears
most frequently with 10,856 instances, whereas “Interlobular
septal thickening” occurs least frequently with only 1702
instances, representing a ratio of approximately 6.4:1. This
imbalance is even more pronounced in the validation dataset,
where the ratio between the most frequent (82) and least
frequent (7) class instances is approximately 11.7:1.
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Figure 4. Bar plots showing the data distribution across different findings, sorted in descending order. Top: Training dataset distribution, Bottom:
Validation dataset distribution. The number above each bar represents the number of positive samples for each condition.
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Translated Radiology Reports Evaluation
We evaluated the quality of machine-translated reports in
CT-RATE-JPN using both automated metrics and expert
assessments. For automated evaluation, we compared GPT-4o
mini translations with radiologist-revised references in the

validation dataset. The evaluation metrics for both sections
are summarized in Table 2. These scores are high, indicat-
ing that the machine translation maintained the fundamental
structure and meaning of the original reports.

Table 2. Automated evaluation metrics comparing GPT-4o mini translations with radiologist-revised references in the validation dataset.
Section BLEUa, mean (SD) ROUGE-1b, mean (SD) ROUGE-2, mean (SD) ROUGE-l, mean (SD)
Findings 0.731 (0.104) 0.876 (0.050) 0.770 (0.091) 0.854 (0.064)
Impression 0.690 (0.196) 0.857 (0.104) 0.748 (0.161) 0.837 (0.120)

aBLEU: bilingual evaluation understudy.
bROUGE: recall-oriented understudy for gisting evaluation.

The evaluation of machine-translated radiology reports
showed moderate inter-rater agreement with QWK values of
0.410 for grammar, 0.522 for terminology, and 0.408 for
readability. These moderate agreement levels may reflect the
inherent subjectivity of Likert-scale-based quality assess-
ments. However, radiologist refinements resulted in substan-
tial score improvements across all evaluation dimensions.
The highest agreement between senior radiologists (Rater 1)
and junior radiologists (Rater 2) was observed in terminol-
ogy assessment. Figure 5 shows that both raters consistently
scored radiologist-revised translations significantly higher
than machine translations across all dimensions. Rater 1’s
evaluations were consistently higher than Rater 2’s for both

MT and radiologist-revised translations. Table 3 demonstrates
that all improvements between MT and radiologist revisions
were statistically significant (P<.001) across all evaluation
criteria. While GPT-4o mini translations achieved moderate
scores, radiologist revisions provided significant enhance-
ments, particularly in terminology accuracy. This highlights
the value of domain expertise in medical translation, even
when using advanced language models. In addition, Table 4
shows the distribution of quality changes, with the major-
ity of radiologist revisions (65%‐91% depending on rater
and dimension) resulting in improved ratings compared
to machine translation, while deterioration was minimal
(0%‐6% across all categories).

Table 3. Evaluation of translated texts comparing mean Likert scale scores of GPT-4o mini translations (MT) and radiologist-revised translations.
Evaluation criteria MTa, mean (SD) Radiologist, mean (SD) P valueb

Rater 1
  Grammar 3.44 (0.91) 4.64 (0.58) <.001
  Terminology 3.15 (0.81) 4.64 (0.65) <.001
  Readability 3.35 (0.91) 4.59 (0.69) <.001
Rater 2
  Grammar 3.35 (0.71) 4.21 (0.64) <.001
  Terminology 2.73 (0.82) 4.06 (0.65) <.001
  Readability 2.73 (0.75) 3.91 (0.76) <.001

aMT: machine-translated text using GPT-4 mini.
bP values were calculated using the Wilcoxon signed-rank test.
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Figure 5. Distribution of evaluation scores for machine-translated (MT) and radiologist-revised translations across 3 dimensions (grammar,
terminology, and readability) by 2 rater groups. The upper panel shows evaluations by senior radiologists (Rater 1, postgraduate year 6‐11) and
the lower panel shows evaluations by junior radiologists (Rater 2, postgraduate year 4‐5). Scores were assessed using a 5-point Likert scale (1=poor
to 5=excellent).

Table 4. Distribution of quality changes between machine translation and radiologist-revised translations across grammar, terminology, and
readability dimensions.

Item
Rater 1 Rater 2
Worse No change Better Worse No change Better

Grammar, n (%) 4 (2.7) 28 (18.7) 118 (78.7) 9 (6) 43 (28.7) 98 (65.3)
Terminology, n (%) 0 (0) 14 (9.3) 136 (90.7) 7 (4.7) 34 (22.7) 109 (72.7)
Readability, n (%) 1 (0.7) 29 (19.3) 120 (80) 9 (6) 30 (20) 111 (74)

Despite the high automated metric scores (see Table 2),
expert scoring evaluation by radiologists revealed that
substantial revisions were necessary for medical terminology,
with significant improvements observed between machine
translations and radiologist-revised versions. Radiologists’
assessments identified the representative patterns of necessary
modifications. This expert review revealed 3 major categories
of improvements (see Figure 6; the original English reports

used are shown in Figure S5 in Multimedia Appendix 1),
which reflect typical challenges in medical translation: (1)
contextual refinement of technically correct but unnatural
terms, (2) completion of missing or incomplete translations,
and (3) Japanese localization of untranslated English terms.
Although not exhaustive, these patterns represent key areas
where human expertise complements machine translation in
medical contexts.
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Figure 6. Representative examples of (computed tomography) CT report translation improvements in 3 categories: contextual term refinement,
completion of missing details, and localization of untranslated terms from English to Japanese radiological equivalents.

The first category, contextual refinement, involved replacing
technically accurate but clinically uncommon expressions
with more natural medical terminology. For instance, direct
translations of anatomical conditions were often revised
to their proper radiological equivalents when describing
vessel status, reflecting standard terminology in Japanese
clinical practice. The second category addresses cases in
which certain medical terms were either missing or incom-
pletely translated, thereby requiring additional context-spe-
cific information. A typical example would be anatomical
descriptions lacking specific diagnostic terminology that
is common in radiological reporting. The third category
focuses on proper localization of English medical terms that
were initially left untranslated, such as converting technical
descriptors of pathological findings into appropriate Japanese
radiological counterparts.
CT-BERT-JPN Performance Evaluation
The CT-BERT-JPN model achieved a micro F1-score of
0.9607 on the internal evaluation data, which served as the

model selection criterion. When evaluated on the validation
dataset, the model showed a micro F1-score of 0.9695 with
machine-translated inputs and 0.9520 with radiologist-revised
inputs, representing a performance decrease of 0.0175. Table
5 presents the performance evaluation results of CT-BERT-
JPN across 18 different findings from 150 chest CT radiolog-
ical reports on the validation dataset. The model achieved
perfect scores (1.000) across all evaluation metrics (accu-
racy, precision, recall, F1-score, AUC-ROC, and AP) for
pericardial effusion, hiatal hernia, and mosaic attenuation
patterns. It demonstrated high accuracy exceeding 0.950 in
17 out of 18 findings, with AUC-ROC values surpassing
0.98 in all findings. Furthermore, AP remained consistently
strong—ranging from 0.873 to 1.000—despite the imbalanced
distribution of positive samples (7 cases for interlobular septal
thickening up to 82 cases for lung nodules), underscoring the
model’s robust discriminative ability across all conditions.

Table 5. Performance evaluation of CT-BERT-JPN across 18 different findings.

Findings Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-score (95% CI)
AUC-ROCa (95%
CI) APb

Medical material 0.973 (0.940‐
0.993)

0.778 (0.538‐
0.952)

1.000 (1.000‐
1.000)

0.875 (0.700‐
0.976)

0.999 (0.995‐1.000) 0.990 (0.950‐
1.000)

Arterial wall
calcification

0.987 (0.967‐
1.000)

0.961 (0.898‐
1.000)

1.000 (1.000‐
1.000)

0.980 (0.946‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

Cardiomegaly 0.987 (0.967‐
1.000)

1.000 (1.000‐
1.000)

0.920 (0.800‐
1.000)

0.958 (0.889‐
1.000)

0.999 (0.996‐1.000) 0.996 (0.981‐
1.000)

Pericardial
effusion

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

Coronary artery
wall calcification

0.987 (0.967‐
1.000)

0.978 (0.927‐
1.000)

0.978 (0.925‐
1.000)

0.978 (0.943‐
1.000)

1.000 (0.999‐1.000) 1.000 (0.997‐
1.000)

Hiatal hernia 1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

Lymphadenopath
y

0.987 (0.967‐
1.000)

0.973 (0.907‐
1.000)

0.973 (0.912‐
1.000)

0.973 (0.929‐
1.000)

0.994 (0.983‐1.000) 0.987 (0.963‐
1.000)

Emphysema 0.980 (0.953‐
1.000)

0.938 (0.844‐
1.000)

0.968 (0.889‐
1.000)

0.952 (0.881‐
1.000)

0.989 (0.970‐1.000) 0.960 (0.888‐
1.000)
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Findings Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-score (95% CI)
AUC-ROCa (95%
CI) APb

Atelectasis 0.993 (0.973‐
1.000)

0.980 (0.929‐
1.000)

1.000 (1.000‐
1.000)

0.990 (0.963‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

Lung nodule 0.967 (0.940‐
0.993)

0.975 (0.937‐
1.000)

0.963 (0.921‐
1.000)

0.969 (0.942‐
0.994)

0.991 (0.978‐1.000) 0.994 (0.985‐
1.000)

Lung opacity 0.953 (0.913‐
0.987)

0.929 (0.857‐
0.983)

0.945 (0.880‐
1.000)

0.937 (0.885‐
0.977)

0.991 (0.980‐0.999) 0.985 (0.963‐
0.999)

Pulmonary
fibrotic sequela

0.953 (0.920‐
0.987)

0.935 (0.860‐
1.000)

0.915 (0.833‐
0.980)

0.925 (0.867‐
0.974)

0.981 (0.960‐0.997) 0.973 (0.942‐
0.995)

Pleural effusion 0.987 (0.967‐
1.000)

0.905 (0.762‐
1.000)

1.000 (1.000‐
1.000)

0.950 (0.865‐
1.000)

1.000 (0.997‐1.000) 0.997 (0.983‐
1.000)

Mosaic
attenuation
pattern

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

Peribronchial
thickening

0.960 (0.927‐
0.987)

1.000 (1.000‐
1.000)

0.714 (0.529‐
0.905)

0.833 (0.692‐
0.950)

0.985 (0.960‐1.000) 0.948 (0.869‐
0.997)

Consolidation 0.933 (0.893‐
0.973)

0.706 (0.533‐
0.862)

1.000 (1.000‐
1.000)

0.828 (0.696‐
0.926)

0.996 (0.988‐1.000) 0.985 (0.951‐
1.000)

Bronchiectasis 0.980 (0.953‐
1.000)

0.870 (0.714‐
1.000)

1.000 (1.000‐
1.000)

0.930 (0.833‐
1.000)

0.990 (0.970‐1.000) 0.873 (0.686‐
1.000)

Interlobular
septal thickening

0.993 (0.980‐
1.000)

0.875 (0.600‐
1.000)

1.000 (1.000‐
1.000)

0.933 (0.750‐
1.000)

1.000 (1.000‐1.000) 1.000 (1.000‐
1.000)

aAUC-ROC: area under the receiver operating characteristic curve.
bAP: average precision.

compares the F1-scores of CT-BERT-JPN and GPT-4o
across the 18 conditions, displayed as bar charts. Table
S1 in Multimedia Appendix 1 presents the detailed results
for GPT-4o across the 18 conditions using valid data.
CT-BERT-JPN had higher F1-scores than GPT-4o in 11
findings and achieved equivalent performance in 2 find-
ings, specifically the hiatal hernia and mosaic attenuation
patterns, both of which attained perfect F1-scores. Notably,
CT-BERT-JPN showed a higher performance in lympha-
denopathy (0.142 higher) and atelectasis (0.074 higher),
with statistically significant differences confirmed by the
Wilcoxon signed-rank test (P=.003 and P=.005, respectively).
However, the model performed poorly in 5 findings—most
notably peribronchial thickening (–0.051) and consolidation
(–0.035)—although Wilcoxon signed-rank tests did not detect
statistically significant differences. Detailed performance
metrics for GPT-4o are presented in Table S1 in Multimedia
Appendix 1.

A detailed analysis of the performance of CT-BERT-JPN
was conducted by comparing 2 scenarios: radiologist-revised
translated reports versus raw machine-translated reports as
input. The differences in the metrics are detailed in Table
6 (the performance metrics for machine translation can be
found in Table S2 in Multimedia Appendix 1). The analy-
sis showed that for most findings, performance differences
were less than 5% with no significant variations, confirm-
ing the robustness of the model. However, peribronchial
thickening showed notable decreases, with a decrease in
recall of 0.238 and F1-score reduction of 0.143. Statisti-
cal analysis using the Wilcoxon signed-rank test revealed
a significant difference (P=.025). Similarly, consolidation
experienced relatively significant performance declines, with
precision decreasing by 0.179 and F1-score by 0.092, with the
Wilcoxon signed-rank test showing a significant difference
(P=.034).

Table 6. Performance differences between CT-BERT-JPN models trained on radiologist-revised versus machine-translated inputs across multiple
metrics.
Findings Accuracy Precision Recall F1-score AUC-ROCa APb P valuec

Medical material 0.000d −0.034 0.071 0.008 0.002 0.013 1.00
Arterial wall calcification −0.006 −0.019 0.000 −0.010 0.000 0.000 .32
Cardiomegaly −0.013 0.000 −0.080 −0.042 −0.001 −0.004 .16
Pericardial effusion 0.007 0.000 0.083 0.043 0.000 0.000 .32
Coronary artery wall calcification 0.000 0.000 0.000 0.000 0.000 0.000 N/Ae

Hiatal hernia 0.000 0.000 0.000 0.000 0.000 0.000 N/Ae

Lymphadenopathy −0.006 −0.001 −0.027 −0.014 −0.006 −0.012 .32
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Findings Accuracy Precision Recall F1-score AUC-ROCa APb P valuec

Emphysema −0.007 −0.030 0.000 −0.016 −0.011 −0.039 .56
Atelectasis −0.007 −0.020 0.000 −0.010 0.000 0.000 .32
Lung nodule −0.013 −0.025 0.000 −0.012 0.000 0.000 .16
Lung opacity −0.007 −0.016 0.000 −0.008 −0.002 -0.004 .71
Pulmonary fibrotic sequela −0.007 0.017 -0.042 −0.013 −0.005 -0.007 .71
Pleural effusion −0.006 −0.045 0.000 −0.024 0.002 0.008 .32
Mosaic attenuation pattern 0.000 0.000 0.000 0.000 0.000 0.000 N/Ae

Peribronchial thickening −0.033 0.000 −0.238 −0.143 −0.010 -0.033 .03
Consolidation −0.040 −0.179 0.042 −0.092 0.004 0.020 .03
Bronchiectasis 0.007 0.037 0.000 0.021 -0.006 -0.099 .32
Interlobular septal thickening −0.007 −0.125 0.000 −0.067 0.000 0.000 .32

aAUC-ROC: area under the receiver operating characteristic curve.
bAP: average precision.
cP values were calculated using the Wilcoxon signed-rank test.
dPositive values indicate higher performance with radiologist-corrected translations, whereas negative values “-” indicate higher performance with
raw machine translations.
eN/A indicates that the test was not performed because the predicted values were identical.

Our qualitative analysis of CT-BERT-JPN’s performance
revealed several illustrative examples of how transla-
tion quality impacts model predictions. For peribronchial
thickening, we observed cases where CT-BERT-JPN
incorrectly predicted negative results for truly positive
cases when using radiologist-revised translations. A notable
example involved subtle terminological changes from
“bilateral peribronchial thickening is observed” in the
machine translation to “bilateral bronchial wall thickening is
observed” in the radiologist-revised version, where this minor
linguistic variation caused the model to misclassify a positive
case as negative, demonstrating how nuanced expression
differences can significantly impact the model’s detection
performance. Conversely, for pericardial effusion, we found
instances where radiologist refinement improved model
accuracy, such as cases where “pericardial effusion” was
incorrectly translated as “pleural effusion” in machine-trans-
lated reports, while radiologist refinement correctly rendered
it as “fluid accumulation in the pericardial recess,” lead-
ing to accurate CT-BERT-JPN predictions that would have
been incorrect with the raw machine translation. In addi-
tion, for medical material—the condition with the third-
lowest F1-score—we identified systematic prediction errors
that persisted regardless of translation quality, particularly
in cases containing expressions such as “changes associ-
ated with tracheostomy are observed,” where both machine-
translated and radiologist-revised versions retained identical
phrasing, yet CT-BERT-JPN consistently predicted positive
when the correct label should have been negative. While
the presence of an endotracheal tube following tracheostomy
would warrant a positive prediction for medical material,
the description alone does not explicitly indicate the current
presence of medical devices, suggesting that the model may
be confounded by artificial interventions mentioned in the
text, leading to false positive predictions based on procedural
context rather than actual device presence.

Discussion
Principal Findings
The 3 key findings of our study regarding the development of
Japanese medical imaging resources and analytical capabili-
ties are:

First, an efficient workflow that combines machine
translation with expert validation was established to
successfully create a large-scale Japanese radiology dataset,
maintaining high-quality standards through a radiologist’s
focused review.

Second, despite its relatively compact architecture, our
specialized CT-BERT-JPN model demonstrated superior
performance to GPT-4o in most structured finding extrac-
tion tasks, highlighting the effectiveness of domain-specific
optimization.

Third, the model maintained robust performance across
both machine-translated and radiologist-revised reports,
suggesting the viability of machine translation for training
data creation in specialized medical domains.
Dataset Development and Quality
Assessment
In the field of medical imaging datasets, several English-lan-
guage resources have been previously established, including
the OpenI dataset [35] and MIMIC-CXR [36] for chest
radiographs, and AMOS-MM [37] for chest-to-pelvic CT
scans; however, these datasets are exclusively available in
English, with limited multilingual adaptations. Although
many LLMs and VLMs have multilingual capabilities
[26,38,39], their performance is consistently degraded when
handling non-English languages, including Japanese [40]. A
significant factor contributing to this performance gap is the
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scarcity of non-English datasets, making the development of
such resources an urgent priority.

Machine-translated reports showed minimal differences
in basic structural elements compared with the original
texts, with word counts and sentence lengths varying by
less than 5%. Evaluation of translation quality using the
BLEU and ROUGE metrics also demonstrated high perform-
ance, indicating that the overall structure and content of
the reports were well preserved. However, a Likert-scale
evaluation by radiologists on grammar, medical terminol-
ogy, and readability revealed that raw GPT-4o mini outputs
still required substantial refinement in all 3 areas. Radiolog-
ist-led corrections efficiently addressed these shortcomings,
significantly boosting translation quality for our validation
dataset. This limitation necessitated a rigorous refinement
process involving expert radiologists, which proved crucial
for establishing a reliable validation dataset.

Our efficient workflow enabled the review and correc-
tion of approximately 70,000 characters of machine-transla-
ted text, significantly reducing the time and effort required
for extensive translation verification. This efficiency was
achieved through a structured review process in which
radiologists would focus primarily on medical terminol-
ogy and critical semantic elements rather than reviewing
every aspect of the translation. This systematic approach,
which combines large language models with domain expert
validation, presents a scalable methodology for dataset
creation between distinctly different languages, such as
English and Japanese. This hybrid process offers a promising
framework that can be adapted not only to other languages
but also to specialized domains beyond radiology, where
precise terminology and domain expertise are critical.
Model Performance and Evaluation
When combined with CT volumes, CT-BERT-JPN demon-
strated significant potential for various text-based applications
in medical imaging analysis. Our comprehensive evaluation
revealed exceptional performance in structured extraction of
findings across diverse radiological conditions, with F1-score
consistently above 0.95 and perfect scores in several findings.
More notably, CT-BERT-JPN outperformed GPT-4o in 11
out of 18 findings (61%), achieving higher F1-score in
significant conditions such as lymphadenopathy (+0.142) and
atelectasis (+0.074). This superior performance is particularly
remarkable considering that CT-BERT-JPN has approxi-
mately 110 million parameters, whereas recent large language
models often employ hundreds of billions of parameters [41].
Our results demonstrate that a specialized, compact language
model can achieve state-of-the-art performance in domain-
specific tasks, even when compared with more sophistica-
ted general-purpose models. While promising, our results
should be interpreted cautiously given the limited valida-
tion dataset of 150 reports and notable class imbalance for
certain findings (eg, 7 cases for interlobular septal thickening,
12 cases for pericardial effusion). Although we used both
F1-scores and AP metrics to address data imbalance, the
95% CIs reveal substantial variability for rare findings (eg,
interlobular septal thickening: 0.933 [0.750‐1.000]), where

even high F1-scores may be statistically unstable due to small
sample sizes. Larger-scale validation studies will be necessary
for more definitive performance assessment.

Furthermore, the model maintained stable performance
across both unmodified machine translations and radiolog-
ist-revised reports. While some conditions showed moder-
ate performance variations between machine-translated and
radiologist-revised reports, particularly in findings where
machine translation errors were common (F1-score differen-
ces of -0.143 for peribronchial thickening and −0.092 for
consolidation), with consolidation being notably affected
by mistranslations of the related “infiltration,” the over-
all robustness of the model suggests that effective clini-
cal applications can be developed using machine-translated
training data.

To contextualize our results within the broader radiol-
ogy NLP field, we note that established models, such
as RadGraph [42] and the CheXpert labeling tool [43],
have demonstrated strong performance with English reports.
Particularly relevant is the CheXpert labeler, which tack-
les the most similar task of multilabel finding classifica-
tion in radiology reports, achieving F1-scores ranging from
0.647 to 0.996 across different findings in chest X-ray
analysis. Our CT-BERT-JPN shows comparable perform-
ance levels for the distinct task of Japanese CT finding
extraction. While acknowledging the differences in imaging
modality, language, and validation dataset size, these results
represent promising performance and constitute the first
openly available Japanese model for multilabel CT find-
ings extraction. Nevertheless, because CT-BERT-JPN was
trained and evaluated on a single, translation-derived dataset,
its performance could degrade under real-world Japanese
radiology reports due to domain shift.
Clinical Implementation and Impact
Previous studies have explored hybrid approaches that
combine human and machine translations in the medical
domain. Early research demonstrated the effectiveness of
combining preexisting translation databases with machine
translation for medical guidelines, particularly in updating
existing documents [44]. Another study reported challenges in
the quality of machine translation from English to Chinese
of public health materials caused by linguistic structural
differences [45]. However, recent advances in LLMs have
been remarkable, with studies showing high performance
in radiology report translation [46]. Our research success-
fully developed effective datasets through a combination
of machine and expert translation. This approach enables
efficient dataset construction even for languages with limited
medical data, representing a significant advancement in
multilingual medical data development.

The development of such a structured findings extrac-
tion model in Japan, where medical imaging usage rates
rank among the highest globally, is expected to contribute
substantially to both domestic health care advancements
and international model development. Our implementation
incorporated previous studies on Japanese radiology report
processing, including end-to-end approaches for clinical
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information extraction [47], natural language processing
systems for pulmonary nodule follow-up assessment [48],
and BERT-based transfer learning methods for anatomical
classification [49].

Our multilabel classification approach addresses several
implementation challenges unique to Japanese health care.
These include vocabulary standardization across institutions,
integration with existing reporting systems, and develop-
ment of specialized Japanese medical vocabulary handling
mechanisms. The ability of the model to process Japanese-
specific medical expressions and maintain high performance
across different reporting styles demonstrates its potential for
broad clinical applications. However, prospective validation
across multiple Japanese institutions remains essential for
both performance evaluation and capturing institution-spe-
cific reporting patterns for targeted model improvements.
Limitations and Future Directions
Several limitations exist in our study. First, although we
demonstrated the effectiveness of our language model
through rigorous evaluation, the usability of CT-RATE-JPN
for vision-language models (such as CT-contrastive language
image pre-training [CLIP] [18]), which require joint learning
of CT volumes and text descriptions, remains to be empir-
ically validated. Second, our reliance on the CT-RATE
dataset may have introduced inherent biases in reporting
styles and patterns, because radiology reports vary consid-
erably across institutions and individual radiologists. Third,
despite expert validation, the translation-based approach may
not fully capture the nuanced expressions and specialized
terminology commonly used in Japanese clinical practice. In
addition, well-established parallel corpora for translation in
the Japanese radiology domain are currently lacking, although
projects such as “JMED-DICT” are working to address
this gap by developing a comprehensive medical terminol-
ogy dictionary of approximately 400,000 terms through
the integration of existing medical dictionaries and resour-
ces [50]. Fourth, potential biases may stem from the multi-
step translation process and dataset origin. The CT-RATE
dataset originates from Turkish medical institutions and was
translated into English before our Japanese translation. This
process may introduce biases from demographic differences
between Turkish and Japanese patient populations, Turkish-
specific reporting styles that may not align with Japanese
clinical practices, and linguistic biases accumulated through
successive translations, despite our refinement procedures.

These biases may contribute to inflated performance metrics
for CT-BERT-JPN that do not accurately reflect the model’s
expected performance on native Japanese radiology reports in
real-world settings.

Building upon these considerations, several promising
directions for future research emerge. The primary direction
is the development of vision language models using CT-
RATE-JPN in conjunction with the CT volumes of CT-
RATE. Given the successful development of Japanese CLIP
models for general domain tasks, which have demonstra-
ted the feasibility of cross-lingual vision-language align-
ment in Japanese [51], extending this approach to medical
imaging is particularly promising. While this endeavor
requires substantial computational resources and sophistica-
ted training strategies, various approaches can be explored,
such as additional training on existing models, for example,
CT-CLIP. Furthermore, the construction of a new dataset
comprising pairs of Japanese radiology reports and CT
volumes from Japanese medical institutions can enable a
more direct assessment of model performance in the Japanese
healthcare context and potentially reveal insights unique to
this setting. Our benchmark dataset, validated by radiolog-
ists through a systematic review process, provides a val-
uable foundation for evaluating such Japanese-English and
English-Japanese translation models in radiology.
Conclusion
In this study, we introduced CT-RATE-JPN, a comprehensive
Japanese dataset of CT interpretation reports, and developed
a specialized language model for structured labeling. Our
model demonstrated superior performance compared with
GPT-4o, achieving higher F1-scores in numerous categories
of structured findings extraction. The creation of CT-RATE-
JPN, along with our publicly available structured findings
model, represents a significant contribution to Japanese
medical imaging research. By making both the dataset and
model freely accessible to the research community, we enable
reproducibility and foster collaborative advancement in the
field. This work not only provides essential resources for the
medical AI community but also establishes a robust founda-
tion for developing more sophisticated multilingual medical
vision-language models. These openly available contribu-
tions are expected to support the development of AI-assis-
ted diagnostic tools, while maintaining the high standards
required for clinical applications in radiology.
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