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Abstract

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach,
radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in
longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-40 model to convert real-world coronary
computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS
categories and P categories.

Methods: This retrospective study analyzed CCTA reports from January 2024 and July 2024. A subset of 25 reports was
used for prompt engineering to instruct the large language models (LLMs) in extracting CAD-RADS categories, P categories,
and the presence of myocardial bridges and noncalcified plaques. Reports were processed using the GPT-40 API (application
programming interface) and custom Python scripts. The ground truth was established by radiologists based on the CAD-RADS
2.0 guidelines. Model performance was assessed using accuracy, sensitivity, specificity, and F-score. Intrarater reliability was
assessed using Cohen % coefficient.

Results: Among 999 patients (median age 66 y, range 58-74; 650 males), CAD-RADS categorization showed accuracy
of 0.98-1.00 (95% CI 0.9730-1.0000), sensitivity of 0.95-1.00 (95% CI 0.9191-1.0000), specificity of 0.98-1.00 (95% CI
0.9669-1.0000), and F-score of 0.96-1.00 (95% CI 0.9253-1.0000). P categories demonstrated accuracy of 0.97-1.00 (95% CI
0.9569-0.9990), sensitivity from 0.90 to 1.00 (95% CI 0.8085-1.0000), specificity from 0.97 to 1.00 (95% CI 0.9533-1.0000),
and F-score from 0.91 to 0.99 (95% CI 0.8377-0.9967). Myocardial bridge detection achieved an accuracy of 0.98 (95% CI
0.9680-0.9870), and noncalcified coronary plaques detection showed an accuracy of 0.98 (95% CI 0.9680-0.9870). Cohen %
values for all classifications exceeded 0.98.

Conclusions: The GPT-40 model efficiently and accurately converts CCTA free-text reports into structured data, excelling in
CAD-RADS classification, plaque burden assessment, and detection of myocardial bridges and calcified plaques.
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Introduction

The Coronary Artery Reporting and Data System (CAD-
RADS), developed with support from the American Col-
lege of Radiology and the American College of Cardiology,
provides a standardized imaging approach for the screen-
ing, diagnosis, and treatment evaluation of coronary artery
disease. CAD-RADS has been widely adopted and has had
a significant impact on coronary artery disease management
[1-5]. Despite the standardized approach of CAD-RADS,
radiologists continue to favor free-text reports in practice.
These reports often vary in style and structure, which can
result in the omission of critical clinical information. This
inconsistency complicates data extraction for longitudinal
studies on coronary artery disease [6,7]. The issue is further
exacerbated by the rapid advancements in medical technology
and the increasing volume of coronary computed tomography
angiography (CCTA) exams. Hospitals are now overwhelmed
with unstructured reports, and manual data extraction is both
time-consuming and prone to errors. Therefore, there is an
urgent need for automated methods to process these reports
and enhance the efficiency and accuracy of information
extraction.

Traditionally, medical natural language processing (NLP)
techniques have been used to extract structured data elements
from medical records, particularly in the field of radiol-
ogy reports [8,9]. For instance, to bridge the gap between
unstructured coronary artery reports and structured data,
studies have successfully used deep learning and NLP
techniques to predict coronary CAD-RADS scores [10].
However, a key challenge of traditional NLP algorithms is the
scarcity of high-quality annotated datasets and the high cost
associated with acquiring new annotated data [11]. Even with
meticulously labeled ground truth data, the relatively small
size of the corpus often leads to poor model generalization
or makes generalization assessments impossible. For decades,
traditional artificial intelligence (AI) systems (both symbolic
and neural networks) have lacked general knowledge and
common-sense reasoning.

With the development of large language models
(LLMs) [12,13], especially generative pre-trained transformer
(GPT) models like ChatGPT, these models exhibit unique

https://medinform.jmir.org/2025/1/e70967

Chen et al

capabilities such as zero-shot and few-shot learning. Such
abilities enable them to learn from prompt-based examples
and perform diverse tasks [14-16]. As a result, LLMs show
significant potential across multiple industries. In healthcare,
LLMs, with their powerful NLP capabilities, have been used
to facilitate communication between patients and clinicians
[17]. In the past year, there has been a surge in the explora-
tion of LLMs in the field of radiology reports, which has
garnered increasing attention. Research has shown that LLMs
can assist radiologists in tasks such as diagnosis, generating
radiology reports, data extraction, error detection, incidental
findings, classifying reports and data systems for various
diseases, and converting unstructured free-text reports into
structured formats [18-23]. Some studies have also demon-
strated that LLMs excel at extracting realistic, complex,
and multilingual clinical information from radiology reports,
such as LI-RADS features [22,24]. However, current studies
mostly rely on web-based reports and texts, with small sample
sizes. Prompt engineering often involves manually created
virtual reports. As a result, research on how to leverage LLMs
to automatically extract structured data from vast, real-world
unstructured reports and build high-quality radiology medical
databases remains scarce.

This study aims to evaluate the ability of the GPT-4o0
model to convert real-world free-text CCTA reports into
structured data and automatically identify CAD-RADS
categories and Plaque Burden categories (P categories). We
hypothesize that the GPT-40 model, when applied through
a systematic prompt engineering approach, will demonstrate
robust performance in extracting and categorizing data from
CCTA reports with accuracy comparable to human experts.

Methods

The overall study workflow is shown in Figure 1. The
reports used for prompt engineering and the study cohort are
authentic radiological reports with all sensitive information
removed. This retrospective study was approved by the ethics
committee of the Third Affiliated Hospital of Sun Yat-sen
University (2023-042-01). All source code used in this study
is publicly available in GitHub [25].
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Figure 1. Research design flowchart. CAD-RADS: Coronary Artery Reporting and Data System; CCTA: coronary computed tomography angiogra-

phy.
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The GPT-40 model used in this study is based on the GPT-40
model released by OpenAl in May 2024 and is implemented
through official API interface calls. This model is based on
general domain pre-training and does not undergo institution-
specific fine-tuning. The “0” in “GPT-40” stands for “omni,”
a step towards more natural human-computer interaction. It
accepts any combination of text, audio, images, and video as
input and generates any combination of text, audio, and image
output. Compared with previous LLMs such as GPT-4, it has
significant improvements on text in non-English languages
and is also faster in the API and 50% cheaper. Compared with
existing models, GPT-40 is particularly good at visual and
auditory understanding.

Study Sample

Reports from CCTA examinations conducted between
January 2024 and July 2024 were retrieved from the Picture
Archiving and Communication System (PACS) database of
the Third Affiliated Hospital of Sun Yat-sen University. A
total of 12,722 CCTA reports from this period were initially
included. All reports were written by committee-certified
radiologists and were in Chinese. Inclusion criteria were as
follows: (1) reports containing complete imaging findings
and impression descriptions, and (2) clear descriptions of
major coronary vessels such as the left main, left anterior
descending, left circumflex (LCX), and right coronary artery.
Exclusion criteria involved reports where the impression
stated, “no significant abnormalities detected in coronary
CTA.” After applying the inclusion and exclusion criteria,
999 reports remained for analysis (sample 1). In addition,
25 CCTA reports from September 2024 (sample 2) were
included for prompt engineering.
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The selected reports were exported to an Excel spreadsheet
(Microsoft), and the author, YC, evaluated these reports,
removing sensitive information such as registration numbers
and names while retaining relevant details such as gender,
age, imaging findings, impression descriptions, and examina-
tion dates. Except for minor typographical errors, no changes
were made to the content of the reports.

Creation of the Ground Truth

The ground truth labels for each report were established by a
radiologist (YC with 3 y of experience) who evaluated all
reports according to the CAD-RADS (version 2.0) guide-
lines [1] published in 2022, with data manually extracted
into CSV format. The labeling process incorporated CAD-
RADS categories, P categories, as well as the identification
of myocardial bridging and noncalcified coronary plaques.
In instances where YC encountered challenges in labeling,
expert consultations were sought from JQ, who possesses
24 years of professional experience. To assess intrarater
reliability, 200 reports were randomly selected and re-evalu-
ated after a 15-day washout period, with agreement measured
using Cohen % coefficient.

Prompt Engineering

The creation of prompts strictly follows the CAD-RADS
2.0 guidelines and the 18-segment coronary artery method,
aiming to extract coronary artery disease-related data through
simplified steps. The task of GPT-40 is to convert the
free-text CCTA report into a structured format and output
the data in JSON format. The initial prompt used simple
instructions, such as: “Please construct the following coronary
artery CTA report and output it in JSON format.” Sample 2
was used for prompt engineering, and corresponding feedback
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was collected. When it was found that the model output was
not good or errors occurred, the instructions were modified
again, such as “Please read the following report carefully,
summarize it according to the CAD-RADS 2.0 guidelines,
and output it in a structured form, in JSON format.” The
prompt was optimized through multiple iterations until the
model output the best results, and the final prompt was
obtained and no longer changed. The final prompt consisted
of a single step: generating structured data in JSON format
based on the original report, containing the current examina-
tion date, examination technique, coronary origin, dominant
vessel, and key features of each coronary artery (such as
stenosis degree, plaque type, presence of myocardial bridges,
presence of stents, etc.). The Chinese version of the prompt is
provided in Multimedia Appendix 1. GPT-40 was instructed
to generate a CSV file with process details for each report.

Chen et al

Batch Feature Extraction and
Classification

The final prompt was used to process the reports from the
study cohort (Sample 1). A Python script containing the final
prompt was written for batch processing of all reports. This
script interacted with the GPT-40 API, sending prompts to the
model one by one, with the model automatically process-
ing the reports and converting them into CSV tables with
relevant details. The characteristics of myocardial bridging
and noncalcified coronary plaques were directly extracted
from the model’s responses, while the CAD-RADS and P
categories were programmatically determined using custom
Python functions based on the CAD-RADS and P catego-
ries algorithms. An example of a report and its downstream
processing is depicted in Figure 2.

Figure 2. A representative example showing how GPT-40 processes and structures a coronary computed tomography angiography radiology report.
The system uses a specialized prompt to transform the free-text report into a standardized JSON format, comprising 18 distinct sections (sections
1-18, with intermediate sections abbreviated for brevity). The structured output is subsequently analyzed by a Python script to identify the Coronary
Artery Reporting and Data System categories, P categories, myocardial bridge, and noncalcified plaque.

Imaging Findings:
Reference: Coronary CTA, April 14, 2022.

about 60% stenosis.

After intravenous injection of non-ionic contrast agent via the antecubital vein, cardiac and coronary
artery scanning was performed from the tracheal bifurcation to 2 cm below the left diaphragm, with
zood visualization of the heart and coronary arteries.

Cross-sectional, VR, CPR, MIP, and vascular probe analysis:

The coronary arteries are of a right dominance type, with normal ostial positions of the left and right
coronary arteries. The walls of the left and right coronary arteries and their major branches are
irregular, with mixed plaque observed in the left main (LM) artery causing a 10-20% stenosis.
LAD: Near and mid-segments show calcified plaques with approximately 20% stenosis; the distal
stent is patent, and no filling defect is seen in the lumen. Distally, a mixed plaque is present with

LCX: Proximal segment (near stent) shows non-calcified plaques with about 50-60% stenosis; the
mid-segment stent is patent, with no filling defect scen; the distal segment shows both caleified and
non-calcified plaques, causing about 60% stenosis

RCA: The proximal segment shows non-calcified plaques with approximately 20% stenosis. The
distal stent is patent, and no significant stenosis is observed beyond the stent.

The size and shape of all cardiac chambers are normal, with no abnormalities observed.

\"Patient Information": {
I "Name™": "", "Gender": "Male",
it
I"Examination Time": "2024-01-26 10:35:57",
I"Imaging Findings": {

| "Scan Method": "Coronary CTA",

| "Contrast Agent": "Non-ionic contrast agent”,

"Age": "74 years"

larteries”,
"Coronary Artery Dominance”: "Right dominance”,

I
Step 2 1 "Coronary Artery Ostia": "Normal ostial positions of the left and
[

Irighl coronary arteries",
| "Other Findings": "Size and shape of all cardiac chambers are
Inormal; calcification is seen in the aortic wall. Ascending aortic
diameter: 36[25-40] mm.",
I "Coronary Artery Description": {

"segments": [

{

"Stenosis Degree": "0.2", "Plaque Type": "Non-calcified

I
I
I
-
Jartery",
I
I "
plaque”,
I

| "Imaging Result": "Good visualization of the heart and coronary

"Segment Number": "1", "Name": "Proximal right coronary

I"Presence of Myocardial Bridging": "No", "Modifier": "None"

"Segment Number' , "Name": "Mid right coronary artery",
"Stenosis Degree": "0", "Plaque Type": "None",
"Presence of Myocardial Bridging": "No", "Modifier": "None"

"Segment Number": "3", "Name": "Distal right coronary
artery",

"Stenosis Degree': "0", "Plaque Type": "None",

"Presence of Myocardial Bridging": "No", "Modifier": "8"

"Segment Number": "18",

"Name": "Posterior descending branch (origin of LCX)",
"Stenosis Degree": "0", "Plaque Typi None",

"Presence of Myocardial Bridging": "No", "Modifier": "None"

python seript

CAD-RADS categories, P classification, and the presence of
myocardial bridging and non-calcified coronary plaques

The detailed calculation process of CAD-RADS and P
categories algorithms can be viewed in GitHub [25].
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Error Analysis

YC conducted a review of cases with errors in the extrac-
tion of key features, specifically the CAD-RADS category
and P categories. The original report, the outputs from the
structured reporting process, and the final results computed
using Python were jointly examined to identify the source of
the errors.

Model Performance Evaluation

The accuracy, specificity, sensitivity, and F|-score are used
to evaluate the performance of the model in extracting and
classifying the 4 features. The formula is as follows:

Accuracy = TP+ ;Jflijl;];+ FN
Sensitivity = M—PW
Specificity = TNT—-ZFVFP
Fi =2 BSOSO prctson = P
Statistical Analysis

In this study, baseline characteristics of the sample were
described using the median and interquartile range (Q1, Q3)
for continuous variables (eg, age) and frequency (n) and
percentage (%) for categorical variables (eg, gender, CAD-
RADS categories, P categories, and the presence of myocar-
dial bridging and noncalcified coronary plaques). Intrarater
agreement was assessed using Cohen x statistics.

For the model-extracted features (eg, presence of
myocardial bridges) and the CAD-RADS 0-5 classification
and P 0-4 Categories, accuracy, specificity, sensitivity, and
F1-score were calculated. According to the CAD-RADS 2.0

Chen et al

guidelines, CAD-RADS 0 indicates the absence of plaque or
stenosis, and PO is not included in the Categories. However,
to evaluate the performance of the LLM in patients without
plaque or stenosis, patients without plaque or stenosis were
treated as PO level in the statistical analysis.

This study was conducted using Python (version 3.8.16)
as the primary programming environment and the OpenAl
API (version 1.33.0) for LLM interactions. The temperature
parameter mainly affects the diversity and randomness of
the output of the LLM. Generally speaking, the higher the
temperature, the greater the diversity and randomness of the
model output, and the more unpredictable the results. To
minimize model variability and ensure reproducibility, the
temperature parameter was consistently set to 1E-10 across
all model configurations [26,27]. Statistical analyses were
performed using Python’s scikit-learn library (version 1.3.2)
and SPSS statistical software (version 27; IBM Corporation).

Results

Study Sample

Figure 1 shows the inclusion and exclusion process for
patients, while Table 1 summarizes the baseline characteris-
tics of patients based on CAD-RADS categories and Plaque
Burden categories (P categories), among other features.
Initially, 12,722 coronary CTA free-text reports were
screened, with 8465 reports excluded due to “no significant
abnormality detected in coronary CTA,” as these patients
showed no obvious coronary artery disease. An additional
3258 reports were excluded due to missing comprehensive
imaging results, insufficient descriptions of findings, and the
absence of clear identification of the major coronary arteries.
Ultimately, 999 reports were included for analysis (median
age 66 y; age range 57-73, of whom 650 were male). All
reports were successfully processed into structured data using
GPT-4o0, and the corresponding CAD-RADS and P categories
were generated for each report.

Table 1. Characteristics of included patients. Unless otherwise indicated, data are numerators and data in parentheses are percentages.

Characteristics

Patients (N=999)

Gender, n (%)
Male
Female
Age (years), median (IQR)
CAD-RADS? categories, n (%)
0
1
2
3
4a
4b
5

650 (65.1)
349 (34.9)
66 (57-73)

64 (6.4)
236 (23.6)
231 (23.1)
224 (22.4)
197 (19.7)
39(3.9)
8(0.8)
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Characteristics

Patients (N=999)

Plaque Burden categories, n (%)

Myocardial bridge, n (%)
Noncalcified coronary plaques, n (%)

64 (6.4)
310 (31.0)
282 (28.2)
294 (29.4)
49 (4.9)

438 (43.8)
561 (54.8)

4CAD-RADS: Coronary Artery Reporting and Data System.

Intrarater Reliability

The % values were 0.99 for CAD-RADS categories, 0.98
for P categories, 0.99 for myocardial bridging, and 0.98 for
noncalcified plaque, indicating excellent intrarater reliability.

Model Performance Evaluation

The confusion matrix for each CAD-RADS category, P
categories, and related features from the study cohort is
shown in Figure 3. The X-axis represents the number
calculated by human doctors (gold standard), and the Y-axis
represents the number predicted by GPT-4o0. Table 2 lists
the accuracy, specificity, sensitivity, and Fq-score for each
feature. For CAD-RADS classification (from class 0 to 5),
the accuracy ranged from 0.98 to 1.00 (0.9730-1.0000),
sensitivity from 0.95 to 1.00 (0.9191-1.0000), specificity

https://medinform.jmir.org/2025/1/e70967

from 0.98 to 1.00 (0.9669-1.0000), and F;-score from 0.96 to
1.00 (95% CI 0.9253-1.0000). For Plaque Burden P cate-
gories (PO to P4), the accuracy ranged from 0.97 to 1.00
(95% CI 0.9569-0.9990), sensitivity from 0.90 to 1.00 (95%
CI 0.8085-1.0000), specificity from 0.97 to 1.00 (95% CI
0.9533-1.0000), and Fj-score from 091 to 0.99 (95% CI
0.8377-0.9967). For the presence of myocardial bridges in the
coronary arteries, the accuracy was 0.98 (95% CI 0.9680-
0.9870), sensitivity 0.96 (95% CI 0.9376-0.9764), specificity
0.99 (95% CI 0.9852-0.9983), and Fi-score 0.97 (95% CI
0.9630-0.9844). For the presence of noncalcified coronary
plaques, the accuracy was 0.98 (95% CI 0.9680-0.9870),
sensitivity 0.98 (95% CI 0.9710-0.9929), specificity 0.97
(95% CI 0.9533-0.9862), and Fi-score of 0.98 (95% CI
0.9709-0.9880). See details in Figures 4 and 5.
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Figure 3. Confusion matrix of GPT-40 performance in Coronary Artery Reporting and Data System (CAD-RADS) categories and Plaque Burden
categories. The confusion matrix can intuitively show the number of correct or incorrect model outputs. For example, in CAD-RADS 3 categories,
the model has 218 correct answers and 6 incorrect answers.
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Table 2. Performance metrics of GPT-40 in coronary CT? angiography analysis.
Classifications Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1-score (95% CI)

CAD-RADSP categories
0

1

2

3

4a

4b

5

Plaque Burden categories
0

1

2

3

4

Myocardial bridge
Noncalcified plaque

0.99 (0.9900-0.9990)
0.98 (0.9730-0.9900)
0.99 (0.9790-0.9930)
0.99 (0.9890-0.9980)
0.99 (0.9900-0.9990)
1.00 (0.9950-1.0000)
1.00 (1.0000-1.0000)

1.00 (0.9920-0.9990)
0.99 (0.9870-0.9980)
0.97 (0.9589-0.9800)
0.97 (0.9569-0.9790)
0.99 (0.9840-0.9970)

0.98 (0.9680-0.9870)
0.98 (0.9680-0.9870)

0.98 (0.9492-1.0000)
1.00 (0.9864-1.0000)
0.95 (0.9191-0.9750)
0.97 (0.9507-0.9912)
0.97 (0.9511-0.9949)
1.00 (1.0000-1.0000)
1.00 (1.0000-1.0000)

1.00 (1.0000-1.0000)
0.98 (0.9685-0.9968)
0.93 (0.8985-0.9609)
0.96 (0.9356-0.9807)
0.90 (0.8085-0.9778)

0.96 (0.9376-0.9764)
0.98 (0.9710-0.9929)

1.00 (0.9914-0.9989)
0.98 (0.9669-0.9881)
1.00 (0.9934-1.0000)
1.00 (1.0000-1.0000)
1.00 (1.0000-1.0000)
1.00 (0.9948-1.0000)
1.00 (1.0000-1.0000)

1.00 (0.9914-0.9989)
1.00 (0.9927-1.0000)
0.98 (0.9754-0.9932)
0.97 (0.9576-0.9831)
1.00 (0.9916-0.9990)

0.99 (0.9852-0.9983)
0.97 (0.9533-0.9862)

0.96 (0.9253-0.9916)
0.96 (0.9450-0.9799)
0.97 (0.9530-0.9845)
0.99 (0.9747-0.9956)
0.99 (0.9749-0.9975)
0.97 (0.9315-1.0000)
1.00 (1.0000-1.0000)

0.97 (0.9362-0.9935)
0.99 (0.9795-0.9967)
0.95 (0.9247-0.9641)
0.95 (0.9272-0.9645)
0.91 (0.8377-0.9636)

0.99 (0.9630-0.9844)
0.98 (0.9709-0.9880)

4CT: computed tomography.
PCAD-RADS: Coronary Artery Disease-Reporting and Data System.
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Figure 4. Performance metrics of generative pre-trained transformer (GPT)-4o in identifying Coronary Artery Reporting and Data System (CAD-
RADS) categories and Plaque Burden categories (P categories). The radar chart can intuitively show that the model has a very high accuracy in

various tasks in the CAD-RADS categories and P categories.

Performance Metrics

Across Different CAD-RADS Categories

CAD-RADS 2

CAD-RADS 4B

—e—  Aceuracy
—o— Sensilivity

—e— Specificity
—— FI Score

Performance Metrics
Across Different Plaque Burden Categories

—e—  Accuracy
—e— Sensilivity

—e— Specificity
—+— F1 Score

Figure 5. Performance metrics of generative pre-trained transformer (GPT)-40 in identifying myocardial bridge and noncalcified plaque.

Myocardial Bridge
Accuracy

Myocardial Bridge
Sensitivity

97.8% 95.9%

Noncalcified Plaque
Accuracy

Noncalcified Plaque
Sensitivity

97.8% 98.4%

Error Analysis

This study performed an error analysis for CAD-RADS
categories and P categories, involving 1998 features, with 57
errors identified, resulting in an overall error rate of 2.9%.

Myocardial Bridge
Specificity

Myocardial Bridge
F1 Score

99.3% 97.4%

Noncaleified Plaque

Noncalcified Plaque
Specificity

F1 Score

97.1% ‘ 98.0% ’

The errors were classified into 3 main types: model output
termination errors, feature extraction errors, and ambiguities
in the original report descriptions, as shown in Table 3.

Table 3. Error analysis. In the 18-segment coronary artery model, the left circumflex is divided into proximal and distal segments with no
midsegment. When “midsegment” is mentioned in the report, it is defined as the proximal segment in our system settings for the prompt engineering.

Error type Frequency Explanation

CAD-RADS? categories

Model output termination error 2

The model failed to output complete structured data due to unknown reasons, resulting in

classification errors (n=2).

Feature extraction error 20

Although the model output the report completely, errors occurred during the feature

extraction phase when converting free text to structured data, leading to classification errors
(n=20). For example, in the original report, the coronary arteries had no plaques or stenosis,
and the most severe stenosis was 0%. However, the model output a 10%-20% stenosis level,
misclassifying it from class O to class 1.
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Error type Frequency Explanation

Ambiguity i then original report 0

The original report contained ambiguous or unclear descriptions, leading to erroneous

structured outputs, which impacted the final classification (n=0).

Plaque Burden categories

Model output termination error 4

The model failed to output complete structured data due to unknown reasons, resulting in

classification errors (n=4).

Feature extraction error 25

Although the model output the report completely, errors occurred during the structured data

conversion, particularly in recognizing coronary segment involvement, leading to
classification errors (n=25). This included incorrectly identifying one or more segments as
affected (n=13) or missing one or more segments (n=12), ultimately causing

misclassification.

Ambiguity i then original report 6

The original report contained ambiguous or unclear descriptions, leading to erroneous

structured outputs and affecting final classification (n=6). For instance, the report contained
an ambiguous description of the mid-proximal segment, which was incorrectly identified as 2
separate segments during the structured output phase (n=6), resulting in misclassification.

4CAD-RADS: Coronary Artery Disease Reporting and Data System.

For CAD-RADS categories, there were 2 instances of model
output termination errors, 20 instances of feature extraction
errors, and no instances of ambiguities in the original report
descriptions.

For overall plaque burden subclassification, there were 4
instances of model output termination errors, 25 instances of
feature extraction errors, and 6 instances of ambiguities in the
original report descriptions.

Discussion

This study aimed to evaluate the capability of GPT-4o
in converting unstructured coronary CTA reports into
standardized formats and automatically identifying CAD-
RADS categories and P categories. Our results demonstra-
ted exceptional performance, with accuracy rates exceeding
097 for CAD-RADS classification and P classification.
These findings suggest that LLMs could not only automate
the structuring of free-text reports to enhance radiological
workflow efficiency but also facilitate the extraction of
valuable structured information for database construction and
subsequent clinical research.

Our findings align with previous studies showing that
LLMs can effectively extract structured information from
medical reports. Recent research has demonstrated simi-
lar success in extracting features for various standardized
reporting systems, including LI-RADS and BI-RADS [24,28].
However, our study extends beyond previous work by using
a larger dataset of real-world clinical reports rather than
simulated data, providing more robust evidence of GPT-40’s
clinical applicability. The model’s high performance across
different classification tasks suggests its potential for broader
implementation in clinical radiology workflows, particularly
in standardizing reporting practices and facilitating data
collection for research.

Our study further confirms LLMs' exceptional perform-
ance in extracting clinically relevant data. For instance,
GPT-4 demonstrated a 96% accuracy rate in extracting
lesion information from lung cancer CT reports [29], and

https://medinform.jmir.org/2025/1/e70967

also showed high accuracy in emergency department CT
reports [30]. In our study, GPT-40 successfully identified and
classified coronary artery disease, particularly in the CAD-
RADS and P classification tasks, with remarkable accuracy.
These findings further support LLMs' efficiency in handling
complex medical tasks, especially where traditional manual
extraction methods may be prone to errors due to task
complexity [31].

While LLM models have shown strong capabilities
in medical data extraction, hallucinations and randomness
remain inherent challenges [27,32]. To reduce accuracy loss
caused by hallucinations, we implemented 2 key measures.
First, we set the model’s temperature to 1E-10 [27], which
helps reduce variability in the model’s outputs, thus con-
trolling randomness. Second, for the CAD-RADS and P
classification tasks, we did not rely solely on the model’s
output; instead, we used custom Python scripts to perform
further calculations based on its structured responses. This
approach ensured accuracy and validated the feasibility of our
study through high performance.

Although we achieved promising results, our study still
contained a small number of erroneous cases, with an overall
error rate of 2.9%. Most of these errors occurred during
the feature extraction phase, particularly in the CAD-RADS
classification (20 out of 22 errors occurred in this phase) and
P classification (25 out of 35 errors were related to segment
involvement scoring). Among them, 6 errors were due to
ambiguity in the original report. This error was caused by
the fact that when radiologists wrote coronary CTA reports,
they referred to inconsistent literature on the segmentation
of coronary arteries. The descriptions of the LCX segment
included the proximal LCX segment, the middle LCX
segment, and the distal LCX segment. However, this study
adopted the internationally accepted segmentation method of
18 coronary arteries, and the LCX only had the proximal and
distal segments. For the handling of ambiguous reports, we
provided the large model with relevant literature knowledge
when prompt engineering and clearly informed the model that
ambiguous reports generally needed to be carefully identified.
After manual review and repeated iterations, the accuracy of
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the model for ambiguous reports was greatly improved. This
shows that by giving the model specific knowledge and rules,
the model can adapt to the complex clinical environment in
the real world.

Due to the black-box nature of LLMs [33], we can-
not directly explore the root causes of errors, but we can
reasonably speculate on their sources. First, the model’s
inherent hallucinations [32] may cause misleading outputs
during the reasoning process of structured data. Although the
temperature adjustment reduced randomness to some extent,
hallucinations still influenced the reasoning process. Second,
external factors such as API stability, network conditions,
or computational resource limitations could also impact the
model’s output. Additionally, ambiguities or inconsistencies
in the original reports contributed to the occurrence of errors.

These issues highlight the need for professional over-
sight and intervention when using LLMs for large-scale
data extraction [34] to ensure the accuracy and consistency
of the extracted results. Regarding hallucinations, while
we have taken measures to mitigate their impact, future
research should further explore strategies to reduce hallucina-
tion phenomena, especially in clinical data extraction tasks.
Furthermore, ambiguities in the original reports may arise
from subtle differences in guidelines referenced by medical
professionals when writing reports. To minimize this impact,
radiologists should strive to adhere to internationally accepted
segmentation methods, and the model should be further
trained to enhance its understanding of medical knowledge,
particularly the differences between various guidelines for the
same disease. With these improvements, the accuracy and
reliability of the model could be further enhanced.

The implementation of GPT-40 in clinical practice appears
feasible given its high accuracy and efficiency. In addition,
in terms of operating costs, based on OpenAl’s official
pricing, the input and output of a single report in this
study is approximately 2052 (SD 15) tokens, with a cost of
approximately US $0.03. Batch processing of 1000 reports
a day only costs US $30.80, which has the potential to be
applied in clinical practice. In the RIS (Radiology Informa-
tion System) of the radiology department, there is a port
that can be connected to the GPT-40 API. This may require
the government, hospitals, and other relevant departments to
sign a patient data privacy confidentiality agreement with
OpenAl. In the future, GPT-40 will have the opportunity
to be applied in the radiology workflow. However, several
critical considerations must be addressed before widespread
adoption. Patient privacy protection remains the foremost

Chen et al

ethical priority, requiring robust safeguards implemented in
our study through a multilayered approach: beyond foun-
dational IRB compliance, all coronary CTA reports under-
went rigorous deidentification (removing Health Insurance
Portability and Accountability Act—defined Protected Health
Information) prior to LLM API interaction; data transmis-
sion was secured via TLS 1.2+ encryption with explicit
configuration to disable third-party data retention; and access
was restricted to authorized personnel through institutional
role-based controls. Crucially, future clinical deployments
must enforce equally stringent, auditable protocols within
existing health care IT infrastructure (eg, RIS or PACS or
EHR (electronic health record). Additionally, model outputs
necessitate validation by qualified radiologists—particularly
for high-risk cases—to ensure clinical accountability, while
regular updates to the model’s knowledge base are essential
to maintain alignment with evolving guidelines.

Our study has several limitations. First, all reports came
from a single institution, potentially limiting the generaliza-
bility of our findings. Second, the retrospective nature of
this study may have introduced selection bias, and this
study used Chinese as the research subjects, mainly middle-
aged and older males, so the research data may be biased,
and the performance of groups in other countries may be
different. Third, we only evaluated one version of GPT-4o,
and performance may vary with different model versions or
other LLMs. Finally, the study period was relatively short,
and longer-term evaluation would be valuable for assessing
the model’s consistency over time.

In conclusion, GPT-40 demonstrates remarkable capability
in converting unstructured coronary CTA reports from our
institution into standardized formats, suggesting significant
potential for LLMs to improve radiological workflow
efficiency and data standardization. If integrated with clinical
decision support systems in the future, it will greatly improve
the accuracy of radiologists’ diagnosis of coronary artery
disease, facilitate the management of coronary artery disease,
and reduce the time required to generate reports on cor-
onary artery findings. However, the limitations outlined
earlier, particularly concerning generalizability across diverse
health care settings and report formats, must be rigorously
addressed. Future research should prioritize multicenter
validation to rigorously assess robustness and adaptability,
investigate seamless integration with existing health care
systems (RIS or PACS or EHR), and critically evaluate
the model’s impact on downstream clinical outcomes and
decision-making.
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