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Abstract
Background: Total knee and hip arthroplasty (TKA and THA) are among the most performed elective procedures. Rising
demand and the resource-intensive nature of these procedures have contributed to longer wait times despite significant health
care investment. Current scheduling methods often rely on average surgical durations, overlooking patient-specific variability.
Objective: To determine the potential for improving elective surgery scheduling for TKA and THA, respectively, by using
a 2-stage approach that incorporates machine learning (ML) prediction of the duration of surgery (DOS) with scheduling
optimization.
Methods: In total, 2 ML models (one each for TKA and THA) were trained to predict DOS using patient factors based on
302,490 and 196,942 patients, respectively, from a large international database. In total, 3 optimization formulations based on
varying surgeon flexibility were compared: Any (surgeons could operate in any operating room at any time), Split (limitation
of 2 surgeons per operating room per day), and multiple subset sum problem (MSSP; limit of 1 surgeon per operating room
per day). Two years of daily scheduling simulations were performed for each optimization problem using ML prediction or
mean DOS over a range of schedule parameters. Constraints and resources were based on a high-volume arthroplasty hospital
in Canada.
Results: The TKA and THA prediction models achieved test accuracy (with a 30 min buffer) of 78.1% (mean squared error
0.898) and 75.4% (mean squared error 0.916), respectively. Any scheduling formulation performed significantly worse than
the Split and MSSP formulations with respect to overtime and underutilization (P<.001). The latter 2 problems performed
similarly (P>.05) over most schedule parameters. The ML prediction schedules outperformed those generated using a mean
DOS for most scheduling parameters, with overtime reduced on average by 300-500 minutes per week (12‐20 min per
operating room per day; P<.001). However, there was more operating room underutilization with the ML prediction schedules,
with it ranging from 70‐192 minutes more underutilization (P<.001). Using a 15-minute schedule granularity with a waitlist
pool of a minimum of 1 month generated the ML schedule that outperformed the mean schedule 97.1% of times.
Conclusions: Assuming a full waiting list, optimizing an individual surgeon’s elective operating room time using an
ML-assisted predict-then-optimize scheduling system improves overall operating room efficiency, significantly decreasing
overtime. This has significant potential implications for health care systems struggling with pressures of rising costs and
growing operative waitlists.
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Introduction
Total knee and hip arthroplasty (TKA and THA, respec-
tively) are the gold-standard treatment for end-stage arthritis
of the hip and knee joints. These procedures are the first
and second most frequently performed in the United States,
excluding maternal and neonatal procedures [1]. In 2018, 1.3
million of these procedures were performed in the United
States, a 21.9% increase from 2008 [1]. This number will
continue to increase globally due to an aging population and
the ongoing obesity pandemic [2,3]. The ubiquity of these
procedures correlates strongly with their burden on health
care systems globally. In the United States, approximately 5%
of the gross domestic product is to care for musculoskeletal
conditions [4,5]. Despite this spending, wait times for elective
surgical procedures in OECD countries continue to increase,
conferring extended periods of time with poor quality of life
for TKA and THA patients [6,7]. For these reasons, there is
a growing interest and research into improving the efficiency
and cost-effectiveness of arthritis care [8,9].

Most research has focused purely on the prediction of
duration of surgery (DOS) or the optimization of operat-
ing room scheduling, ignoring their inherent interrelation
[10-14]. More recently, these approaches have been combined
to plan post-surgical beds and plan emergency surgeries
based on predicted priority with varying results [15,16].
DOS prediction models typically represent a large volume
of varying procedures, spanning multiple surgical special-
ties with limited practical applications. Classic regression
modeling in orthopedics has identified age, BMI, surgi-
cal procedure, primary or revision, and gender as impor-
tant variables affecting DOS predictions [17,18]. Machine
learning (ML) models have been applied to predict DOS for
various surgeries [10,12,19-24]. However, in practice, mean
time or surgeon-specific rolling mean time is typically used to
generate schedules at the operational level.

Research evaluating the optimization of surgery schedul-
ing has been performed using an average or a randomly
sampled (typically from a lognormal distribution) DOS
value prior to optimizing a schedule through integer linear
programming based on either the multiple knapsack or
job-shop scheduling problem [25-27]. Stochastic program-
ming and distributionally robust optimization have also been
attempted to mitigate the effects of an uncertain DOS, but

these approaches assume a distribution of DOS rather than
using specific features to aid in prediction [28].

To our knowledge, no prior work has combined patient-
level DOS predictions with schedule optimization to create
an optimized surgical schedule at the operational level. It is
known that neural networks are strong predictors of DOS;
however, their realizable improvements when implemented
over various surgical schedule optimization problems, while
performing simulations accounting for real-world constraints,
remain unclear [23,24]. The primary aim of this paper was
to determine if a 2-stage approach using an ML model
for prediction of DOS paired with schedule optimization
improves operating room overutilization or underutilization
compared to using the mean DOS. Secondary objectives were
to determine the effect of schedule granularity and length of
surgeon waitlist on scheduling accuracy.

Methods
Ethical Considerations
This retrospective study analyzed deidentified American
College of Surgeons National Surgical Quality Improve-
ment (ACS NSQIP) data. The study was approved by
the Institutional Research Ethics Board (Sunnybrook Health
Sciences Center, Project REB ID #4899). Informed consent
was waived due to the secondary, minimal-risk nature of
the analysis. No local institutional patient data were used.
Privacy and confidentiality were protected in accordance
with institutional and journal policies. Data use complied
with NSQIP data-use agreements. The study adhered to the
Declaration of Helsinki.
Setting
Population-level data from the ACS NSQIP database were
used to generate prediction models. This database compiles
patient and outcome data following surgery from over 700
hospitals in North America, capturing over 1 million surgeries
per year, with a high level of accuracy [29]. The database was
queried for all TKA and THA surgical procedures performed
between 2014 and 2019. The actual DOS times as reported in
the ACS NSQIP dataset were used to inform simulated daily
operating room schedules. A flowchart that helps visualize
the overall 2-stage approach is shown in Figure 1.
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Figure 1. High-level overview of the predict-then-optimize approach. ACS NSQIP: American College of Surgeons National Surgical Quality
Improvement Program; DOS: duration of surgery; MSSP: multiple subset sum problem.

Duration of Surgery Prediction
Data pertaining to 302,490 TKA and 196,942 THA proce-
dures performed during this period as identified from the
ACS NSQIP database were used to train models to predict
DOS. DOS predictions were done as per Abbas et al [23,24].
They identified a PyTorch multilayer perceptron model that
outperformed 10 alternative ML models for predicting DOS
for TKA and THA [23,24]. Both models were trained on
procedures from 2014 to 2017, hyperparameters tuned with
Ray on procedures from 2018, and evaluated on procedures
from 2019 [23,24,30,31]. These models were generated using
the Niagara supercomputer at the SciNet HPC Consortium
[32]. Predictions of DOS from the test subsets of data were
used in the optimization model. Refer to the study by Abbas
et al [23,24] for further details regarding the DOS predic-
tion, model development, hyperparameter tuning, and feature
importance.
Schedule Optimization Formulations

Assumptions
The generated scheduling model considered elective case
scheduling, in which surgeries are planned for in advance.
The constraints and available resources for the model were
generated using real-world constraints from the authors’
institution, the highest-volume elective arthroplasty hospital
in Canada. This included cleaning time (30 min), number
of operating rooms (n=5), number of surgeons (n=11), and
days a surgeon was unavailable in a week. The planning
horizon of 1 week (5 workdays) was also based on these
constraints. The penalty for an individual operating room
running overtime (after 5 pm), λ, was chosen to be double
the value of daytime operating room underutilization. This
was due to the approximate additional costs associated with
operating room staff working after hours. The following
assumptions regarding scheduling were made: surgeons are
available to operate any day anytime except for 0‐2 randomly
selected days per week per surgeon, and once a surgery is
assigned to a surgeon, they must perform it (ie, no sharing
patients). These assumptions were made as the study did not
have access to historical data on surgeon availability from the
authors’ institution. There were no constraints placed on the
schedule based on staffing or patient beds in the recovery unit
or ward.

Optimization Formulations
In total, 3 scheduling optimization problems were formulated.
All formulations were based on an integer linear program-
ming framework that has been used for many different
scheduling problems, including but not limited to surgery
scheduling [27,33]. The first, “Any,” was adapted from
Marques et al [27] with notable modifications including
the addition of an overtime penalty and only considering 1
surgery specialty. “Any” allows any surgery to be scheduled
at any time of day in any room subject to the constraints
that no surgeries in a room overlap, and that no surgeon
is operating in 2 rooms simultaneously. The second formula-
tion, “Split,” is the same as “Any” but enforces a maximum
of 2 surgeons per operating room on a given day and a
maximum of 1 room per surgeon per day. This was chosen
as it is common when there are rooms that may be split
between 2 surgeons if 1 surgeon cannot fill the room for
that particular day. Finally, the third formulation is akin to a
max-sum multiple subset sum problem and is thus referred to
as “MSSP.” It enforces 1 surgeon per operating room on a
given day, simplified into multiple optimization problems for
each surgeon, following a fair distribution of rooms among
surgeons. This is the most common configuration used on
a clinical basis, where one surgeon has one operative room
dedicated to their cases per day. “Any” is the most flexible
optimization formulation, ie, the least constrained of the 3.
“Split” and ”Any” impose additional constraints on feasible
schedules and reflect realistic logistical restrictions that a
hospital may want to impose, eg, having a surgeon use the
same room on any given day. Details of these formulations
are found in Multimedia Appendix 1.

Simulated Schedule Generation
Using the ACS NSQIP data, simulated schedules were
generated using each optimization formulation, with schedule
parameters as follows. Schedule granularity of 10- and
15-minute block times was considered. These sizes were
chosen to ensure interpretable schedule generation. Surgery
completion times were rounded up to the nearest block. The
effect of surgeon waitlist size on schedule accuracy was also
evaluated. Waitlist sizes representing 2 weeks (n=250), 4
weeks (n=500), 8 weeks (n=1000), and 12 weeks (n=1500)
were considered. The cases within the waitlist were all given
the same priority to be booked (no rank by time), unless
randomly considered to be of high priority.

Three different versions of each model with the above
schedule parameters were created. The first model used the
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ML-predicted DOS values for THA and TKA; this is the
novel 2-stage approach of predicting then optimizing that we
are proposing in this work. The second model used the mean
DOS for each different type of surgery (THA and TKA) in
order to obtain a schedule that mimics the current operating
room schedule. Finally, a hindsight model was created that
used the true DOS values to provide an upper bound on the
best possible schedule that could be generated with perfect
information (100% accurate to the minute). Each of these 3
simulations was performed 104 times (to represent 2 y) using
a random sample of surgeries from the testing set.

Scheduling Comparisons
To compare the 3 schedule optimization formulations (Any,
Split, and MSSP), the results of the 2-stage predict-then-
optimize simulation results across all schedule parameter
combinations were assessed. To evaluate the efficacy of the
2-stage schedule generation technique, it was compared to
the results of scheduling by 2 other techniques: the mean
DOS for each surgery (the current gold standard at most
institutions) and the hindsight schedule. Each of these 3
schedules was constructed for each week of the simulation,
and metrics consisting of overtime, underutilization, and the
objective function value were calculated for each schedule.
Student’s t-test was used to compare the effect between
scheduling formulations. Overtime and underutilization for
2-stage and mean DOS schedules over the simulated weeks
were compared using the paired Wilcoxon signed-rank test,
as the same surgical cases were randomly selected for
each generated schedule. The effect of schedule granularity
and considered waitlist size was evaluated using unpaired
Student’s t-test and analysis of variance as these were
grouped over multiple selections of random cases. P values
of <.05 were considered statistically significant.

Results
Prediction Model Accuracy
Demographic details of patients included are found in
Multimedia Appendix 2. A summary of the DOS predic-
tion models is found in Multimedia Appendix 3. The TKA
prediction model obtained a training accuracy (with a 30 min
buffer) of 76.9% and a training mean squared error (MSE) of
0.904. The validation accuracy was 77.7% with an MSE of
0.904. The test accuracy was 78.1% with an MSE of 0.898.
The THA prediction model obtained a training accuracy of
74.0% and a training MSE of 0.888. The validation accuracy
was 75.0% with an MSE of 0.910, and the test accuracy was
75.4% with an MSE of 0.916.
Schedule Optimization Formulation
Comparison
Overall, the Any scheduling optimization formulation
exhibited the poorest performance across all different
schedule parameter combinations (Table 1). There was
no significant difference in overtime across all schedule
parameters between the Split and MSSP formulations. For
2 combinations of schedule parameters (10 min granularity,
1500 waitlist size and 15 min granularity, 1500 waitlist size),
there was significantly less operating room underutilization
with the MSSP formulation; however, this was only 10.9
minutes and 15.4 minutes, respectively, on average over
an entire week (Table 1). In contrast, for 15-minute granu-
larity and a 250-waitlist size, there was significantly more
operating room underutilization with MSSP compared to the
Split formulation, 42.3 minutes over an entire week (Table
1). Figures 2 and 3 display this comparison for overtime and
underutilization across all 3 optimization problems, respec-
tively.

Table 1. Simulated schedule results for 2-stage (predict-then-optimize) for each schedule optimization formulation. The mean number of cases/week
is not significant between any schedule optimization formulations.
Schedule
parameters

Overtime min/week,
mean (SD) P value

Underutilization min/
week, mean (SD) P value

Mean cases/
week (SD)

Granularity=10 minutes, waitlist=250 patients (2 wk)
Any 1335.7 (322.1) Reference <.001 669.1 (189.1) Reference <.001 125.0 (0.2)
Split 1003.8 (238.1) <.001 Reference 285.2 (117.4) <.001 Reference 125.0 (0.2)
MSSPa 1010.9 (211.3) <.001 .82 309.7 (128.7) <.001 .15 124.2 (0.9)
Granularity=10 minutes, waitlist=500 patients (4 wk)
Any 1410.4 (331.2) Reference <.001 694.4 (157.0) Reference <.001 125.0 (0.2)
Split 966.7 (232.9) <.001 Reference 300.8 (113.9) <.001 Reference 125.0 (0.1)
MSSP 988.6 (216.3) <.001 .49 298.8 (119.8) <.001 .91 124.9 (0.2)
Granularity=10 minutes, waitlist=1000 patients (8 wk)
Any 1368.8 (310.0) Reference <.001 689.6 (183.7) Reference <.001 124.9 (0.3)
Split 964.0 (243.9) <.001 Reference 301.6 (119.9) <0.001 Reference 125.0 (0.2)
MSSP 954.9 (225.7) <.001 .78 306.3 (112.8) <0.001 .78 124.7 (0.6)
Granularity=10 minutes, waitlist=1500 patients (12 wk)
Any 1267.9 (321.9) Reference <.001 657.7 (165.2) Reference <.001 124.8 (0.4)
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Schedule
parameters

Overtime min/week,
mean (SD) P value

Underutilization min/
week, mean (SD) P value

Mean cases/
week (SD)

Split 972.2 (225.2) <.001 Reference 325.9 (114.8) <.001 Reference 124.9 (0.3)
MSSP 981.3 (199.0) <.001 .34 315.0 (109.9) <.001 <.001 124.3 (0.7)
Granularity=15 minutes, waitlist=250 patients (2 wk)
Any 1416.2 (357.7) Reference <.001 702.3 (185.5) Reference <.001 123.4 (1.8)
Split 985.1 (235.6) <.001 Reference 307.6 (119.9) <.001 Reference 123.1 (1.9)
MSSP 977.9 (229.7) <.001 .82 349.9 (144.4) <.001 .02 121.6 (1.5)
Granularity=15 minutes, waitlist=500 patients (4 wk)
Any 1450.8 (331.3) Reference <.001 674.4 (167.6) Reference <.001 124.8 (0.4)
Split 1016.3 (240.1) <.001 Reference 273.9 (104.0) <.001 Reference 124.9 (0.3)
MSSP 1025.6 (235.9) <.001 .78 263.7 (111.3) <.001 .50 124.6 (0.7)
Granularity=15 minutes, waitlist=1000 patients (8 wk)
Any 1434.7 (324.7) Reference <.001 669.7 (160.8) Reference <.001 124.6 (0.7)
Split 1039.3 (229.5) <.001 Reference 242.0 (99.3) <.001 Reference 124.9 (0.4)
MSSP 1040.8 (230.6) <.001 .96 260.5 (100.1) <.001 .19 124.8 (0.5)
Granularity=15 minutes, waitlist=1500 patients (12 wk)
Any 1369.9 (356.1) Reference <.001 641.3 (153.5) Reference <.001 123.8 (1.2)
Split 996.2 (207.1) <.001 Reference 294.1 (108.3) <.001 Reference 124.5 (0.7)
MSSP 988.6 (229.9) <.001 .59 278.7 (113.1) <.001 .001 124.5 (0.7)

aMSSP: multiple subset sum problem.

Figure 2. Mean overtime for each schedule optimization formulation across all schedule parameter combinations. MSSP: multiple subset sum
problem.
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Figure 3. Mean underutilization for each schedule optimization formulation across all schedule parameter combinations. MSSP: multiple subset sum
problem.

Simulated Schedule Comparison
As the MSSP scheduling formulation performed best across
all schedule parameters, it was used in all further analyses.
The 2-stage predict-then-optimize approach performed better
than using mean DOS for over 80% of weekly schedules
in terms of objective optimization problem value across all
schedule parameter combinations. This difference was more
consistent across the schedules generated using 15-minute
schedule granularity size, where 2-stage was superior to mean
in over 90% of simulated schedules (Table 2). There was
less overtime across all schedule parameters when using the
2-stage approach (P<.001), equating to an average decrease
in overtime of 300-500 minutes per week at the simula-
ted hospital (or 12-20 min per operating room per day).
However, there was more operating room underutilization
with the 2-stage approach across all schedule parameters
(Table 3; P<.001). As expected, the hindsight schedule was

nearly perfect for all generated schedules and was signifi-
cantly better than the 2-stage or mean approach with respect
to objective value, overtime, and underutilization (Table
3). Despite a statistically significant difference, there was
no clinically realizable difference in the number of cases
performed between the 2-stage and mean groups; however,
the hindsight formulation scheduled less cases than both
the mean and the 2-stage approach (mean of approximately
12 fewer cases per wk). Details regarding the Any and
Split scheduling formulation results are found in Multimedia
Appendices 4 and 5, respectively.

The changes to schedule granularity and considered
waitlist size did not influence the amount of overtime.
However, there was significantly less operating room
underutilization with the 15-minute granularity schedules
(P=.02) and with waitlist sizes greater than 500, or 1 month
considered (P<.001) (Table 4).

Table 2. Percentage of simulations in which the 2-stage performed better than mean for all schedule parameters using the MSSP schedule
optimization formulation.
Granularity 250 cases 500 cases 1000 cases 1500 cases
10 minutes 86.5 90.4 80.1 81.7
15 minutes 95.2 91.3 97.1 93.3

Table 3. Comparing 2-stage mean and hindsight durations of surgery using the multiple subset sum problem (MSSP) schedule optimization
formulation.

Method
Overtime (min/week), mean
(SD) P value

Underutilization (min/
week), mean (SD) P value

Mean cases/week
(SD) P value

Granularity=10 minutes, waitlist=250 patients (2 wk)
Two-stage 1010.9 (211.3) Reference 309.7 (128.7) Reference 124.2 (0.9) Reference
Mean 1310.9 (296.9) <.001 218.7 (99.1) <.001 124.9 (0.5) <.001
Hindsight 0.4 (3.1) <.001 13.8 (52.8) <.001 112.5 (2.8) <.001
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Method
Overtime (min/week), mean
(SD) P value

Underutilization (min/
week), mean (SD) P value

Mean cases/week
(SD) P value

Granularity=10 minutes, waitlist=500 patients (4 wk)
Two-stage 988.6 (216.3) Reference 298.8 (119.8) Reference 124.9 (0.2) Reference
Mean 1305.7 (242.2) <.001 220.8 (102.0) <.001 125.0 (0) .01
Hindsight 0 (0) <.001 0 (0) <.001 112.8 (2.7) <.001
Granularity=10 minutes, waitlist=1000 patients (8 wk)
Two-stage 954.9 (225.7) Reference 306.3 (112.8) Reference 124.7 (0.6) Reference
Mean 1276.3 (310.1) <.001 220.4 (101.5) <.001 125.0 (0) <.001
Hindsight 0 (0) <.001 0 (0) <.001 120.3 (3.4) <.001
Granularity=10 minutes, waitlist=1500 patients (12 wk)
Two-stage 981.3 (199.0) Reference 315.0 (109.9) Reference 124.3 (0.7) Reference
Mean 1267.7 (224.0) <.001 223.4 (95.1) <.001 125.0 (0) .24
Hindsight 0 (0) <.001 0.0 (0) <.001 125.4 (3.9) .006
Granularity=15 minutes, waitlist=250 patients (2 wk)
Two-stage 977.9 (229.7) Reference 349.9 (144.4) Reference 121.6 (1.5) Reference
Mean 1485.0 (274.0) <.001 158.1 (107.4) <.001 124.9 (0.5) <.001
Hindsight 0.4 (3.3) <.001 15.7 (66.2) <.001 113.8 (2.5) <.001
Granularity=15 minutes, waitlist=500 patients (4 wk)
Two-stage 1025.6 (235.9) Reference 263.7 (111.3) Reference 124.6 (0.7) Reference
Mean 1526.7 (275.6) <.001 149.3 (81.9) <.001 125.0 (0) <.001
Hindsight 0 (0) <.001 0 (0) <.001 116.1 (2.5) <.001
Granularity=15 minutes, waitlist=1000 patients (8 wk)
Two-stage 1040.8 (239.8) Reference 260.5 (100.1) Reference 124.8 (0.5) Reference
Mean 1562.2 (262.0) <.001 140.6 (90.7) <.001 125.0 (0) <.001
Hindsight 0 (0) <.001 0 (0) <.001 119.0 (2.1) <.001
Granularity=15 minutes, waitlist=1500 patients (12 wk)
Two-stage 988.6 (229.9) Reference 278.7 (113.1) Reference 124.5 (0.7) Reference
Mean 1540.0 (267.0) <.001 164.6 (79.8) <.001 125.0 (0) <.001
Hindsight 0 (0) <.001 0 (0) <.001 118.8 (2.4) <.001

Table 4. Comparing the impact of schedule parameters for the 2-stage multiple subset sum problem (MSSP).
Schedule parameters Overtime, min/week, mean (SD) P value Underutilization, min/week, mean (SD) P value
Granularity .12 .02
  10 min 983.9 (213.9) 307.5 (117.8)
  15 min 1008.2 (231.5) 288.2 (117.2)
Waitlist size .79 <.001
  250 (2 weeks) 994.4 (221.9) 329.8 (138.5)
  500 (4 weeks) 1007.1 (227.6) 281.25 (117.2)
  1000 (8 weeks) 997.8 (232.8) 283.4 (109.4)
  1500 (12 weeks) 984.9 (215.5) 296.8 (113.3)

Discussion
This paper compared 3 different scheduling optimization
problems and evaluated a novel approach to surgical
scheduling for TKAs and THAs using a combined 2-
stage ML DOS prediction and optimization. There was no
significant difference in operating room underutilization or
overtime between the MSSP (one surgeon designated to one
operating room per day) or Split (maximum of 2 surgeons
designated for 1 operating room per day) optimization

formulations. However, both performed significantly better
than the Any (no limit on surgeons per operating room per
day) formulation.

We believe this is due to the limitations of the predictions:
underestimating the DOS of 1 case c being performed by
surgeon h in room r can have cascading effects on another
room r′ in which the same surgeon h is due to perform
another surgery c′ at a later time. This causes additional
overtime penalties for “Any,” something that the more
restrictive “Split” and “MSSP” do not encounter. This is why,
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despite optimal solutions to “Any” being theoretically better
than those of “Split,” they performed worse when simulated
with the actual DOS.

Overall, the combined 2-stage approach significantly
outperformed the current standard for scheduling cases, which
is a case-specific mean surgery duration. This performance
improvement was maintained across all schedule parameter
combinations, including different schedule block granularity
and different patient waitlist sizes considered. Despite this
improvement, the 2-stage approach performed considerably
worse than the hindsight schedule, highlighting the limita-
tions of the current predictions that are based solely on
preoperative patient data. Interestingly, there was no impact
on overtime by varying schedule granularity or waitlist size;
however, both of these impacted the amount of underutiliza-
tion. The smaller waitlist size of 2 weeks of considered cases
had a greater amount of underutilization, which was likely
due to surgeons not having enough cases to fill their operating
room time. Once a threshold was met at a 4-week pool of
cases, there was no difference between groups. Also notable
was the fact that when only considering a 2-week pool
of cases, the Split optimization formulation outperformed
MSSP, likely due to some surgeons not having enough cases
to fill their time. Therefore, as the MSSP formulation is most
practically implementable, it must be ensured that either the
considered case pool is large enough or surgeons are allocated
time when they have enough cases to fill an entire operating
room day to avoid underutilization.

Errors in procedure length estimation by clinicians occur
in approximately 75% of cases, with 32%‐50% of daily
operating room schedules being underbooked and 37%‐42%
overbooked [34,35]. This is compounded by the fact that
less than 50% of operating time is spent doing surgery
[34]. Booking based on a historical mean is more accu-
rate than when estimated by the surgical team, though less
accurate than traditional ML approaches [10,36-38]. Previous
approaches using computing to improve surgical scheduling
have included schedule optimization or ML to predict DOS in
isolation [13,21,27,37,39,40]. Other approaches to scheduling
operating room utilization include the use of surgeon-specific
mean DOS or a surgeon case-specific rolling average time.
To our knowledge, these have not been compared to an ML
prediction-based approach. Due to the lack of surgeon-spe-
cific details included in the ACS NSQIP dataset, we could not
assess the efficacy of these approaches in the present study.

The implementation of this predict-then-optimize
scheduling approach would face several challenges in the
real world. The MSSP optimization model is in line with
current surgical scheduling practices at most hospitals. This
formulation optimizes a specific surgeon’s waiting list,
increasing their ability to accurately plan their day while
ensuring a fair distribution of time (by operating room days)
for each surgeon. However, attempting to implement the other
optimization formulations (Split and Any) may be faced with
resistance by end-users. Particularly, using the Any formula-
tion, surgeons may have cases at the beginning and end of
the day spread out across more days in a week. ML-predicted
DOS has been trialed previously in operating room planning

by one group that found a reduction in wait time between
cases [41]. However, they generated the predicted DOS and
evaluated the implications of that information over a single
day, not considering other cases from the waitlist or optimiz-
ing the schedule based on the predicted DOS.

In addition to improving operating room utilization at
the systems level, the present study has implications for
surgeon-level daily planning. Accurate patient-specific DOS
prediction and scheduling allow for more effective personal
scheduling, including preoperative preparation, intraoperative
workflow, and postoperative responsibilities. Accurate DOS
predictions can assist surgeons in anticipating the need
for ancillary support (eg, anesthesia, nursing, imaging) and
have the potential to help decrease fatigue associated with
unplanned overruns. When integrated into scheduling systems
that allocate block time based on surgeon-specific waitlists
(as in the MSSP formulation), this can enhance both surgeon
efficiency and case throughput, aligning institutional resource
allocation with the surgeon’s realistic operative capacity.

The generated models and optimization formulations
have the ability to transform how elective operating room
scheduling is performed. By developing models specific to
each operation, this increases the accuracy of each model.
Most previous research evaluating the effect of ML for
DOS prediction has grouped multiple different procedures
[21,37]. Using such models, the procedure performed would
generally be the most important feature, diluting the effect
of other important patient factors without using appropriate
ML techniques. The potential for cost savings for hospitals,
related to reduction in overtime costs and valuable underused
operating room time, is high, but the main limitation lies in
the accuracy of the DOS prediction. The predictive models
for TKA and THA included 33 individual patient features.
Improving the model with the use of operational factors from
a specific institution would likely have a corresponding effect
on the schedule results but would reduce the generalizability
of the approach. Further improvements may also be made by
directly integrating the downstream scheduling optimization
problem into training the predictive ML model [42].

This work presents some limitations. First, the DOS
prediction was restricted to preoperative patient factors,
based on the availability of data elements in the ACS
NSQIP database, limiting the prediction accuracy. This was
evidenced by the large difference in schedule performance
between the 2-stage method and the perfect, hindsight,
schedule. Nevertheless, this approach to predicting DOS
still yielded improved schedules as compared to using a
surgery-specific mean time estimate. Second, the goal of
our optimization problem was to maximize the utilization
of the operating room; however, this may not be directly
in line with the goals of all hospitals, as some institutions
may have other priorities, such as maximizing the number
of cases completed. This project only developed predictive
models for primary TKA and THA procedures, which may
have artificially lowered the potential effect size of using
this approach, as these are relatively routine procedures
with lower DOS variability. By generating more surgery-spe-
cific predictive models within orthopedic surgery or other
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specialties, the potential for this approach may be even
larger. However, these results are more directly applicable
to high-volume arthroplasty surgical centers. Additionally,
this scheduling approach was a simplified proof-of-concept
model that may not be applicable to more complex, real-
world scheduling scenarios. For example, it did not consider
downstream constraints, such as the number of recovery beds,
ward beds, or available staff. This was not a concern at our
local institution due to its relative efficiency as a high-volume
arthroplasty center. However, this would need to be expanded
upon in future work if this is to be practically implemented in
less specialized centers. Finally, the Split and Any optimiza-
tion problems were computationally intensive when consider-
ing a waiting list size of 2‐3 months of patients. This may
be a consideration depending on institutional computational

resources, which is worth noting when implementing a
similar solution.

In conclusion, using ML patient-specific DOS predictions
coupled with optimization was superior to elective schedul-
ing based on a mean DOS metric over 3 different optimi-
zation problems with varying constraints and combinations
of waitlist size and granularity. This generalizable approach
suggests that improvements in hospital resource utilization
are possible with the application of new computational
methods, but the inclusion of institution-specific operational
data may be considered to further improve predictions and
scheduling. This has significant potential implications for
health care systems struggling with pressures of rising costs
and growing operative waitlists.
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