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Abstract
Background: Osteoporosis is a bone disease characterized by reduced bone mineral density and mass, which increase the risk
of fragility fractures in patients. Artificial intelligence can mine imaging features specific to different bone densities, shapes,
and structures and fuse other multimodal features for synergistic diagnosis to improve prediction accuracy.
Objective: This study aims to develop a multimodal model that fuses chest X-rays and clinical parameters for opportunistic
screening of osteoporosis and to compare and analyze the experimental results with existing methods.
Methods: We used multimodal data, including chest X-ray images and clinical data, from a total of 1780 patients at Chongq-
ing Daping Hospital from January 2019 to August 2024. We adopted a probability fusion strategy to construct a multimodal
model. In our model, we used a convolutional neural network as the backbone network for image processing and fine-tuned it
using a transfer learning technique to suit the specific task of this study. In addition, we introduced a gradient-based wavelet
feature extraction method. We combined it with an attention mechanism to assist in feature fusion, which enhanced the
model’s focus on key regions of the image and further improved its ability to extract image features.
Results: The multimodal model proposed in this paper outperforms the traditional methods in the 4 evaluation metrics of area
under the curve value, accuracy, sensitivity, and specificity. Compared with using only the X-ray image model, the multimodal
model improved the area under the curve value significantly from 0.951 to 0.975 (P=.004), the accuracy from 89.32% to
92.36% (P=.045), the sensitivity from 89.82% to 91.23% (P=.03), and the specificity from 88.64% to 93.92% (P=.008).
Conclusions: While the multimodal model that fuses chest X-ray images and clinical data demonstrated superior performance
compared to unimodal models and traditional methods, this study has several limitations. The dataset size may not be sufficient
to capture the full diversity of the population. The retrospective nature of the study may introduce selection bias, and the
lack of external validation limits the generalizability of the findings. Future studies should address these limitations by
incorporating larger, more diverse datasets and conducting rigorous external validation to further establish the model’s clinical
use.
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Introduction
Background
Osteoporosis is a common metabolic bone disease character-
ized by decreased bone mineral density (BMD) and thinning
of the trabecular structure of bone, leading to fragile bones
and an increased risk of fracture. As the global popula-
tion ages, osteoporosis has become a key factor affecting
the health of middle-aged and older adults. However, the
early symptoms of osteoporosis are not obvious, and most
patients are diagnosed only after a fracture occurs, leading
to increased complications and mortality [1]. Therefore, how
to effectively identify people at high risk of osteoporosis and
take timely preventive measures has become the focus of
current clinical research.

Automated detection and classification of osteoporosis
using deep learning (DL) has become a popular research
topic in recent years [2]. Traditional prediction methods
for osteoporosis mainly rely on a single data type, such as
assessing BMD and classifying the degree of bone loss based
on clinical data [3-5], computed tomography [6,7], magnetic
resonance imaging [8], and X-ray images [9-12]. Dual-energy
X-ray absorptiometry (DXA) is an internationally recognized
method of measuring BMD and is also considered the gold
standard for the diagnosis of osteoporosis [13]. However,
DXA is less available and the cost of screening is high. For
this reason, opportunistic screening offers a viable solution,
as it uses clinical data for other indications without addi-
tional costs, radiation exposure, or patient time. In contrast,
DL algorithm–based assessment of osteoporosis from X-ray
images is a low-cost alternative to DXA [14-16]. Chest
X-ray imaging has accumulated a large amount of imag-
ing resources in routine applications such as pneumonia
screening and bronchial disease examination, providing a
natural imaging basis for opportunistic screening of osteopo-
rosis. In addition, chest X-rays [11,17,18] can capture key
bone structures affected by osteoporosis, such as ribs, thoracic
vertebrae, and clavicles, further highlighting their application
value in osteoporosis screening. Although such DL models
based on a single data type have improved the accuracy and
efficiency of osteoporosis diagnosis to a certain extent, the
single data type only provides 1D information, neglecting the
comprehensive consideration of information about the bone
microenvironment, physiological characteristics, and patients’
clinical data, which leads to the prediction results that may
not be comprehensive and accurate.

However, in the actual diagnostic process, doctors
will comprehensively refer to various information sources,
including medical image data, laboratory examination data,
and medical record reports, to improve the accuracy of
diagnosis [19]. This concept is introduced into DL, which
aims to simulate the complex process of medical differ-
ential diagnosis through multimodal [20,21] data fusion.
The fusion of multimodal medical data has become a hot
research topic in interdisciplinary fields. Multimodal fusion
can provide a more accurate description of samples, and it
exploits the complementary and synergistic nature of each

modality’s information more effectively than any single
modality data [22]. As a result, multimodal fusion techniques
have been widely used in several medical fields, including
oncology, cardiovascular medicine, and radiology [23-25].
In the field of orthopedics, relevant multimodal studies are
rapidly emerging [26,27], providing new ideas for osteoporo-
sis prediction.
Objectives
In this study, we propose a multimodal prediction model that
fuses chest X-ray images and clinical data for opportunistic
screening of osteoporosis. In the model construction, we
used a convolutional neural network (CNN) as the back-
bone network for image processing and fine-tuned it to the
specific task of this study using transfer learning techni-
ques. In addition, we introduced a gradient-based wavelet
feature extraction method. We combined it with an attention
mechanism to assist in feature fusion, which strengthened
the model’s focus on key regions of the image and further
enhanced the model’s ability to extract image features.

Methods
Ethical Considerations
The study was approved by the institutional review board
at the Chongqing Daping Hospital (2024_335). A waiver of
informed consent was provided, as this retrospective study
used existing information. Privacy and confidentiality of all
patient data were maintained throughout the entire study. No
compensation was provided to patients, as this study only
involved the review of retrospective data.
Dataset and Study Population
This study retrospectively collected multimodal data,
including chest X-ray images and clinical data, from January
2019 to August 2024. The specific inclusion criteria were
as follows: (1) patient age ≥50 years and (2) chest X-ray
and DXA were performed on the same day. The specific
exclusion criteria were as follows: (1) image data with
artifacts, blurriness, or inability to display bone structures;
(2) patients with other serious diseases that may affect
bone health or interfere with diagnosis, such as malignant
tumors and severe metabolic diseases; (3) patients who have
recently used drugs that may affect bone metabolism or
BMD measurement, such as hormone drugs and antiosteopo-
rosis drugs; and (4) cases where the missing rate of clini-
cal data reached or exceeded 30%. On the basis of these
criteria, a total of 1780 cases met all the criteria, with 990
(55.62%) cases in the osteoporosis group and 790 (44.38%)
cases in the nonosteoporosis group. Therefore, we extracted
chest X-ray images (DICOM format) from the hospital’s
communication system repository and collected the clinical
data of patients from the back-end database, including age,
sex, height, weight, white blood cell count, platelet count,
serum calcium level, fasting blood glucose, and chest X-ray
descriptive information. The model was trained through a
5-fold cross-validation.
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The diagnosis of osteoporosis was based on DXA BMD
measurement results. DXA negative means BMD is within
the normal range, corresponding to the nonosteoporosis
group. DXA positivity refers to a BMD lower than the normal
range, corresponding to the osteoporosis group. The DXA
manufacturer of Chongqing Daping Hospital is GE Lunar
Prodigy model (Madison, WI, USA).
Preprocessing
The DICOM format X-ray images were converted to the 8-bit
PNG format to adapt to the DL frameworks. After conver-
sion, the images were all manually reviewed. The image
intensity was reversed to ensure no negative values and then
normalized. All images were squared using zero padding
and then downsampled to 224×224 pixels to fit a pretrained
CNN on ImageNet. Using dynamic data augmentation to limit
overfitting, this included random flipping (horizontal and
vertical), random rotations (90° rotation), random translations
(10% variation in each direction), random zooming (10%
variation), and random contrast adjustment (factor of 0.3).

For the handling of missing values in clinical data,
regarding white blood cell count and serum calcium level,
since the numerical distribution of these features was roughly
normally distributed, the mean of the variables was used

for filling, which could better reflect the overall level. For
features such as BMI, platelet count, and fasting blood
glucose, as their numerical distributions might be skewed, the
median of the variables was chosen for imputation, which was
more robust in this case.

This research dataset included 990 positive (osteoporo-
sis) and 790 negative (nonosteoporosis) samples, with a
positive-to-negative ratio of 55.6% and 44.4%, respectively.
In response to the mild imbalance characteristics of the
dataset, this study adopted class weighting techniques to
weight the loss function based on the distribution of training
dataset classes, thereby improving the model’s sensitivity to
identifying minority classes.
Proposed Multimodal Model

Overview
The framework of our proposed multimodal model is shown
in Figure 1. After data preprocessing, we built an image
model trained on X-ray images and a clinical parameter
model trained on clinical data. The multimodal model then
fused the prediction results of these two models using a
probability fusion (PF) strategy [19]. The details of each
model are described in the following sections.

Figure 1. The proposed multimodal model framework. It includes 3 parts: image, clinical parameter, and multimodal models.

Image Model
Transfer learning is a method that uses pretrained models
to reduce the data and computational costs required for new
tasks. In the field of medical imaging, methods that com-
bine transfer learning with CNN models trained on large-
scale datasets such as ImageNet have been widely adopted
[28]. Our image model used a pretrained ResNet50 [29] as

the backbone network for feature extraction of chest X-ray
images. Subsequently, we applied the wavelet transform
(WT) for multiscale analysis of the images to extract features
at different scales that reveal subtle changes in bone structure
in different images. The soft attention (SA) mechanism was
used to capture specific appearance features and morphologi-
cal regions in the images. Finally, we used a gradient-based
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feature fusion mechanism to effectively fuse these features to
obtain the final image probabilistic output.

ResNet50 has excellent feature extraction capabilities, with
a network depth of up to 50 layers, which could effectively
capture rich hierarchical features in image data. Mean-
while, the residual learning structure adopted by ResNet50
effectively solved the problem of gradient vanishing during
deep network training. In addition, it also had a lower
number of parameters and computational costs, making it
more practical for common hardware deployment scenarios in
medical imaging analysis. For the binary classification task of
osteoporosis, we fine-tuned our pretrained ResNet50 model.
Specifically, considering that our classification task involved
only 2 categories, which were significantly different from the
1000 categories in ImageNet shown in a previous study by
Holste et al [30], we added a global maximum pooling layer
and 3 fully connected layers with 1024, 512, and 256 neurons
to the top of the pretrained model.

WT is a signal processing method based on multiscale
analysis, which decomposes a signal into a weighted sum of
multiple waves of different scales and frequencies through
a mathematical transform. The WT has the advantage of
multiscale and multiresolution and is capable of accurately
extracting the local spatiotemporal distribution characteristics
of the signal [31]. In our multimodal model, we used an
efficient Haar WT method that extracted wavelet features
from the output features of ResNet50. These features covered
valuable information such as the sparsity of bone trabeculae
and the thickness of the bone cortex. To reduce the parame-
ters and computational effort of the model and to maintain the
performance of the model, a depth-separable convolutional
layer was introduced after the WT layer.

Inspired by the recent widespread application of the
attention mechanism in deep neural networks [32], we
introduced the attention mechanism into our model. Both
SA [33] and hard attention are mechanisms that help models
focus on key parts of input data. The hard attention mech-
anism involved discrete sampling at specific locations of
input data, typically using reinforcement learning methods
during training, as it involved nondifferentiable operations.
In contrast, the SA mechanism was a probability distribution-
based continuous attention method that assigned a weight
to each position of the input data, and then weighted and
summed the input based on these weights to obtain a context
vector. The advantage of SA was that it was completely
differentiable and could be trained end-to-end using standard
gradient descent methods, making it more stable and efficient
during the training process. In our study, we used a SA
mechanism that assigned a weight to each input item,
representing the degree of attention the model pays to that
input item. This helped the model focus on key regions in
X-ray images and generated descriptions that match the image
content.

Specifically, we dynamically performed adaptive gradient
fusion of wavelet features with SA features, using the
normalized backpropagation gradients g Fw  and g Fsa  of Fw
and Fsa as the basis for fusion weights, as shown in equation

1. A higher gradient means that the corresponding feature
may have a negative impact on the model performance, and
therefore it is given less weight in the fused features Ffuse,
and vice versa. By introducing learnable weights, the feature
fusion process was optimized to be more representative
without increasing the parameters. This method ensured that
important information was efficiently fused into the coded
features before they were passed to the fully connected layer.

(1)Ffuse = 1 − g Fw × Fw + 1 − g Fsa × Fsa
Clinical Parameter Model
Our clinical parameter model includes important blood
biochemical indicators such as white blood cell count,
platelet count, serum calcium level, and fasting blood glucose
and personal information including age, sex, and BMI, as
well as chest X-ray diagnosis and descriptive information.
Previously, most machine learning–based studies have relied
mainly on clinical data, such as using prehospital information
to predict mortality in patients with heart failure in inten-
sive care units [34] or for predicting sepsis [35]. Algorithms
such as random forest and XGBoost usually showed better
performance than DL models for clinical data processing,
and they did not require backpropagation during training;
however, this made it difficult to directly combine these
algorithms with DL models such as CNNs. Therefore, in
our study, we chose to use a fully connected layer with 50
neurons to process these clinical data.

Multimodal Model
When training our multimodal model, we used the weights
of the already trained baseline image model and clinical
parameter model. We used a PF strategy in which both
baseline models were run in inference mode, each inde-
pendently producing a prediction. Our multimodal fusion
mechanism then took the independent output probabilities of
the image and clinical parameter models as inputs, concaten-
ated them, and input them into a fully connected layer neural
network with 32 neurons to generate the final prediction.
During the training process, the learning rate started at each
epoch and decreased in a multiplicative manner at the end
of each epoch until a preset minimum was reached, and it
took approximately 40 minutes to train the multimodal model
once.
Evaluation
We used 4 evaluation metrics to measure the performance
of our model, including area under the curve (AUC) value,
accuracy, sensitivity, and specificity. To obtain more accurate
and less biased results, we adopted a 5-fold cross-valida-
tion method. In the hyperparameter settings, we used binary
cross-entropy as the loss function and selected the Adam
optimizer. We combined the ideas of grid search and random
search, and tried multiple values such as 1e−4, 1e−5, and 1e−6
for the learning rate. For the dropout rate, we tried multiple
values such as 0.2, 0.25, 0.3, 0.4, and 0.5. For batch size,
we tried multiple values such as 16, 32, 64, and 128. The
final determined learning rate was 1e−5, dropout was 0.25,
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and the batch size was 32. To effectively prevent overfitting
of training data, we adopted an early stopping strategy based
on validation loss and retained the optimal weights during the
training process for recovery. Our model was implemented in
Keras 2.4 and trained on a computer with an Intel i9-14900K
24-core CPU, 64 GB of RAM, and an NVIDIA RTX A6000
GPU card with 48 GB of memory.

Results
Patient Characteristics
This study included a total of 1780 patients (as shown in
the patient inclusion process flow diagram in Figure 2), with

each patient corresponding to an anteroposterior position
chest X-ray image. The average age of the patients was
69.46 (10.33) years, with an age range of 50 to 99 years.
The statistical data of the training dataset, validation dataset,
and test dataset are detailed in Table 1. These three datasets
are almost identical in terms of sex and age distribution.
All patients were divided into 2 groups: the osteoporosis
group (990/1780, 55.62%) and the nonosteoporosis group
(790/1780, 44.38%); 55.66% (659/1184), 56.4% (167/296),
and 54.7% (164/300) of patients in the 3 datasets suffer from
osteoporosis.

Figure 2. Patient inclusion process diagram. BMD: bone mineral density; DXA: dual-energy X-ray absorptiometry.

Table 1. Dataset description of 1780 cases of patients with osteoporosis.

Characteristics Training dataset (n=1184) Validation dataset (n=296)
Test dataset
(n=300)

Age (y), mean (SD) 69.3 (10.34) 69.53 (10.72) 69.94
(10.28)

Sex, n (%)
  Male 495 (41.80) 119 (40.2) 120 (40.0)
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Characteristics Training dataset (n=1184) Validation dataset (n=296)
Test dataset
(n=300)

  Female 689 (58.20) 177 (59.8) 180 (60.0)
Presence of osteoporosis, n (%)
  Osteoporosis 659 (55.66) 167 (56.4) 164 (54.7)
  Nonosteoporosis 525 (44.34) 129 (43.6) 136 (45.3)

Overall Predictive Performance of the
Multimodal Model
In this study, we used the SHAP (Shapley additive explana-
tions) method to analyze the feature importance of the model.
The SHAP method helps us understand which features have
a specific impact on the model’s decision-making process by
calculating the contribution value (ie, SHAP value) of each
feature to the model prediction. Figure 3 presents the results
of the SHAP method, including a dot plot (Figure 3A) and a
bar plot (Figure 3B). The dot plot displays the distribution

of SHAP values for each feature, reflecting the direction
and degree of the feature’s impact on the model’s predic-
tion results. The bar plot summarizes the mean contribution
of each feature to the model prediction. According to the
analysis results, the features that contributed the most to
the model prediction were age, chest X-ray diagnosis, sex,
chest X-ray descriptive information, white blood cell count,
platelet count, BMI, fasting blood glucose, and serum calcium
level. These results indicated that the selected features were
of great significance for model prediction, thereby improving
the accuracy and reliability of the model.
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Figure 3. Shapley additive explanations (SHAP) visualization diagram. (A) Dot plot. (B) Bar plot.

The training and validation loss curves of the multimodal
model in this paper are shown in Figure 4, which intuitively
demonstrate the convergence of the model. From Figure 4,
it could be seen that as the training progresses, both the

training loss and validation loss exhibited a decreasing trend
and gradually stabilized, indicating that the model performs
consistently on both the training and validation datasets and
has good generalization ability.
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Figure 4. Training and validation loss curves of the multimodal model.

To validate the superiority of the multimodal model proposed
in this paper, Table 2 summarizes the performance of the
model in the test dataset. First, to verify the performance of
the ResNet50 pretrained backbone network used in the image
model of this paper, we selected a conventional CNN model
and two other pretrained models, Inception v3 and VGG16,
for comparative analysis. Among them, the pretrained models
ResNet50 and VGG16 used images of size 224×224 pixels
as input, while the Inception v3 model used images of
size 299×299 pixels. The image model corresponds to the

pretrained ResNet50 model in Table 2. As shown in the
table, all 4 image-based models showed good classification
ability in the test dataset, with an average AUC value of
0.902. In comparison, our image model showed the opti-
mal structural performance compared to the other 3 models.
Specifically, our image model achieved the highest values in
the 4 evaluation metrics of AUC value, accuracy, sensitiv-
ity, and specificity, which were 0.951, 89.32%, 89.82%, and
88.64%, respectively.

Table 2. The performance of models in the test dataset.
Model AUCa Accuracy, % Sensitivity, % Specificity, %
CNNb 0.832 77.91 83.54 69.75
Inception v3 0.909 80.74 77.66 84.96
VGG16 0.916 85.54 85.26 85.92
Image model 0.951 89.32 89.82 88.64
Clinical parameter model 0.884 80.81 78.29 84.46
Multimodal model 0.975 92.36 91.23 93.92

aAUC: area under the curve.
bCNN: convolutional neural network.

The multimodal model trained in this paper, which com-
bines patient image and clinical parameter features, outper-
formed the image-only or clinical parameter–only models
on all 4 evaluation metrics. Specifically, when compared
with the model using only X-ray images, the multimodal
model improved its AUC value from 0.951 to 0.975 (P=.004),
accuracy from 89.32% to 92.36% (P=.045), sensitivity from
89.82% to 91.23% (P=.03), and specificity significantly from
88.64% to 93.92% (P=.008). Notably, the multimodal model
effectively reduced the false positive rate and increased the
specificity by 5.28% compared with the unimodal image

model at the high-sensitivity operating point. We experimen-
tally verified the superiority of the multimodal method in this
paper compared to several other classification models.

The variation curves of receiver operating characteristic
and accuracy for the image model, the clinical parameter
model, and the multimodal model on the test dataset are
shown in Figures 5 and 6, respectively. In Figure 6, we show
the results for only the first 300 epochs of each model. From
the figure, the multimodal model exhibits the lowest false
positive rate and the highest true positive rate, with an AUC
value of 0.975, as well as an accuracy of 92.36%. In contrast,
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the CNN model has an accuracy of only 77.91% with an AUC
value of 0.832, with a difference of more than 10% between
the two models. In addition, the multimodal model proposed

in this paper is the first to reach the convergence state and has
the least fluctuation compared with other models.

Figure 5. Receiver operating characteristic (ROC) variation curves in the test dataset. AUC: area under the curve; CNN: convolutional neural
network.

Figure 6. Accuracy variation curves on the test dataset. CNN: convolutional neural network.

To visualize the attentional regions of the model, we used
the gradient-weighted class activation mapping technique.
Figure 7 shows the results of the visual interpretation of
the multimodal model at the individual level. In patients
with osteoporosis, as BMD decreases, a series of character-
istic changes in bone structure occur, such as sparse trabe-
culae and thinning of cortical bone. The gradient-weighted
class activation mapping heat map showed that the model

mainly focused on areas such as the scapula, thoracic spine,
ribs, and sternum. These areas are commonly vulnerable
sites in osteoporosis, and their structural changes are closely
related to the pathological characteristics of osteoporosis. For
example, the thoracic and lumbar spine is a high-risk area for
osteoporotic fractures, and a decrease in BMD can increase
the risk of fractures. The model could more accurately predict
osteoporosis by learning the imaging features of these key
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regions. The model’s attention to the scapula and ribs also
had certain clinical significance. The changes in BMD of
the scapula and ribs could indirectly reflect the overall bone
condition of the chest, providing supplementary information
for the diagnosis of osteoporosis. In addition, although

anteroposterior chest X-rays could not fully cover areas such
as the humeral head and lumbar spine, the model could still
make effective predictions by focusing on key bone structures
observable in the chest X-rays.

Figure 7. The visual interpretation of individual patients’ outcomes. We randomly selected data from 4 patients for interpretation. The images on the
left side show the patients’ chest X-ray images, and the images on the right side show the corresponding gradient-weighted class activation mapping
(Grad-CAM) heat maps. Areas that appear as bright red on chest X-ray images are considered to be the most important.

Ablation Study
To verify the role of WT and SA mechanisms in our
image model, we conducted an ablation study, which
included (1) ResNet50, (2) ResNet50+WT, ResNet50+SA,
and ResNet50+WT+SA.

In Table 3, it could be seen that the introduction of the
WT and the SA mechanism based on the backbone network

ResNet50 improved the performance of the model in all
4 evaluation metrics, especially in the specificity metric,
where the improvement reaches 7.74%. The results of this
ablation study demonstrated the ability of these two modules
to enhance the model’s attention to key regions of the image
and validate their effectiveness in our model.

Table 3. Optimal model configuration for the ablation study.
Model AUCa Accuracy, % Sensitivity, % Specificity, %
ResNet50 0.930 86.35 86.97 80.90
ResNet50+WTb 0.950 87.70 89.18 85.99
ResNet50+SAc 0.941 89.19 90.18 87.97
ResNet50+WT+SA 0.951 89.32 89.82 88.64

aAUC: area under the curve.
bWT: wavelet transform.
cSA: soft attention.
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In addition, we experimented with different multimodal
fusion strategies, and the results are shown in Table 4. As
shown in the table, the strategy we used to merge the output

probabilities before learning the final decision showed better
performance compared to the two models that performed
fusion by merging intermediate features.

Table 4. Performance comparison of different fusion strategies.
Fusion strategy AUCa Accuracy, % Sensitivity, % Specificity, %
FFb 0.969 91.49 90.99 92.16
LFFc 0.957 89.32 89.94 88.48
PFd 0.975 92.36 91.23 93.92

aAUC: area under the curve.
bFF: feature fusion.
cLFF: learning feature fusion.
dPF: probability fusion.

To verify whether the performance improvement of PF
compared to feature fusion (FF) and learning FF (LFF) was
statistically significant, we conducted a 2-tailed paired t test
on accuracy, and the experimental data were obtained based
on 5-fold cross-validation. The results showed that the t value
of PF relative to FF was t4=4.2426, and the P value was
.01; and the t value of PF relative to LFF was t4=2.9774,
and the P value was .04. At a significance level of α=.05,
the performance differences between PF and FF, as well as
between PF and LFF, were statistically significant (P<.05). It
could be seen that PF had the best performance among the 3
fusion methods in our experimental setup.

To improve the generalization performance and robust-
ness of the model, we dynamically augmented the image
data using a stochastic augmentation strategy. Comparing
the model performance with and without the dynamic data
augmentation technique, the results are shown in Table
5. In addition to the sensitivity metrics, the 3 metrics of
AUC value, accuracy, and specificity were significantly
improved after the introduction of dynamic data enhance-
ment, especially the specificity, which was enhanced by
15.2%, greatly improving the accuracy of the model in
identifying nonosteoporosis and reducing the rate of false
alarms.

Table 5. Performance comparison of the image model with and without dynamic data augmentation.
Data augmentation AUCa Accuracy, % Sensitivity, % Specificity, %
Without 0.934 84.32 92.28 73.44
With 0.951 89.32 89.82 88.64

aAUC: area under the curve.

Discussion
Principal Findings
Although DL has made substantial progress in the field of
medical imaging, it still focuses primarily on the imaging
data themselves, largely ignoring the richness of information
available in the clinic. Our experimental results show that
the multimodal model fusing chest X-ray images and clinical
data can improve the accuracy of deep neural networks
in predicting osteoporosis. Through the ablation study, we
validated the WT and the SA mechanism to enhance the
performance of the model by capturing specific appearance
features in the images, and also confirmed the advantages of
dynamic data augmentation and PF strategies in a multimodal
model.

Osteoporosis, as a major health disease, is becoming
increasingly prominent in the aging population. Predictive
studies of osteoporosis not only help us to gain a deeper
understanding of the disease’s trends and risk factors, but also
provide a scientific basis for the development of effective
prevention and treatment strategies. The classification model
we designed is a binary classification model based on chest
X-ray images and clinical data, aiming to classify outcomes

into 2 categories: osteoporosis and nonosteoporosis. The
results show that multimodal data can be used to distinguish
patients with osteoporosis from those with normal BMD, and
that the method we used requires a small amount of training
data and a short processing time. As a disease screening
method, the model in this paper has high sensitivity and helps
to reduce the false negative rate. The model can be used both
prospectively by radiologists and retrospectively by radiolog-
ists or even nonradiologists, which is important for the timely
identification and treatment of patients with osteoporosis.

We downsample the X-ray image to 224×224 pixels to
meet the input requirements of the ResNet50 model, while
the Inception v3 architecture used for comparison requires
downsampling the image to 299×299 pixels. Interestingly,
although Inception v3 has a higher input resolution, its
performance is not significantly better than ResNet50. This
discovery suggests that simply increasing input resolution
may not significantly improve model performance. This may
be related to factors such as the complexity of the model
architecture and the characteristics of the target task.

Since most relevant studies [9,11,14,36] currently use
private datasets, it is difficult to find data that is identical
or highly comparable to our dataset for direct comparison.
Therefore, we mainly started from the aspects of dataset size,
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model architecture, and key results to compare the existing
paper on osteoporosis screening based on X-ray using DL
methods, as shown in Table 6. Although the research by
Mao et al [14] bears some resemblance to ours, substantial
differences remain. They only analyzed X-rays and clinical
data using a single CNN model. And based on this, we

designed a multimodal model to process X-rays and clinical
data separately. This innovative model architecture not only
enhances the model’s ability to process different types of data
but also fully explores and uses the inherent correlation and
value of multisource data, thereby achieving more accurate
screening for osteoporosis.

Table 6. Comparison with related works.
Reference Dataset Model Key results
Lee et al [9] 334 spine X-rays DLa and machine learning • AUCb: 0.74

• Accuracy: 0.71
• Sensitivity: 0.81
• Specificity: 0.60

Jang et al [11] 13,026 chest X-rays DL • AUC: 0.91
• Accuracy: 82.40%

Mao et al [14] 5652 lumbar spine X-rays and clinical
data

CNNc • AUC: 0.909‐0.937

Wani et al [36] 381 knee X-rays DL and transfer learning (AlexNet) • Accuracy: 91.1%
This study 3645 chest X-rays and clinical data Transfer learning (ResNet50) and

multimodal model • AUC: 0.975
• Accuracy: 92.36%
• Sensitivity: 91.23%
• Specificity: 93.92%

aDL: deep learning.
bAUC: area under the curve.
cCNN: convolutional neural network.

In this study, our proposed multimodal model demonstra-
ted high accuracy in predicting osteoporosis, indicating its
potential clinical application value. However, in the proc-
ess of transforming the model from a laboratory environ-
ment to practical clinical applications, the feasibility of
deployment also needs to be considered. To ensure that the
model can run effectively in practical clinical scenarios, we
recommend integrating it with the hospital’s picture archiving
and communication system and electronic medical record
systems. This can automatically acquire and process imaging
and clinical data, thereby reducing the burden on technicians
in preprocessing work. In addition, the predicted results of
the model can be automatically integrated into the patient’s
electronic medical record for doctors to review and reference
at any time. This model can run on regular servers or cloud
platforms with low hardware requirements, making it suitable
for environments with limited resources.

Limitations
Our study has some limitations. First, we have not systemati-
cally analyzed the performance of the model under different
races, age groups, or imaging protocols, which may intro-
duce bias and affect the fairness and universality of the
model. Given this, we plan to include more diverse popula-
tion data and data obtained from different imaging protocols
in future studies to evaluate and improve the performance
of the model in various populations. Second, the coverage
range of anteroposterior chest X-rays has certain limitations
and cannot fully include key areas such as the humeral
head and lumbar spine. The insufficient visual coverage may
affect the diagnostic accuracy of the model for certain patient
populations, especially those with substantially pathological

features in uncovered areas. The plan is to introduce lateral
chest X-rays to address this problem. Third, the data for
this study came from a single institution, Chongqing Daping
Hospital, which may limit the generalizability of the model
in different populations. External validation is crucial to
confirm the robustness of the model in different popula-
tions. Future research plans will validate the model on
multiple datasets, which will help evaluate its generalization
ability. Finally, although this paper used the WT and SA
mechanism to enhance the model and conduct the ablation
study, these components were not compared with traditional
feature extraction techniques such as Gabor filters, local
binary patterns, or radiomics-based features. We plan to
supplement the fusion experiments of Gabor filters, local
binary patterns, and other methods with deep features in
future experimental work. In addition, to further explore
and validate the existence of better fusion strategies, we
plan to incorporate transformer-based cross-modal attention
models in future research and compare their performance
with PF strategies. The transformer architecture demonstrates
powerful capabilities in handling multimodal data, particu-
larly in capturing complex relationships between different
modalities.

Conclusions
In osteoporosis prediction, our proposed multimodal model
fusing chest X-ray images and clinical data improves the
prediction accuracy, with AUC value, accuracy, sensitivity,
and specificity metrics exceeding 90%, which all indicate
significantly better performance than models relying only on
images or clinical data. The model in this paper is expec-
ted to be an effective tool that clinicians can use to screen
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for opportunistic osteoporosis without increasing radiation
exposure or additional costs. It is particularly suitable for
patients who have had a chest X-ray but have not undergone

DXA. With this model, clinicians can detect osteoporosis
symptoms early and provide timely treatment interventions to
prevent further bone loss.
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