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Abstract

Background: Research on chronic multimorbidity has increasingly become a focal point with the aging of the population. Many
studies in this area require detailed patient characteristic information. However, the current methods for extracting such information
are complex, time-consuming, and prone to errors. The challenge of quickly and accurately extracting patient characteristics has
become a common issue in the study of chronic disease comorbidities.

Objective: Our objective was to establish a comprehensive framework for extracting demographic and disease characteristics
of patients with multimorbidity. This framework leverages large language models (LLMs) to extract feature information from
unstructured and semistructured electronic health records pertaining to these patients. We investigated the model’s proficiency
in extracting feature information across 7 dimensions: basic information, disease details, lifestyle habits, family medical history,
symptom history, medication recommendations, and dietary advice. In addition, we demonstrated the strengths and limitations
of this framework.

Methods: We used data sourced from a grassroots community health service center in China. We developed a multifaceted
feature extraction framework tailored for patients with multimorbidity, which consists of several integral components: feasibility
testing, preprocessing, the determination of feature extraction, prompt modeling based on LLMs, postprocessing, and midterm
evaluation. Within this framework, 7 types of feature information were extracted as straightforward features, and three types of
features were identified as intricate features. On the basis of the straightforward features, we calculated patients’ age, BMI, and
12 disease risk factors. Rigorous manual verification experiments were conducted 100 times for straightforward features and 200
times for intricate features, followed by comprehensive quantitative and qualitative assessments of the experimental outcomes.

Results: The framework achieved an overall F1-score of 99.6% for the 7 straightforward feature extractions, with the highest
F1-score of 100% for basic information. In addition, the framework demonstrated an overall F1-score of 94.4% for the 3 intricate
feature extractions. Our analysis of the results revealed that accurate information content extraction is a substantially advantage
of this framework, whereas ensuring consistency in the format of extracted information remains one of its challenges.

Conclusions: The framework incorporates electronic health record information from 1225 patients with multimorbidity, covering
a diverse range of 41 chronic diseases, and can seamlessly accommodate the inclusion of additional diseases. This underscores
its scalability and adaptability as a method for extracting patient-specific characteristics, effectively addressing the challenges
associated with information extraction in the context of multidisease research. Research and medical policy personnel can extract
feature information by setting corresponding goals based on the research objectives and directly using the LLM for zero-sample
target feature extraction. This approach greatly improves research efficiency and reduces labor requirements; moreover, due to
the framework’s high accuracy, it can increase study reliability.
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Introduction

Overview
Research on chronic multimorbidity has increasingly become
a focal point with the aging of the population [1]. Major research
directions include exploring multimorbidity patterns [2,3],
investigating multimorbidity development and prediction [4,5],
and examining the mutual interplay between multimorbidity
and patient characteristics [6]. Amid ongoing research on
frequently occurring diseases, extracting patient characteristics
holds paramount importance. However, traditional machine
learning–based feature extraction methods often rely heavily
on extensive sample sizes for model training, and in some cases,
even necessitate manual annotation. This renders the task of
extracting patient features, albeit just 1 aspect of the research,
not only laborious and time-consuming but also susceptible to
errors [7]. To address this, we developed a framework
specifically tailored for extracting features related to patients
with multimorbidity. Leveraging the powerful capabilities of
natural language understanding and the automation features of
large language models (LLMs), this framework aims to expedite
the feature extraction process, minimize extraction errors, and
efficiently handle vast amounts of electronic health records
(EHRs). Consequently, it significantly reduces the time and
human resources required for subsequent research on
comorbidities, enabling more efficient and accurate insights
into this complex field.

In the task of feature extraction for patients with multimorbidity,
natural language processing (NLP) technologies hold significant
advantages, effectively addressing challenges such as participant
scarcity and the intricacies of information extraction. Recently,
LLMs have garnered significant attention across various
domains, including NLP, biomedical sciences [8], and clinical
practice, particularly after the emergence of ChatGPT with
GPT-4. Through fine-tuning LLMs [9] and designing prompt
modeling [10,11], researchers have successfully tackled diverse
NLP tasks; for instance, Hu et al [10] developed prompt
modeling specifically for radiology reports, enabling the
extraction of pertinent disease information from these reports.
In addition, Datta et al [11] designed a system based on LLMs
using prompt modeling to automatically identify medical
eligibility criteria. Inspired by these advancements, we propose
using LLMs that have undergone medical information training
and fine-tuning to extract features of patients with
multimorbidity from EHRs.

We developed a comprehensive framework designed to extract
pertinent feature information from patients with multimorbidity.
This framework is rooted in ZuoyiGPT, a powerful architecture
that builds upon the transformer model and has undergone
extensive training and fine-tuning using extensive medical
literature, clinical records, both online and offline patient visit
data, and expert annotations. Compared to ChatGPT with
GPT-4, ZuoyiGPT boasts more specialized medical information

and clinical experience. Furthermore, unlike the Taiyi LLM
[12], ZuoyiGPT has undergone more extensive training on
clinical information and incorporates a user interaction platform,
which enhances its utility and accessibility. The framework
established in this study is highly adaptable and knowledge
driven, ensuring its flexibility and relevance in various scenarios.
Feasibility tests have confirmed the viability of ZuoyiGPT in
extracting patient characteristics from EHRs. Moreover, the
postprocessing module has enhanced the consistency and
accuracy of the extracted feature information. To assess the
framework’s performance in a zero-shot scenario, we evaluated
the results of extracting both straightforward and intricate
features from 300 EHRs. In a zero-shot setting, LLMs evaluated
are able to extract patient characteristics solely based on the
content and format requirements specified in the prompts,
without relying on any additional demonstrations or training.

The study conducted patient characteristic extraction on a vast
array of EHRs to ensure consistency, scalability, and
interoperability. The capability to facilely extract
multidimensional patient characteristics through prompt content
holds significant value for analyzing a wide range of
comorbidities. This framework allows for the aggregation of
diverse combinations of multimorbidity, symptoms, and
semistructured and unstructured mixed treatment
recommendations from EHRs as objects for feature information
extraction. We have delved into the strengths and weaknesses
of the framework presented in the evaluation framework,
identified potential future optimization suggestions, conducted
a concise analysis, and provided research recommendations
tailored to the demands of multidisease research. The main
contributions of this study are outlined as follows:

1. A comprehensive framework based on zero-shot LLMs has
been established for extracting demographic and
disease-related characteristics of patients with
multimorbidity, without the need for manual annotation.
This framework categorizes the extraction of feature
information from semistructured and unstructured EHRs
into straightforward and intricate tasks.

2. The prompt modeling of the framework is adaptable to
various tasks aimed at extracting different characteristics,
offering flexibility and the ability to span across different
disease domains. It can seamlessly be extended to
accommodate extraction tasks pertaining to patient EHRs
with diverse formats and structures.

Background and Significance
An EHR contains a diverse array of patient information,
including demographic statistics, disease profiles, and
examination details. This comprehensive dataset serves as a
cornerstone for numerous disease studies, facilitating clinical
decision support and translational research endeavors; for
example, Naimark et al [13] leveraged an EHR patient portal
to help patients formulate their health care goals. Given the
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widespread embrace of EHRs [14], extracting pertinent
information from these records has emerged as a pivotal focus
of research [15]. Most information extraction efforts have
primarily focused on 3 key subtasks: entity recognition, relation
extraction, and event extraction [16-18]. By contrast, our study
directly addresses the exigencies of chronic disease and
multimorbidity research by concentrating on the extraction of
multiple patient characteristics.

Numerous studies on multimorbidity [19-21] require the
necessity of incorporating patient-specific and disease-specific
features as inputs for predictive modeling, serving as the
foundation for disease prediction modeling. Specifically, in the
research on predicting cardiovascular disease risk in patients
with type 2 diabetes [19], the initial step involves extracting
patient age, gender, and disease codes as crucial inputs for the
prediction model. Furthermore, when anticipating the future
disease progression of patients with 0, 1, or 2 major chronic
diseases [20], it becomes imperative to screen patients with 1
or 2 major chronic diseases, as well as those without any major
chronic diseases, as inputs for the prediction. In addition, Lu
and Uddin [21] highlight the importance of considering factors
such as patient age, gender, disease codes, and smoking history
in predicting chronic diseases. Consequently, the use of
scientific and efficient methods for extracting disease and
personal information features holds paramount importance in
the study of multimorbidity.

A substantial amount of work [22-24] involves methods for
extracting feature information. Kumar et al [22] used classical
machine learning and deep learning approaches, using word
embeddings and bag-of-words representations combined with
feature selection techniques to extract features from clinical
records and identify incidence rates. Kamp et al [23] adopted
manual annotation to extract data from a large corpus of
literature regarding the definitions, measurement methods,
included conditions, and characteristics of patients investigated
in studies on multiple diseases. Hu et al [24] achieved entity
recognition and relationship extraction of symptoms and details
within EHRs through an end-to-end overlapping joint extraction
approach.

LLMs exhibit emergent behavior due to their transformer-based
architecture [25]. Since the release of ChatGPT, LLMs have
garnered significant attention and are currently being applied
across various fields, including NLP, data analysis, medicine,
and artificial intelligence. In clinical practice, LLMs can
generate diagnostic lists and aid in clinical decision-making by
leveraging their intelligent question-answering capabilities [26].
In the field of medical research, LLMs are able to abstract
complex social determinants of health from original and
unidentified medical notes [27], which can also assess the
likelihood of epidemics based on the content of tweets [28]. In
addition, in the realm of medical texts, these models are capable
of generating patient clinical information and medical records
[29]. It is anticipated that LLMs may one day facilitate real-time
monitoring and predictive analysis [30].

In the medical field, numerous studies have explored the use of
LLMs for NLP. A significant proportion of these studies have
emphasized the fine-tuning of these models to simulate

physician-patient communication, ultimately aiming to provide
patients with electronic physician services [12,31,32].
Specifically, Yang et al [31] introduced the first Chinese-based
medical LLaMA–based LLM, which progressed through a
comprehensive process ranging from continuous pretraining
(supervised fine-tuning) to human feedback reinforcement
learning. Luo et al [12] focused on bilingual fine-tuning of
LLMs for various biomedical NLP tasks. Furthermore, Chen
et al [32] are concentrated on psychological counseling,
enhancing the empathy capabilities of LLMs through immersive
multiturn dialogue contexts.

In the realm of information extraction, LLMs are primarily used
to extract radiology reports [10] and meta-information from
scientific literature [33]. In recent research, an LLM was used
to develop an eligibility criteria extraction system [11],
successfully extracting eligibility criteria from clinical trial data;
however, this system is designed for 9 specific diseases and
extracts information from a limited number of dimensions.
Current research on chronic diseases and multimorbidity is
patient oriented, requiring a broader range of dimensions.
Notably, there is a dearth of studies exploring the use of LLMs
for extracting patient characteristic information, which
constitutes the focal point of our investigation.

Although both Hu et al [10] and Datta et al [11] alluded to
suboptimal extraction results arising from the use of generic
LLMs, few studies have capitalized on LLMs specifically
fine-tuned with medical and clinical insights, apart from those
exclusively dedicated to fine-tuning or creating such models.
Consequently, drawing on previous research and anticipating
future prospects, this study embraced ZuoyiGPT, an LLM that
has undergone extensive training and fine-tuning, incorporating
literature, clinical data, and expert physician insights. ZuoyiGPT
offers an interactive, web-based platform tailored for patient
feature extraction. Through a feasibility testing system, we
assessed ZuoyiGPT’s proficiency in extracting patient features
and subsequently used it to successfully extract a comprehensive
set of 84 patient features. Notably, our feature extraction
framework holds the potential to significantly reduce or even
eliminate the reliance on manual annotation, thereby expanding
its applicability to a broader range of feature extraction tasks.

Methods

Data
We conducted a systematic random sampling from the EHRs
of 19,000 patients with chronic diseases at the Wanping
Community Health Service Center in Beijing, China, and
manually extracted desensitized EHRs for 1225 (6.45%)
patients. All participants were aged >40 years and had multiple
chronic diseases. These EHRs included details of 41 chronic
diseases, 235 symptoms, and 312 drug recommendations.
Notably, 986 (80.49%) of these 1225 EHRs contained
preliminary consultation information, including personal details,
medical histories, family backgrounds, lifestyle habits,
self-reported symptoms, drug recommendations, and
nonmedication advice. Conversely, the remaining EHRs
(239/1225, 19.51%) lacked initial consultation data and solely
contained personal information, medical histories, family

JMIR Med Inform 2025 | vol. 13 | e70096 | p. 3https://medinform.jmir.org/2025/1/e70096
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


backgrounds, and lifestyle habits. We selected a combination
of longitudinal and cross-sectional EHR information for our
experiments. The EHRs include both semistructured and
unstructured information. The semistructured information
mainly comprises basic personal details of patients, such as
gender and date of birth, as well as medical history; family
history; and lifestyle information related to smoking, drinking,
and physical activity. The unstructured information consists of
2 parts: the patient’s presenting complaints, which contain
symptom information, and the physician’s diagnostic results,
which include dietary and medication recommendations.
Consequently, we categorized the extraction of semistructured
information as straightforward feature extraction and the
extraction of unstructured data as complex feature extraction.

We used two methodologies to extract straightforward features
from the 1225 EHRs: (1) a rule-based algorithm integrated with
symbolic NLP and (2) ZuoyiGPT. Specifically, 10 features were
used for prompt design, while 5 were designated for rapid
prompt calibration. Furthermore, we manually annotated
straightforward extraction information from 50 (4.08%) of the
1225 EHRs—those with preliminary diagnosis records as well

as those without—to evaluate the capability of the LLM to
extract simple features, thereby validating the feasibility of the
ZuoyiGPT. Subsequently, ZuoyiGPT was used to extract
intricate features from 986 (80.49%) of the 1225 EHRs, using
10 features for prompt design and 5 for rapid prompt calibration.
Of these 986 EHRs, 200 (20.3%) were manually annotated to
evaluate the LLM framework’s performance in extracting patient
features. Our manual annotations were completed by medical
experts, and the prompt design was also guided by their
expertise.

Framework for Extracting Characteristics of Patients
With Multimorbidity

Overview
We developed a framework for extracting multifaceted
characteristics of patients with multimorbidity. Leveraging the
extensive language capabilities of ZuoyiGPT, this framework
automatically retrieves demographic and disease-related
information from EHRs. The following subsections introduce
the various components of this framework, as illustrated in
Figure 1.

Figure 1. System overview.

Feature Extraction Determination
Drawing upon insights from clinical experts and medical experts
and extensive research literature on comorbidities associated
with chronic and frequently occurring diseases, we arrived at a
comprehensive set of extracted patient characteristic
information. As outlined in the study by Cezard et al [4],
research on chronic diseases typically falls into 2 categories:
cross-sectional studies and longitudinal studies. Cross-sectional
studies primarily focus on exploring symptoms and states as
well as common risk factors, including age, unhealthy behaviors,
and socioeconomic status. Conversely, longitudinal studies
delve deeper into the exploration of diseases and their sequelae,
tracing the trajectory of the illness over time. Dong et al [5]

predicted multimorbidity through a graph convolutional network
that integrated population phenotypes (including diet, physical
activity, sleep, and smoking) and disease networks. Feng et al
[6] investigated the effects of age and gender differences on
multimorbidity. Ultimately, we opted to adopt a combined
longitudinal and cross-sectional approach to studying chronic
diseases. This holistic method integrates information extracted
from electronic medical records, encompassing demographic
characteristics, disease characteristics, lifestyle habits,
symptomatic manifestations, medication profiles, and dietary
patterns. This comprehensive approach aims to cater to the
evolving needs of extracting patient characteristic information
in future research endeavors on chronic diseases, as illustrated
in Figure 2.
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Figure 2. Extraction of patient characteristics.

Demographic information comprises patient ID, gender, date
of birth, age, height, weight, and BMI. Among these, patient
ID, gender, date of birth, height, and weight can be directly
extracted from EHRs. Nevertheless, to facilitate subsequent
research endeavors, we calculated the patients’ age and BMI
based on the extracted birth date, height, and weight.

Disease-related information consists of medical history and
family history. The medical history includes 41 prevalent
chronic diseases such as hypertension, type 2 diabetes, coronary
heart disease, and stroke, along with the duration of each disease.
The family history delves into 12 aspects, including whether
the father or mother has coronary heart disease, diabetes,
hypertension, hyperlipidemia, cerebrovascular disease, or stroke.

Lifestyle characteristic information includes smoking status,
smoking duration, alcohol consumption, exercise patterns, sleep
quality, and sleep disorders. Smoking status is categorized as
follows: 1 signifies current smoking, 0 indicates nonsmoking,
and –1 represents smoking cessation. For individuals who do
not smoke or have quit smoking, smoking duration is recorded
as 0. Similarly, alcohol consumption is classified as 1 for current
drinking, 0 for nondrinking, and –1 for abstinence. Exercise
status is differentiated into 5 categories: 3 represents daily
exercise, 2 signifies exercising >3 times weekly, 1 indicates
exercising 1 to 2 times weekly, 0 stands for no exercise, and –1
denotes irregular exercise. Sleep states are categorized into 3
levels: 3 for sleeping >10 hours daily, 2 for sleeping between
6 and 10 hours daily, and 1 for sleeping ≤6 hours daily. Finally,
sleep disorders are dichotomized into 0 for the absence of sleep
disorders and 1 for the presence of sleep disorders.

Symptom characteristic information includes a diverse range
of manifestations, including dizziness, nausea, elevated blood
pressure, dry mouth, headache, and 230 other symptoms. Our
framework meticulously extracts the specific symptoms
experienced by each patient, along with the corresponding time
of symptom occurrence.

The drug characteristic information is equally extensive,
encompassing enteric-coated aspirin tablets, acarbose tablets,
controlled-release nifedipine tablets, atorvastatin calcium tablets,
and a further 308 medications. Our framework accurately
captures the medication information and dosage
recommendations provided by physicians during the initial
consultation for each patient. Dietary characteristic information
covers 74 distinct types of food. Our framework diligently
extracts the dietary categories and corresponding intake
recommendations tailored by physicians during the initial
consultation for each patient.

Furthermore, our framework demonstrates remarkable scalability
and generalization ability by leveraging LLMs to expand its
repertoire of diseases, symptoms, drug recommendations, and
dietary suggestions. This enables it to continuously adapt and
enhance its coverage, reflecting its sophisticated capabilities.

Feasibility Testing of LLMs
We used a rule-based algorithm integrated with symbolic NLP
regular expressions to extract patient characteristics. These
extracted results served as a benchmark for assessing the
feasibility of leveraging LLMs for feature information
extraction. Specifically, we used regular expressions such as
“\d+\\.\d*” to identify patients’ height characteristics and
“\d+\.\d*|\d{2}|\d{3}” to identify and recognize their weight
characteristics, enabling us to extract pertinent demographic
and disease-related information. Our algorithm initially scanned
through all EHRs of patients, pinpointing and cataloging all
disease descriptions mentioned. Subsequently, based on the
recommendations of medical experts, we consolidated various
disease descriptions; for instance, “rheumatoid arthritis” was
merged with “arthropathy” and “arthritis” into “rheumatoid
arthritis,” while “delusion” was merged with “mental illness”
into “mental illness.” Ultimately, we identified 41 chronic
diseases, some of which encompass multiple disease
characteristics, as detailed in Textbox 1.
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Textbox 1. Characteristics of chronic diseases and comorbid conditions.

Disease categories and descriptions of the included diseases

• Cancer: cancer and malignant tumor

• Cerebrovascular diseases: cerebral infarction, cerebral ischemia, brain infarction, transient ischemic attack, cerebral thrombosis, cerebral
arteriosclerosis, and atherosclerosis

• Mental illness: delusions and other psychiatric disorders

• Rheumatoid arthritis: osteoarthritis, arthritis, osteomyelitis

• Cardiovascular diseases (excluding coronary heart disease): heart failure, myocardial ischemia, valvular heart disease, and premature cardiac
contractions

• Chronic ophthalmic diseases: bilateral retinitis pigmentosa and fundus atrophy

Subsequently, we selected 41 diseases as our benchmark and
developed algorithms leveraging regular expressions to extract
patient demographic characteristics, lifestyle information,
disease details, and family histories from the semistructured
text format.

We categorized EHRs into semistructured and unstructured
information and implemented patient feature extraction and
applied LLM-based extraction methods tailored to each type.
Semistructured information incorporates explicit format
identifiers, such as colons, carriage returns, and labels such as
“personal information,” whereas unstructured information
consists of patient-reported symptoms, physician-provided
guidance based on patient descriptions and medical histories,
as well as nonpharmacological guidance. We used the extraction
of semistructured information as a feasibility test for assessing
the information extraction capabilities of ZuoyiGPT. To
facilitate processing by the LLM, we eliminated redundant
spaces and carriage returns, simplifying the information
extraction process.

On the basis of the specific information content required for
extraction, we iteratively developed, tested, and calibrated a
comprehensive prompt tailored as the input for ZuoyiGPT’s
interactive platform. For the extraction of semistructured
information, our prompt comprised 4 integral components:
scope definition, extraction content prompt, extraction format
prompt, and prompt query for the original text. The scope
definition instructs the LLM to focus solely on extracting
information from the provided text. The extraction content
specification outlines the precise details that the model needs
to capture. The extraction format guidance mandates the model
to present the extracted information in a predefined format. The
prompt query referencing the original text pertains to the
segment of the EHR serving as the source material. Given the
immense volume of original text involved in this information
extraction task, we opted not to include an extraction example
prompt. The actual prompt text and its output are illustrated in
Textbox 2.
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Textbox 2. Characteristics of chronic diseases and comorbid conditions.

Prompt composition

1. Please extract the following information based on the provided content: 

2. height, weight, medical history, family history, smoking status, smoking duration, alcohol consumption, exercise habits, sleep duration, and sleep
disorders.

3. Output the extracted results in the following format:

Height: XXX cm;

Weight: XX kg;

Medical History:

① Diagnosed with XXX disease in XXXX;

② ...;

Family History (1 if the parent has the respective disease, otherwise 0):

Father with coronary heart disease: 1/0

Father with diabetes: 1/0

Father with hypertension: 1/0

Father with hyperlipidemia: 1/0

Father with cerebrovascular disease: 1/0

Father with stroke: 1/0

Mother with coronary heart disease: 1/0

Mother with diabetes: 1/0

Mother with hypertension: 1/0

Mother with hyperlipidemia: 1/0

Mother with cerebrovascular disease: 1/0

Mother with stroke: 1/0

Smoking Status: Smoker/Non-smoker/Ex-smoker;

Smoking Duration (current year is 2024): XX years (0 if non-smoker);

Alcohol Consumption: Drinker/Non-drinker/Ex-drinker/Other;

Exercise Habits: Sedentary/Irregular exercise/Exercise 1-2 times per week/Exercise 3 times per week/Exercise more than 3 times per week;

Sleep Duration: XX hours;

Sleep Disorders: Present/Absent.

4. Original Text: 【Demographic Characteristics Information + Medical History + Family History + Lifestyle Habits

Sample output

• Height: 168.0 cm; Weight: 65.0 kg; Medical History: ① Diagnosed with coronary heart disease in August 2013; ② Diagnosed with hyperlipidemia
in May 2013; Family History: Father - Coronary heart disease: Yes; Father - Diabetes: No; Father - Hypertension: No; Father - Hyperlipidemia:
Yes; Father - Cerebrovascular disease: No; Father - Stroke: No; Mother - Coronary heart disease: No; Mother - Diabetes: No; Mother - Hypertension:
No; Mother - Hyperlipidemia: No; Mother - Cerebrovascular disease: No; Mother - Stroke: No; Smoking Status: Non-smoker; Smoking Duration
(current year is 2024): 0 years; Alcohol Consumption: Drinks alcohol; Exercise Frequency: 1-2 times per week; Sleep Duration: 6 hours; Sleep
Disturbances: Present.

After using ZuoyiGPT for batch information extraction from
semistructured data, we resolved formatting issues in the actual
extracted results using a straightforward rule-based algorithm;
for instance, we corrected instances where the LLM merged 2
lines of output into a single line by adding line breaks and
eliminating redundant line breaks. Subsequently, we used a
rule-based algorithm to extract keywords and numerical values
from the LLM’s output, along with performing numerical

substitutions. As an example, we extracted “coronary heart
disease” and “2013” from “coronary heart disease in 2013,”
and converted “Smoking Status: Smoking” to “Smoking Status:
1.” These extracted keywords and numerical values were then
assigned to their corresponding labels, effectively transforming
them into a structured tabular format. Figure 3 illustrates the
entire process of extracting simple patient feature information
from an EHR.
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Figure 3. Overview of the process of simple extraction of feature information using a large language model (ZuoyiGPT).

Finally, from the 1225 EHRS, we randomly selected 100
(8.16%) and manually annotated their semistructured data
sections, including past medical history, family history, lifestyle,
and specific objective examinations. Subsequently, we
conducted a comparative analysis of the extraction results

obtained through a rule-based algorithm and those achieved by
using the LLM on these 100 EHRs. The comprehensive final
results, showing the F1-score values for both the rule-based
algorithm and LLM extraction methods, are presented in Table
1.

Table 1. F1-score values for simple extraction of feature information using a rule-based algorithm and a large language model (LLM).

SD value (%)Overall (%)Family history (%)Medical history (%)Lifestyle (%)Basic information (%)Extraction method

1.904998.0899.6799.669598Rule-based algorithm

0.365699.5999.6799.799100LLM

Clearly, the results extracted by the LLM outperformed those
extracted by the rule-based algorithm, with F1-score values
consistently exceeding 95%, thus confirming the feasibility of
using an LLM for patient feature information extraction.

Preprocessing
We began by considering the composition of unstructured text
in EHRs and dividing each EHR into 2 sections: current illness
history and medication guidance. The current illness history
includes the patient’s initial self-reported information, while
the medication guidance consists of 4 parts: Western medicine
prescription guidance, traditional Chinese medicine prescription
guidance, nondrug guidance, and physician advice. Using
prompt modeling, we guided the LLM to extract pertinent
symptom information from the current illness history, including
symptom names and their respective occurrence times. We also
extracted medication guidance and dietary advice from the
medication section, including drug names, dosages, food
categories, and recommended intake quantities. We used the
rule-based algorithm to extract the text related to the patients’
chief complaints, as well as the sections on medication and
nonmedication guidance, from the patients’EHRs. Unnecessary

formatting elements, such as extraneous whitespace and line
breaks, were removed.

Prompt Modeling
Compared to complex feature extraction, the original text
content for simple feature extraction is considerably more
limited in scope. To guarantee accurate information extraction
by an LLM, we crafted a more comprehensive prompt and fed
it into the ZuoyiGPT, which excels in identifying all facets of
complex feature extraction. This model underwent rigorous
iterative experiments, testing, and prompt calibration.
Ultimately, we developed 2 stand-alone comprehensive prompts:
one dedicated to extracting symptom information and the other
to extracting drug recommendations and dietary advice. Each
prompt consisted of five integral components: (1) scope
definition, (2) extraction format prompt, (3) extraction content
prompt, (4) extraction example, and (5) prompt query text.
Figure 4 illustrates the formation of the comprehensive prompt;
Textbox 3 showcases example prompt templates for symptom
information, along with the corresponding output; and Textbox
4 presents medication recommendation and dietary advice
information, along with the corresponding output.
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Figure 4. Components of complex extraction feature information prompt modeling.

Textbox 3. Example of symptom information prompt, along with the corresponding output.

Prompt composition

1. Please translate the following content.

2. Summarize and extract the food and drug information from the text in the format of: 【Food Category, Intake Amount, Specific Intake Quantity】,
【Drug Name, Dosage, Specific Dosage】

3. Example: (Main Food, Intake Amount, <1500 kcal/day), (Metformin Hydrochloride Tablets, Dosage, 0.5mg / 4 times/day)

Original Text

【Drug Guidance + Non-Drug Guidance】

Sample output

【Diet】

Triples: (Low-sodium, low-fat diabetes diet, intake, no specific amount); (Sodium salt, intake, less than 6g/day); (Cooking oil, intake, less than
25g/day); (vegetables, intake, no specific amount); (Foods rich in vitamin C, intake, no specific amount)

【Medication】

Triples: (L-type amlodipine besylate tablets, dosage, 5mg once daily); (Simvastatin dispersible tablets, dosage, 20mg once daily)
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Textbox 4. Examples of drug suggestion information and dietary advice prompts, along with the corresponding output.

Prompt composition

1. Please summarize and extract the temporal information of symptoms based on the following content.

2. Organize the information in the format of 【Symptom Name, Time, Symptom Occurrence Time】.

3. For example:【Symptom: (Dizziness, Time, 2022), (Vomiting, Time, 1990)】 

4. The original text includes 【Present Illness History, Chief Complaint】

Sample output

• Symptoms Triplet: (Dizziness, Time, 1985) (Weakness in Lower Extremities, Time, 1990) (Palpitations, Time, 1990)

• (Sweating, Time, 1990)

Using a prompt template, we developed a web automation
program that leverages an LLM to efficiently extract information
from EHRs in batches and obtain their corresponding responses.
For each EHR, we initiated a new conversation to prevent the
extraction results from being influenced by previous dialogues.
Given the potential challenge of the LLM not recognizing the
output format, we opted for the ZuoyiGPT, which is trained to
generate triples. Although the training format of the Left-Hand
Doctor model does not exactly match our required format, it
includes the format and content we need. Therefore, we decided
to save the output of each EHR into separate documents and
subsequently process the extraction results in a sequential
manner.

Postprocessing
Although we provided structured output requirements, the
primary purpose of LLMs is to simulate human communication.
The LLMs we used have been trained in formats different from
our requirements. Therefore, the results extracted by the LLM
are not always in line with our expectations. To address this
issue, we developed a rule-based postprocessing module with
regular expressions to convert the chaotic semistructured

answers into structured answers that are conducive to generating
tables. Specifically, we identified the positions of all triples
related to symptoms, medication characteristics, and dietary
recommendations and used regular expressions to recognize the
3 parts of the triples, outputting a unified format. Each EHR
involves 3 parts of triples, which are separated by specific
formats and subsequently exported to individual documents for
each record. Ultimately, we converted all triples into electronic
medical record formats into a tabular format, ensuring
consistency in the output content throughout this process; for
example, terms such as “oil type,” “oil,” and “cooking oil” were
unified as “cooking oil,” while “heart and brain unblocking”
and “heart and brain unblocking tablets” were unified as “heart
and brain unblocking tablets.” In addition, when the LLM
expressed the meaning of “not mentioned,” the results could
appear as “not mentioned,” “not found,” or “not mentioned.”
We unified these expressions as “not mentioned” in this module
and removed any “not mentioned” entries from food categories,
symptom names, and medication names. Figure 5 provides a
comprehensive overview of the process of extracting complex
feature information from a patient’s EHRs.

Figure 5. Overview of the process of extracting complex patient feature information using a large language model. The pink areas represent the
extraction of symptom information, while the green areas represent the extraction of medication and dietary recommendations.
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Evaluation
As part of the midterm evaluation of the patient feature
extraction framework, we manually assessed the prompts and
iteratively refined them based on feedback provided by medical
experts. For the final framework evaluation, we conducted both
quantitative and qualitative assessments. In terms of quantitative
evaluation, we used 200 trial documents, manually annotated
by medical experts. We reported the framework’s precision,
recall, and F1-score values in identifying symptoms, symptom
timing, medications, medication dosages, foods, and intake
amounts. Furthermore, we calculated the framework’s accuracy
in extracting complex information across 3 categories.
Specifically, we reported accuracy metrics for 3 combinations:
symptom+symptom duration, medication+dosage, and food
category+food intake, where each label had to match precisely
with manually annotated information. In addition, we initiated
a new dialogue for extracting EHRs for each patient to generate
more accurate responses from LLMs. The data is split into 2
sets of 100, with each set being manually annotated by a
different group, and the groups then cross-validate each other’s
annotations. For qualitative evaluation, we conducted a thematic
analysis of missing and incorrect standard entities in 200 trials

to explain the strengths and weaknesses of the patient feature
extraction framework specifically tailored for patients with
chronic disease.

Ethical Considerations
This study was approved by the Ethics Committee of Tongji
Medical College, Huazhong University of Science and
Technology (approval number:2024 IEC (A177), as part of the
project "Research on Risk Situation Awareness and Response
Strategies for Chronic Disease Comorbidity Based on
Knowledge Association". This study used a desensitized dataset
obtained from community health service centers in Beijing,
China. The collection of this dataset complied with the “ethical
review measures for biomedical research involving humans”.

Results

Framework Performance
The framework’s performance in terms of precision, recall, and
F1-score performance across symptoms, symptom duration,
medications, medication dosage, food, and intake quantity is
shown in Table 2.

Table 2. Performance measurements of 6 complex extraction features.

F1-score (%)Recall (%)Precision (%)Features

98.597.05100Symptoms

98.3596.8999.85Symptom duration

98.9698.0799.86Medication

84.9894.677.2Dosage

92.697.9187.83Food

92.7996.4989.36Intake

94.3696.8492.35Overall

4.9631.1448.466SD value

Table 3 demonstrates the framework’s performance in extracting
intricate patient information features, particularly from
unstructured textual data. Notably, the framework performed
well in identifying these 6 complex feature types, with the
highest accuracy for medication extraction (98.96%) and the

lowest for medication dosage extraction (84.98%). The
framework achieved a high overall F1-score of 94.36% across
all labels. Table 3 presents the accuracy measurements for 3
combinations, revealing overall F1-score values of 98.42%,
92.64%, and 88.05%, respectively.

Table 3. Accuracy measurements of 3 combinations.

F1-score (%)Recall (%)Precision (%)Feature combination

98.4296.9799.92Symptom+symptom duration

92.6496.688.99Medication+dosage

88.0597.3580.38Food category+food intake

Extraction Accuracy
By integrating the results of both simple and complex feature
extraction, we visualized the F1-score values of all features with
extraction accuracy not reaching 100%, as shown in Figure 6.
Of the 67 feature labels, 61 (91%) pertained to simple extraction,
while the remaining 6 (9%) concerned complex extraction.
Notably, the extraction results of simple features significantly

outperformed those of complex features. Of the 61 simple
extraction features, 10 (16%) exhibited errors during the
extraction process. These errors were observed in
lifestyle-related features, including “smoking status,” “smoking
duration,” “drinking status,” and “exercise status,” with F1-score
values of 99%, 94%, 99%, and 99%, respectively. In the disease
feature information, errors occurred in the extraction of
“hyperlipidemia,” “rheumatoid arthritis,” “stroke,” and
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“osteoarthritis,” with F1-score values of 99%, 97%, 99%, and
98%, respectively. In addition, errors were encountered in the
extraction of family history features, specifically “father with

hypertension” and “mother with stroke,” both achieving an
F1-score of 99%. Notably, all 6 complex features exhibited
errors in their extraction.

Figure 6. Overview of F1-score values for feature extraction.

Discussion

Feature Extraction Error Analysis
We developed a framework based on LLMs for extracting
features of patients with multimorbidity. After completing
performance measurements, we conducted an error analysis to
elucidate the system’s shortcomings in each category. The
F1-score values for all extracted features are visualized in Figure
6. Notably, the extraction of simple features involving
unstructured text, such as “smoking status,” “drinking status,”
and “exercise status,” resulted in extraction errors. Our
investigation revealed that the LLM incorrectly characterized
smoking status as “Smoking status: Frequent (≥5
cigarettes/day),” whereas accurate descriptions typically
followed the format “Smoking status: Started in 1982, Frequent
(≥5 cigarettes/day).” The absence of smoking commencement
years in patient health records hindered the model’s ability to
accurately infer smoking status based solely on the “smoking
status: frequent” descriptor. Similarly, errors in “drinking status”
stemmed from the omission of the prefix “drinking status:” in
the text description, leading to misclassification and extraction
by the model. The challenge with “exercise status” mirrored
that of “drinking status” because it lacked the explicit textual
segmentation “exercise status:”—this compromised the model’s
ability to accurately extract data from partially structured texts
lacking proper segmentation. When errors occurred in the
semantic segmentation of the text and the semantic
understanding of general knowledge, we enhanced semantic
segmentation by inserting line breaks before the “smoking
status,” “drinking status,” and “exercise status” during the
preprocessing of medical records. A better extraction method
is to use general-purpose LLMs, such as Kimi and DeepSeek,
for feature extraction tasks that do not heavily involve medical

background knowledge. These models are superior in their
training and understanding of everyday common knowledge
compared to general-purpose LLMs that are trained extensively
on medical terminology at a later stage.

In disease condition recognition, LLMs exhibit a lower
probability of making errors in associating disease occurrence
practices with disease names; for example, in the electronic
medical record of a patient where the disease is described as
“2013-06, hyperlipidemia; 2008-06, stroke,” the LLM might
incorrectly interpret it as indicating that the patient had
hyperlipidemia in 2008 and stroke in 2013. The triggering factor
for such recognition errors is unrelated to the names or
categories of the diseases. Such errors can often be addressed
by enhancing text preprocessing, for example, by inserting
formatting separators such as a newline character or other
delimiters after each disease.

In the recognition of family history, LLMs may erroneously
attribute the disease status of siblings to that of the father or
mother. Therefore, if a sibling has a certain disease, and this
situation is described in the family history, it could lead to
incorrect identification and extraction by the LLM. This issue
can be addressed by incorporating the prompt “Please note the
distinction between sibling illness and parental illness” into the
prompt modeling or by using rule-based methods to eliminate
cases of sibling illness during text preprocessing. Experiments
show that adding the clarification prompt yields better results
than deleting portions of the text during preprocessing.

The error rate of complex feature extraction is relatively higher
than that of simple feature extraction. We categorized these
errors into 6 distinct types: incorrect extraction, nonrecordable,
formatting error, incomplete extraction task, recognition error,
and missed extraction. Incorrect extraction refers to the situation
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where the LLM includes information that does not belong to
the intended label, such as extracting “exercise regularly” into
the “symptoms” label. Nonrecordable occurs when the LLM
includes information that, while fitting the category of the label,
exceeds the required range, such as extracting “clear mind” into
the “symptoms” label. A formatting error happens when the
LLM fails to output the extraction results according to the
specified format, leading to missing or incorrect information in
the structured table, for example, extracting “dizziness a year
ago” as “(dizziness; a year ago).” An incomplete extraction task
refers to instances where the model fails to fully extract the
required content for a given label, resulting in blank entries for
this label in the corresponding medical records. A recognition
error occurs when the extraction result fits both the label

category and range but does not match the actual description in
the medical record, such as extracting “dizziness a year ago”
as (dizziness, symptom time, a week ago). Missed extraction
happens when the LLM completes the extraction task for the
corresponding label but fails to capture all relevant information
described in the medical record, for instance, only extracting
(dizziness, symptom time, a year ago) from a record that also
mentions “dry mouth.” The distribution of the 6 types of errors
is shown in Table 4. A total of 430 (11.03%) errors were
identified among the 3898 valid information entries from 200
patients, resulting in an accuracy rate of 88.97% for valid
information extraction. Among the 6 types of errors, formatting
errors, incomplete extraction task, and incorrect extraction were
the most prevalent.

Table 4. Incidence of 6 types of errors in complex feature extraction.

Missed extractionRecognition errorIncomplete extraction taskFormatting errorNonrecordableIncorrect extractionError types

00001012Symptoms

0100192Symptom onset

13605014Drug

5040119018Drug dosage

351042309Food category

33642709Food intake

Formatting errors and incomplete extraction task are most likely
to occur in drug dosages. Our error analysis revealed that the
causes of these errors often related to the LLM’s poor
understanding of formatting, which aligned with our previous
error analysis on simple feature extraction. When outputting
drug triplet information, the LLM may produce results such as
(Aspirin Enteric-Coated Tablets, drug, Aspirin Enteric-Coated
Tablets), as well as expressions such as (Aspirin Enteric-Coated
Tablets, dosage, 100mg once daily) or (Aspirin Enteric-Coated
Tablets, dosage, 100mg daily). During postprocessing, it is
challenging to uniformly handle such random and varied results
using rule-based algorithms. If the LLM only provides extraction
results such as (Aspirin Enteric-Coated Tablets, drug, Aspirin
Enteric-Coated Tablets), it becomes even more difficult during

postprocessing to obtain information on drug dosages without
reviewing the original electronic medical record, increasing the
risk of missing or inaccurate dosage entries in the structured
output table. Format output errors can be resolved using a second
feature extraction method with a general-purpose language
model. Specifically, after the medical LLM performs the first
feature extraction, we can concatenate the formatting
requirements with the first extraction results and input them
into a general-purpose language model (such as Kimi,
DeepSeek, ERNIE Bot, etc) to obtain feature extraction results
that meet our requirements through secondary extraction from
these LLMs; for example, we inputted the information presented
in Textbox 5 into ZuoyiGPT.

The extraction results obtained are presented in Textbox 6.
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Textbox 5. Example of prompt content for simple extraction of patient characteristic information, along with the corresponding output.

• Please summarize and extract the symptom time information in the format of 【symptom name, time, symptom occurrence time】 【Example:
Symptom: (dizziness, time, 2022) (vomiting, time, 1990)】. At the same time, summarize and extract food and drug information in the non-drug
guidance according to the format of 【food category, intake amount, specific intake amount】, 【drug name, dosage, specific dosage】. Example:
(staple food, intake amount, <1500 kcal/day), (metformin hydrochloride tablets, dosage, 0.5mg/4/day)】. Original text: Medical history: The
patient experienced paroxysmal dizziness with nausea 15 years ago without obvious inducements, no vomiting, no significant activity impairment,
no speech difficulties, no facial drooping, and no consciousness impairment. Blood pressure was recorded at a maximum of 160/100 mmHg, and
the patient was subsequently referred to another hospital, where they were diagnosed with grade 2 hypertension. After treatment with ‘amlodipine
besylate tablets, orally / 1/day, 10.0000mg each’, the blood pressure was controlled around 130-140 / 80-90 mmHg, and the dizziness symptoms
significantly alleviated. Since the onset of the disease, the patient has been clear-minded, mentally stable, with normal diet and sleep, and normal
bowel and bladder function.

Medication treatment

• Western Medicine Prescription: Clopidogrel Bisulfate Tablets, orally once daily, 1.0000 tablet per dose; Amlodipine Besylate Tablets, orally
once daily, 10.0000 mg per dose; Simvastatin Tablets, orally once daily, 1.0000 tablet per dose.

• Traditional Chinese Medicine Prescription: None.

• Non-Drug Guidance: 1. Follow a low-salt, low-fat diet, controlling daily salt intake to less than 6 grams. 2. For abdominal obesity and overweight,
maintain a reasonable diet, engage in moderate exercise, increase muscle mass, and enhance physical fitness. 3. Ensure a balanced diet with
adequate nutrition, consume more vegetables and fruits, eat foods rich in vitamin C, reduce oil consumption to less than 25 grams per day, and
limit staple food intake to less than half a kilogram per day. 4. Maintain a positive mood and reduce stress from work and life. 5. Reduce waist
circumference and weight; prevent osteoporosis, falls, and accidental injuries; provide self-rescue guidance; regulate emotions, maintain
psychological balance, avoid extreme emotions, maintain a balanced lifestyle, and cultivate a tranquil mind.

• Doctor’s Advice: 1. Consistently adhere to prescribed antihypertensive medication and monitor blood pressure (self-monitor weekly and keep a
record; measure clinic blood pressure at least once a month), and seek medical attention for any changes in condition. 2. Regularly conduct blood
tests, urine tests, stool tests, chest X-rays (anteroposterior view), electrocardiograms, liver and kidney function tests, and fundus examinations.
3. Engage in appropriate gentle outdoor activities in sunny environments, and avoid exercising in windy, cold, or snowy conditions.

Textbox 6. Extraction results.

Symptoms

• (dizziness, time, 15 years ago)

• (nausea, time, 15 years ago)

Food

• (salt, intake, <6 grams/day)

• (cooking oil, intake, <25 grams/day)

• (staple food, intake, <250 grams/day)

Medication

• (Clopidogrel hydrogen sulfate tablets, dosage, 1/day, specific dosage, 1.0000 tablet)

• (Amlodipine besylate tablets, dosage, 1/day, specific dosage, 10.0000 mg)

• (Simvastatin tablets, dosage, 1/day, specific dosage, 1.0000 tablet)

We summarized the time information for the symptoms
extracted according to the format “[symptom name, time,
symptom occurrence time]”. 【Example: Symptoms: (dizziness,
time, 2022) (vomiting, time, 1990)】. At the same time, we
summarized the nonmedication guidance for food and
medication information according to the format “[food category,
intake, specific intake amount], [medication name, dosage,

specific dosage]”. 【Example: (staple food, intake, <1500
kcal/day), (Metformin hydrochloride tablets, dosage, 0.5
mg/4/day)】. By concatenating the results extracted by
ZuoyiGPT with the input to Kimi, a more standardized result
that is conducive to postprocessing can be obtained (Textbox
7).
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Textbox 7. Example of standardized extraction results after concatenating ZuoyiGPT outputs with Kimi input.

• Symptom Timeline Information

• (Dizziness, time, 15 years ago)

• (Nausea, time, 15 years ago)

• Food Information

• (Salt, intake, <6 grams/day)

• (Oil, intake, <25 grams/day)

• (Staple food, intake, <250 grams/day)

• Medication Information

• (Clopidogrel bisulfate tablets, dosage, 1 tablet/day)

• (Amlodipine besylate tablets, dosage, 10 mg/day)

• (Simvastatin tablets, dosage, 1 tablet/day)

The experimental results showed that Kimi exhibited the best
sensitivity to formatting.

First, the error rates and quantities for various food categories
and food intake amounts exhibited remarkable similarity.
Second, there were significant instances of erroneous extractions
without labels; yet, these errors were distributed almost
uniformly across all complex feature extractions, excluding
symptom timing. We conducted separate analyses for these 2
phenomena.

Incorrect extraction of food categories can lead to erroneous
extraction of food intake. Our observations revealed that, among
the 4 types of feature information pertaining to drug and food
information, errors in time and dosage features were as frequent
as—or more frequent than—those in content features. This is
because, within the same feature type, errors in content often
indicate that the corresponding descriptive information is also
incorrect. Therefore, if an incorrect food category is extracted,
such as misidentifying smoking and drinking as food, the
subsequent extraction of food intake amounts often results in
extracting information about quitting smoking and drinking.
Similarly, the failure to extract food categories also leads to the
failure to extract food intake amounts, and the omission of food
categories results in the omission of food intake amounts. LLMs
have relatively chaotic definitions of “food categories” and
sometimes interpret the task of extracting food recommendations
as tasks unrelated to drug guidance. This has led to incorrect
extraction, omission, and even incomplete extraction. However,
based on input from medical experts and observations of the
extraction results, we identified a consistent pattern in
physicians’ dietary recommendations for patients with chronic
and multiple diseases. These recommendations are typically
focused on categories such as salt, cooking oil, vegetables, foods
rich in vitamin C, staple foods, and foods high in dietary fiber.
Moreover, the corresponding intake amounts remain almost
unchanged. In other words, the description of food
recommendation information is fixed, with fewer categories.
Therefore, it is possible to first perform a rough extraction using
an LLM and then summarize the results to provide a
combination of food recommendations as a reference during

prompt modeling, allowing the LLM to complete the secondary
feature information extraction of food recommendations.

The issue of erroneous extraction remains consistently prevalent
across 3 feature extraction categories: symptoms, medication
characteristic information, and food recommendations. LLMs
occasionally misclassify information into incorrect labels during
the output process. Common errors include misclassifying
diseases as symptoms, dietary recommendations as medication
characteristic information, and lifestyle recommendations as
dietary recommendations. This problem can be somewhat
mitigated by incorporating error examples in the prompts.

Comparative Experimental Study of Multiple LLMs
To further validate the ability of LLMs to extract patient
features, we performed complex feature extraction experiments
on data from 100 patients using 8 general-purpose or
domain-specific LLMs—Kimi, DeepSeek, Tiangong, ERNIE
Bot, Qwen, ChatGPT with GPT-4, ChatGLM, and Taiyi—and
1 biomedical domain model, BioBERT. For consistency and
fair comparison, we applied the same prompt framework used
with the ZuoyiGPT model. As shown in Table 5, the F1-score
values of 8 LLMs on complex feature extraction tasks indicated
that each model had its own advantage in different feature
extraction scenarios. Due to extensive training on medical
clinical data, ZuoyiGPT performed well and consistently in
symptom and drug extraction tasks. Kimi specializes in
providing extraction results that better meet user formatting
requirements; however, due to inadequate training in medical
data, it occasionally misdiagnosed diseases as symptoms and
even produced hallucinations in drug and food extraction tasks,
adding features that were not present in the text. DeepSeek
showed the best overall performance, but it showed
misidentification problems in the symptom recognition task and
unstable performance. Tiangong and ChatGPT with GPT-4
were prone to combining multiple symptoms and tended to
misclassify “aerobic exercise” as food during the food extraction
task. This problem also occurred with ChatGLM when extracting
food but to a greater extent: in addition to misidentifying
“aerobic exercise,” ChatGLM extracted “fall prevention,”
“multiple diabetes diet,” and other items as food categories.
This resulted in the poor performance of ChatGLM on the food
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extraction task. In addition to the 8 LLMs discussed, we tested
Taiyi and BioBERT. However, these 2 models lack training on
targeted feature extraction and extraction format, and the
extraction performance is relatively poor. Therefore, we

excluded them from the results table as the performance
reference for evaluating large model performance on the feature
extraction task.

Table 5. F1-score values for complex extraction features using 8 large language models (LLMs).

SD value (%)Overall
(%)

Intake (%)Food (%)Dosage (%)Medication (%)Symptom
duration (%)

Symptoms (%)LLMs

5.590.9388.8988.8988.8988.89100100Kimi

2.5896.1294.7494.7410010093.6193.61DeepSeek

4.9694.3692.7992.684.9898.9698.3598.5ZuoyiGPT

6.8888.9888.8988.8997.4497.4480.680.6Tiangong

3.8294.5910010091.8991.8991.8991.89ERNIE Bot

4.0994.4292.8692.8610010090.4190.41Qwen

6.8888.9888.8988.8997.4497.4480.680.6ChatGPT with
GPT-4

29.6697.4346.1546.1510010096.196.1ChatGLM

Finally, we compiled the average time and accuracy of all
complex feature extractions from the EHRs of individual
patients for extracting features from 8 LLMs, as shown in Table
6. To understand their respective advantages, we integrated

these tables into a chart, as illustrated in Figure 7. The
performances of ZuoyiGPT and ERNIE Bot were more
comprehensive, ChatGPT with GPT-4 required the least amount
of time, and DeepSeek achieved the highest accuracy.

Table 6. The extraction time and overall accuracy of 8 large language models (LLMs).

SD value (%)Accuracy (%)Time (s)LLMs

4.3286.210.24Kimi

3.5592.5315.00DeepSeek

7.7289.3212.00ZuoyiGPT

5.8380.157.88Tiangong

4.2389.7412.92ERNIE Bot

3.9689.4326.29Qwen

7.2380.156.78ChatGPT with GPT-4

30.2274.179.58ChatGLM
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Figure 7. The extraction time and overall accuracy of 7 large language models.

A Practical Survey of Clinical and Research
Applications
To validate the practicality of LLMs in extracting patient
features for clinical practice, health policy, and medical research,
we designed a survey and invited 2 clinical medicine experts,
2 health care policy managers, and 2 medical researchers to
respond. All participants had >5 years of experience in health
care–related work. The survey included questions about the
application of LLMs in EHRs, the advantages and challenges
of extracting patient features using these models, and the
practicality of these methods in clinical practice, medical
research, and the implementation and formulation of health care
policies. It also solicited opinions on the accuracy of extracting
patient features using LLMs and requested suggestions for
method improvement. Statistical analysis indicated that,
although the older medical experts and health care policy
managers were not very familiar with the use of LLMs and the
methods for extracting patient features, all 6 participants
recognized the high practicality of these methods in clinical
medicine, health care policy formulation, and medical research
after using them. At the same time, all participants indicated
that they would use and promote the use of LLMs to extract
patient characteristic information in future work. The average
κ statistic for this method was 83.41, with an average Cohen κ
coefficient of 0.98 for the 2 clinical medicine experts, 0.95 for

the 2 medical researchers, and 0.89 for the 2 health care policy
managers. The Kendall W coefficient for the survey was 0.87,
and the Cronbach α coefficient was 0.97. In summary, this
method of extracting patient characteristics using LLMs is
clinically valuable, and the survey demonstrated high reliability.

Conclusions
We developed a scalable framework for extracting the
characteristics of patients with multimorbidity based on LLMs
capable of extracting patient characteristic information from
unstructured and semistructured EHRs. This framework has the
potential to be extended to new disease domains and patient
populations without the need for manual data labeling, thereby
facilitating large-scale analysis. In medical research, researchers
can quickly extract the necessary patient characteristic
information using this method without extensive training or
manual involvement, streamlining the research process for
multimorbidity and other disease areas, significantly enhancing
research efficiency and reliability, and aiding in the construction
of knowledge bases and knowledge graphs. In clinical practice,
clinicians can rapidly access information about patients through
this method, greatly assisting their work and treatment decisions.
In addition, health care policy makers can similarly use this
approach to quickly understand the characteristics of patient
clusters, providing a strong foundation for the formulation and
implementation of health care policies.
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