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Abstract
Background: Increasing adoption of electronic health records (EHRs) enables research on real-world data. In Germany, this
has been limited to university hospitals, and data from acute care hospitals below the university level are lacking. To address
this, we used established design patterns to build a data platform that aggregates and standardizes pseudonymized EHR data
with patients’ consent.
Objective: We report on the design and implementation of the research platform, as well as patient participation and lessons
learned during the scaling of the platform, to incorporate real-world data (with participant consent) from 77 hospitals into a
unified data lake.
Methods: Due to variations in EHR adoption, IT infrastructure, software vendors, interface availability, and regulatory
requirements, we used an agile development cycle that involves constant, incremental standardization of data. We implemented
a layered lambda infrastructure built on Apache Hadoop. Decentralized connectors ensured data minimization and pseudonym-
ization.
Implementation (Results): We successfully scaled our data model both vertically and horizontally in 77 hospitals. However,
we encountered issues during the scaling of real-time data pipelines and IHE (Integrating the Healthcare Enterprise) interfaces.
During the first 2 years, patients were asked to consent to secondary data use 1,475,244 times during inpatient admission. We
registered 1,023,633 broad instances of consent (consent rate 70.2%).
Conclusions: Patients are generally willing to provide consent for secondary use of their data, but obtaining consent requires
considerable effort. Building a research data platform is not an end goal, but rather a necessary step in collecting and
standardizing longitudinal data to enable research on real-world data. Through the combination of agile development, phased
rollouts, and very high levels of automation, we have been able to achieve fast turnaround times for incorporating user
feedback and are constantly improving data quality and standardization.
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Introduction
Adoption of electronic health record (EHR) systems has
continuously increased in Germany over the past 20 years [1],

mainly driven by billing requirements and mandatory digital
reporting for quality management. EHR data hold promise
for medical quality assurance as well as clinical and health
services research [2-4], referred to as secondary data use.
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However, data silos limit accessibility and hinder cross-insti-
tutional analyses.

In 2018, the German Ministry of Health initiated a national
health data platform for research on real-world data collected
from university hospitals. As part of the German Medical
Informatics Initiative, several consortia received funding to
develop Health Level Seven (HL7) Fast Healthcare Interoper-
ability Resources (FHIR) models [5], governance processes
[6-8], and a broad consent standard for secondary data use
[9]. Although European Union and national laws regulate
secondary use, consent is typically required to use such data
for medical research in Germany [10]. The Helios Hospi-
tal group, operating more than 89 acute care hospitals and
230 outpatient care centers in Germany as of December
2024, has championed voluntary data collection and reporting
for quality management, enabling cross-institutional research
and peer review [11-14]. Secondary analysis of claims data
across our hospital network has already generated insights
into admission rates and mortality during the COVID-19
pandemic [15-17]. Existing data centers, network infrastruc-
ture, and a unified IT department enable us to build a
data platform for secondary data analysis of EHR, quality
assurance, and claims datasets in-house.

Methods
Aims and Objective
We describe the design and implementation of a cross-insti-
tutional, multidomain data and analytics platform with a

modular data model across our organization. While similar
platforms have been described for one or a few institutions
[18-24], integrating multiple hospitals with differing EHR
systems presents unique, yet undocumented challenges [25].
We emphasize highlighting these challenges and present-
ing our lessons learned for scaling a data platform across
diverse software systems, regions, and data domains. Specific
research projects are beyond this paper’s scope. We used
iCHECK-DH (Guidelines and Checklist for the Reporting on
Digital Health Implementations) [26] to structure this report.
Requirements Engineering
Upon project initiation, we assembled a cross-functional
team comprising research, compliance, project management,
and engineering members to ascertain requirements. We
considered both data and user perspectives in the design.
We conducted an initial high-level data discovery process
and interviews with medical, technical, and regulatory subject
matter experts. Though unstructured, the interviews helped
define key requirements and agile personas (Table 1) to guide
development.

Table 1. Agile personas to guide developing the data platform.
Persona “Heather” Persona “Mere” Persona “Dave”

Function Health services researcher Medical researcher Data engineer/scientist
Background Epidemiologist with strong statistical

background
Physician-scientist with advanced
statistical knowledge

Computer scientist

Reasoning Ensure and improve quality of treatment of
patients nationally

Perform and publish peer-reviewed
medical research

Advise business users and
monitor data quality

Objectives Facilitate change in processes or standard
operating procedures and guidelines

Perform retrospective cohort studies or
decide on feasibility of prospective clinical
trials

Provide data to users

Example problem Are antibiotics dosed correctly and routinely
monitored during therapy?

Do courses of therapy differ between urban
and rural regions?

Does the amount of data
correlate to the number of
patients who consented to
secondary data use?

Infrastructure and Software
Because of regulatory requirements, we implemented an
on-premise data platform instead of a cloud-based “platform-
as-a-service” solution. Our requirements mandated integration
of multiple data types, from tabular data to binary blobs.
We selected a lambda architecture based on the Apache
Hadoop stack, as discussed by McPadden et al [18], enhanced
by Python and R notebooks for rapid analytics [27]. To
reduce operational complexity, we used a Hadoop distribu-
tion offering cluster configuration, monitoring tools, and
vendor support. Our setup operates in fully kerberized mode,

requiring authentication for each data operation and generat-
ing auditable logs.

We provide three tools to interact with the data lake:
1. Apache Hue with access to Impala-SQL, Hive-SQL,

H-Base, and the Hadoop Distributed File System
2. A hosted data science environment with containerized

runtimes for Python, R, and custom data applications
3. Hosted BI-Tools for self-service analytics using

dashboards
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Consent Management
Participation is opt in and requires written consent. This
consent is modular, covering broad consent for research on
real-world data and contact for clinical trial recruitment.
While similar to the Medical Informatics Initiative broad
consent, our version excludes modules like biobanking or
genetic data, as these domains are rarely available in our
hospitals.

We developed a consent management system from scratch
to handle modular consent with validity periods. Two
interfaces (HL7v2 and REST-API via HTTPS) connect the
back end to EHR-integrated front ends, minimizing clicks
and avoiding disruptions. Consent information is stored in
a multitenant database linked to case number and a valid-
ity period. Authorized staff can trigger withdrawals; stored
procedures remove expired or withdrawn consent daily to
maintain an up-to-date list.

Extract, Transform, Load
Extract, transform, load processes for EHR systems have been
described previously [28-30]. This paper details our approach
to integrating individual hospitals into a unified data lake. We
also outline our data modeling and standardization processes.
Figure 1 summarizes the data flow.

EHR adoption levels vary across German hospitals,
including within our group, as measured by the electronic
medical record adoption model level [31]. For historical
reasons, Helios uses EHR systems from different vendors
with different subsystems. Hence, we developed an ingest
layer supporting diverse formats and delivery methods.

The connector is a containerized Linux system configura-
ble for single- or multitenant use. Java and Python runtimes
filter, minimize, and pseudonymize the data before pushing it
to the Hadoop cluster.
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Figure 1. Data flows from EHR systems through the CONNECTOR into a data lake. Spark pipelines transform data through a layered structure.
Users access data in horizontally and vertically sliced data marts. AES: advanced encryption standard; API: application programming interface;
CBC: cipher block chaining; EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources; HeSaMeDa: Helios Safe Medical Data
(Platform); ODBC: open database connectivity; RFC: remote function call; SFTP: secure file transfer protocol.

Data Minimization and Pseudonymization
Regulatory requirements mandate that data be minimized to
research-relevant information and pseudonymized once they
leave the regulatory hospital domain [32].

Preferably, source systems would filter for patient consent,
pseudonymize records, and push these to the platform.
Some EHR systems allow custom business logic via remote
function calls to meet these requirements. FHIR application
programming interfaces (APIs) often support minimization
through custom profiles that exclude personally identifiable
attributes (eg, MedicationAdministration.performer). Systems

without API access require vendor support for custom
interfaces or queries. Additional minimization and pseudo-
nymization are typically applied within the connector for
compliance.

Helios treats patients across inpatient and outpatient
settings and across multiple hospitals. To ensure correct
longitudinal mapping, we implemented a unique pseudony-
mous identifier using a dedicated master patient index (MPI).
The MPI, based on validated probabilistic criteria [33],
consolidates records via the IHE (Integrating the Health-
care Enterprise) protocol (Patient Identifier Cross-referenc-
ing [34]) into a unique pseudonymous patient entry. This
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identifier is transmitted back to the connector to replace the
original patient ID. Before granting data access to researchers,
we add a second layer of pseudonymization to further reduce
reidentification risk across projects [32].
Data Modeling and Transformation
We designed a simple core data model and a four-layer
transformation architecture:

1. A raw layer keeps ingested data in append-only store,
without relational schema constraints.

2. A transformation layer uses Apache Spark to process
raw data in pipelines grouped by source system. Code is
continuously deployed via a continuous integration and
continuous deployment (CI/CD) pipeline and trans-
forms data into our data model. Transformations run
in batches by data source similarity, not by hospital,
reducing pipeline complexity.

3. The consumption layer unifies data from different EHR
systems into a single EHR core domain, enriches it with
semantic information like readable text for codes, and
performs data quality and plausibility checks.

4. The data mart layer offers researchers sliced subsets
of the consumption layer. Data marts can be stored as
checksummed archives to ensure reproducible analyses.

The data model centers on structured data compatible with
the HL7 FHIR resources for patients and accounts (Figure
2), enabling representation of inpatient and outpatient visits
linked to constant patient objects. Our model closely follows
the core dataset of the German Medical Informatics Initiative
[35] with deviations for data privacy reasons (eg, reducing
birth date to birth year) and data availability (eg, exclud-
ing employee data like requester and performer in Medica-
tionRequest or missing device attribute of the observation).
Two design principles were used: preserving raw data and
prioritizing speed over complete standardization. Because
most users are experienced in statistics and data analysis,
we iteratively refined standardization based on insights from
analytical projects. Examples include calculating patient age
at admission and converting lab results to international
standards like the Unified Code for Units of Measure. Raw
values are provided alongside transformed data to maintain
trust, though an interactive data lineage is not available.
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Figure 2. Data domains. Reference data are used to enrich and standardize data in other data domains and are used mainly for transformation
processes. Other data domains contain pseudonymized data from patients who gave consent for secondary data use. ATC: Anatomic Therapeutic
Chemical (classification); ECG: electrocardiogram; ICD: International Classification of Diseases; ICD GM: ICD German Modification; ICD O: ICD
Oncology; LOINC: Logical Observation Identifiers Names and Codes; OPS: operation and procedure codes (in Germany); QA: quality assurance;
UCUM: Unified Code for Units and Measurements.

Development Workflow and Process
Scheduling
All transformation code is stored in a versioned repository
(git), with each feature developed in its own branch, per agile
practices. A CI/CD pipeline runs unit and integration tests on
each commit using reproducible Docker builds, with a focus

on conditional branching. Code is deployed to production
only via the CI/CD pipeline (Figure 3) after tests and manual
review. Execution and scheduling, including dependencies,
are managed via directed acyclic graphs in Apache Airflow.
After a successful run, the story owner conducts a user
acceptance test before sign-off and archiving of the feature
branch.
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Figure 3. Agile development workflow using continuous integration and continuous deployment (CI/CD). PySpark code from story branches is
tested and evaluated multiple times before it can be merged into production. With each iteration the level of scrutiny increases, from unit tests to
integration into tests and manual code review.

Governance
Data governance follows German guidelines for secondary
data analysis [36]. The multidisciplinary Usage and Access
Committee (UAC) grants data access per use case, enforced
at column and row level by user- or group-based policies in
Apache Atlas. Reidentification of patients requires appro-
val from researchers, the ethics committee, and the UAC,
typically for clinical trial inclusion, and is performed only at
the data-providing hospital, to preserve data sovereignty.

Implementation (Results)
Consent Management
From January 2022 to July 2023, the consent management
system was implemented in 77 hospitals (Figure 4 and Figure
5). Ten hospitals were excluded due to their specialization
(psychiatric) or incomplete network integration.

Figure 4. Broad consent and contact consent since project launch. Consent infrastructure, as measured by the number of hospitals (sites) reporting
consent, was rolled out faster than data infrastructure (see also Figure 5).
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Figure 5. Data volume over time, as measured by record counts in the consumption layer in relation to the integrated sites (hospitals), which
illustrates a staged rollout and scaling of data infrastructure.

In general, EHR updates occur in cycles within our hospital
network. Consent management, which is integrated into the
administrative user interface, requires thorough testing before
deployment, as updates have to wait until the next cycle.
Scaling was rapid: 61 facilities were integrated within the
first month and 10 more within the second, and there were
a total of 74 within 3 months. Staff received training during
the rollout, yet in the initial 6 months, only 40% of patients
were asked for consent, with a variation of plus or minus 24%
across hospitals. Additional training boosted the rate to 63%
by the end of 2023.

Rapid consent integration caused a significant load on the
MPI during peak patient admission in the morning. To avoid
time-outs, the Patient Identifier Cross-referencing interface
was wrapped in an HTTPS API behind a high-availability
load balancer.

Over a 24-month period, 1,475,244 patients were asked
for consent during admission. In total, we received 1,023,633
instances of broad consent (consent rate: 70.2%), and 732,485
(71.6%) of these also included agreement to be contacted by
researchers.

Notably, consent was not uniformly distributed: 714521
(69.8%) of instances stemmed from planned admissions,
217583 (21.3%) from unplanned admissions through the
emergency department (ED), and 91529 (8.9%) from
outpatient cases in the ED.
Data Volume
After 24 months, the consumption layer held approximately
15.1 billion records (averaging 102 unique medical data
points per case), as shown in Figure 5. This amounted to
approximately 14.1 terabytes of data as of October 2024. The

ingest layer managed on average 1.9 million HL7 messages
and 45,378 FHIR bundles per year, per hospital.
Data Modeling and Transformation
An iterative development approach results in frequent,
additive changes to the data model, which are difficult to
communicate to users. Therefore, we developed an interactive
data catalog as a web application that displays the current
state of all tables in the Hive Metastore.

We implemented an automated data quality framework
to ensure data model conformity, assess data relationships,
and detect outliers. This helped identify point-of-care devices
reporting lab results in nonstandard units during LOINC
(Logical Observation Identifiers Names and Codes) mapping
[37].

Since transformations evolve, we implemented data
version control [38] to store versioned code and data for
reproducibility. It worked very well, but required familiarity
with git and command line interfaces.
Lessons Learned

Infrastructure Scaling
The Hadoop ecosystem handles structured, semistructured,
and unstructured data. Due to data minimization, data
volumes grow more slowly than the compute demand, driven
mainly by standardization and data quality checks. Therefore,
we added another physical host to the cluster in the first year.

The consent rollout required addressing regulatory
compliance, seamless technical integration into patient
management systems, and an organizational transition to
embed consent into the admission process, which presented
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unexpected challenges. A stable consent rate of 70% showed
strong patient willingness to support research.

Strategies for Scaling the Data Lake
In summary, a 2-phase data integration strategy, starting
with a few hospitals, has proven effective. The initial
phase facilitates refinement of interfaces, data modeling, and
transformation processes, laying the foundation for seamless
integration with a larger number of hospitals during sub-
sequent scaling. Scaling the consent management system
prior to data integration also proved beneficial, ensuring a
consistent backlog of data for integration into the data lake.

Notably, as our data ingestion interfaces matured, technical
integration of new data domains like ICU or cancer regis-
tries accelerated. However, full data model integration still
requires substantial input from subject matter experts.

Batched Data Scales More Easily Than
Streaming Data
Scaling adversely affected our MPI and HL7v2/IHE data
ingestion, as these systems rely on an existing communication
infrastructure that is not readily scalable. Future real-time
data integration will likely shift toward local clinical data
repositories for preprocessing, rather than introducing new
streaming pipelines with technologies like Apache Kafka.

Interoperability and Standardization
Standardization, even for basic resources, presents difficul-
ties, as transformations impact semantics and may lead to
permanent information loss, despite agreement on rules by
involved parties (ie, subject matter experts and data engi-
neers).

Divergence in target values across different EHR
installations poses risks to information integrity, notably
during initial HL7 message processing due to profile
limitations excluding certain HL7 “Z-segment” permutations.
Consequently, a “raw-data first” policy was implemented to
mitigate future data loss, albeit at the expense of increased
bandwidth and storage capacity needs. Standardization can
also result in decreased precision, particularly when trans-
forming observations that were recorded without adhering to
standards like LOINC [37].

Automation
Automation is essential to enhance efficiency, accuracy, and
productivity. Versioned code and reproducible builds from
the CI/CD pipeline helped to quickly revert changes that
turned out to be suboptimal prior to production deployment.
We also had substantially more success in onboarding new
personnel onto automated, rather than manual, processes.
We argue this learning is especially valuable for research
institutions, which experience frequent personnel changes
among graduate students and postdoctoral researchers.

Unintended Consequences
With 70% of cases in our dataset stemming from planned
admissions, ED cases were underrepresented, introducing a
selection bias. This disparity compromises the validity of
results extrapolated to the ED setting and may distort the
performance metrics of predictive models and risk stratifica-
tion algorithms, possibly resulting in suboptimal outcomes.
Thus, meticulous methodological scrutiny, starting in the
design phase of each project, is required to mitigate these
biases when using this dataset for translational research.

To enhance unbiased subsampling and improve generaliz-
ability, we categorized admission criteria for accounts and
encounters. Nevertheless, our aim is to seek consent from
every patient, irrespective of admission type, ensuring dataset
balance. Obviously, in urgent medical situations, obtaining
consent may not be feasible for patients who are distressed
or have an altered mental state. A potential solution is to
separate consent from administrative admission, seeking it
during the inpatient stay instead, although this approach
would demand extra resources. Unfortunately, vulnerable
patient groups (eg, homeless or uninsured patients) will
also be underrepresented in our dataset, since most of their
interaction with the medical system is through the ED. Ethical
implications extend beyond consent collection. The potential
for algorithmic bias in medical research based on our dataset
must be carefully considered. Researchers using our platform
are required to report on the demographic composition of
their study populations and explicitly address potential biases
in their analyses.

Discussion
We hope to inspire other private hospital networks to build
data lakes. Adhering to best practices as defined by national
and international research consortia is key to ensure com-
patibility and to allow for integration with other research
consortia in the future. Combining data from academic and
nonacademic institutions and health care providers could
enable longitudinal analysis of patients across multiple health
care sectors, and the German Medical Informatics Initia-
tive has begun branching out into nonacademic health care
providers via progress hubs [39].

Our approach centralizes data from all participating
hospitals after integration, whereas the German Medical
Informatics Initiative operates local data integration cen-
ters at every participating hospital or within smaller hos-
pital clusters. Decentralized data repositories provide local
autonomy and resilience against system failures but demand
infrastructure and personnel investment at every site. A
decentralized approach seems ideal for academic institutions
because local data expertise can be used for local research
projects and education of computer science students as well
as physician scientists receiving specialization training. For
hospital networks below the level of university medical
centers, centralization might be preferable, especially if there
are already shared IT resources (infrastructure and person-
nel) within the network. We acknowledge, however, that
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our decision to use open source software and implement
the platform from scratch was only feasible because our
IT organization already runs its own data centers and has
developer as well as development operations experience.
Nevertheless, the global trend toward platform-as-a-service
providers (hyperscalers) for storage and compute tasks poses
challenges in recruiting experienced staff for on-premise
installations. This presents a pain point for hospital networks:
regulatory requirements require on-premise data storage,
while most other sectors move to the cloud.

High levels of automation and agile development,
characterized by short feature cycles and consistent data
quality improvements, are necessary for user satisfaction.

However, achieving swift project rollout and overall success
necessitates continuous organizational investment and subject
matter expert support.

Future developments will involve the extraction of
knowledge from unstructured text, and we have collected
preliminary findings on document pseudonymization [40].
Building research data platforms is not a purpose in itself.
Meaningful research conducted on these platforms is needed
to justify the collection of EHR data, even with patient
consent. We are looking forward to research reports beyond
the technical level on projects realized with our implementa-
tion.
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