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Abstract

Background: Wearable devices are increasingly used for monitoring health and detecting digital biomarkers related to
chronic diseases such as metabolic syndrome (MetS). Although circadian rhythm disturbances are known to contribute to
MetS, few studies have explored wearable-derived circadian biomarkers for MetS identification.

Objective: This study aimed to detect and analyze sleep and circadian rhythm biomarkers associated with MetS using step
count and heart rate data from wearable devices and to identify the key biomarkers using explainable artificial intelligence
(XAI).

Methods: Data were analyzed from 272 participants in the Korean Medicine Daejeon Citizen Cohort, collected between 2020
and 2023, including 88 participants with MetS and 184 without any MetS diagnostic criteria. Participants wore Fitbit Versa
or Inspire 2 devices for at least 5 weekdays, providing minute-level heart rate, step count, and sleep data. A total of 26
indicators were derived, including sleep markers (midsleep time and total sleep time) and circadian rhythm markers (midline
estimating statistic of rhythm, amplitude, interdaily stability, and relative amplitude). In addition, a novel circadian rhythm
marker, continuous wavelet circadian rhythm energy (CCE), was proposed using continuous wavelet transform of heart rate
signals. Statistical tests (7 test and the Wilcoxon rank sum test) and machine learning models— Shapley Additive Explanations,
explainable boosting machine, and tabular neural network —were applied to evaluate marker significance and importance.

Results: Circadian rhythm markers, especially heart rate—based indicators, showed stronger associations with MetS than sleep
markers. The newly proposed CCE demonstrated the highest importance for MetS identification across all XAI models, with
significantly lower values observed in the MetS group (P<.001). Other heart rate—based markers, including relative amplitude
and low activity period, were also identified as important contributors. Although sleep markers did not reach statistical
significance, some were recognized as secondary predictors in XAl-based analyses. The CCE marker maintained a high
predictive value even when adjusting for age, sex, and BMI.

Conclusions: This study identified CCE and relative amplitude of heart rate as key circadian rhythm biomarkers for MetS
monitoring, demonstrating their high importance across multiple XAI models. In contrast, traditional sleep markers showed
limited significance, suggesting that circadian rhythm analysis may offer additional insights into MetS beyond sleep-related
indicators. These findings highlight the potential of wearable-based circadian biomarkers for improving MetS assessment and
management.

JMIR Med Inform 2025;13:¢69328; doi: 10.2196/69328

Keywords: metabolic syndrome; wearable device; digital biomarker; circadian rhythm; explainable artificial intelligence

https://medinform.jmir.org/2025/1/69328 JMIR Med Inform 2025 | vol. 13 1e69328 I p. 1
(page number not for citation purposes)


https://doi.org/10.2196/69328
https://medinform.jmir.org/2025/1/e69328

JMIR MEDICAL INFORMATICS

Introduction

Metabolic syndrome (MetS) is a multifaceted disorder
that includes various metabolic conditions, such as obe-
sity, hypertension, and diabetes. These conditions are
becoming increasingly prevalent worldwide, posing signif-
icant concerns with profound implications for individual
health, societal well-being, and the economy. Metabolic
diseases involve complex pathophysiological mechanisms
[1,2]. Promoting healthy eating habits, integrating appropri-
ate physical activity, and effectively managing stress can
significantly reduce the risk of developing MetS [1,3].

Currently, health management systems using wearable
devices are gaining significant attention [4]. These systems
offer personalized health care by continuously monitoring
and analyzing the health status of an individual in real time.
Wearable devices enable regular assessment of health-rela-
ted indicators, eliminating the need for frequent hospital
visits [2]. Achieving this requires the integration of various
technologies, including semiconductors, artificial intelligence,
and the Internet of Things [5]. Smartwatches and bands are
among the most commonly used wearable devices in daily
life. Smartwatches are equipped with diverse sensors such
as optical heart rate (HR) monitors, electrocardiograms, and
inertial sensors, enabling the collection of vital signs such as
step count, HR, blood pressure, pulse, and oxygen saturation

[5].

Wearable devices can continuously monitor an individu-
al’s vital signs in real time. This involves the continuous
tracking of important indicators related to MetS, such as
HR, blood pressure, and activity levels, aiding in the real-
time assessment of an individual’s health status and the
early detection of anomalies [2,6]. The daily data generated
by wearable devices can help identify factors influencing
the onset and progression of MetS. Recently, there has
been a significant increase in attention to the daily monitor-
ing of sleep and circadian rhythms using wearable devi-
ces [7.,8]. Circadian rhythms are biochemical, physiological,
or behavioral processes that occur in living organisms in
approximately 24-hour cycles. Circadian rhythm markers are
indicators to assess or measure the circadian rhythm state of
a living organism [8,9]. Sleep and circadian rhythm biomark-
ers derived from activity-based wearable devices are now
applied in studies on various conditions, including obesity [7],
depression [8,9], cognitive function [10], prematurity [11],
and mortality [12]. Common sleep markers include sleep
timing (sleep onset and sleep offset), sleep duration (total
sleep time), midsleep time, and wake after sleep onset [7,8].
Circadian thythm markers are assessed using both paramet-
ric methods, such as amplitude, acrophase, midline estimat-
ing statistic of rhythm (MESOR), and circadian quotient
(CQ) via cosinor analysis [8,12], and nonparametric methods,
such as interdaily stability (IS), intradaily variability (IV),
and relative amplitude (RA) [9-11]. Given the periodic
nature of circadian rhythms, energy-based methods have
been proposed. For example, singular value decomposition
(SVD) has been used to calculate energy values from activity
data, suggesting potential markers for cognitive function
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[10]. Traditional methods for measuring signal energy, such
as Fourier transform, discrete cosine transform, and wave-
let analysis, have been used in various biosignal analysis
studies [13]. In this study, we propose a novel marker called
continuous wavelet circadian rhythm energy (CCE) using
continuous wavelet transform (CWT) for time-frequency
analysis of HR as a circadian rhythm marker.

Previously, circadian rhythm analysis using wrist-worn
wearable devices focused on activity-centered markers
through actigraphy [9,10,12]. However, recently, the demand
for circadian rhythm analysis based on HR and step counts
provided by smartwatches and bands has been increasing
[7,8]. Wearable devices often underestimate and overestimate
the number of steps in free-living environments. Therefore,
circadian rhythm markers in this study were obtained by
integrating 5 days of continuous data, which addressed
inaccuracies in step count measurements by reflecting the
overall trends in sleep and activity. In addition, this study can
compensate for incorrectly measured step counts by exploring
HR-based markers rather than step counts.

The majority of the previous studies detected everyday
features obtained from wearable devices and analyzed the
features limited to statistical techniques without incorporating
artificial intelligence technology [9-12]. Explainable artificial
intelligence (XAI) techniques that interpret predictive results
are gaining attention in the analysis of biosignals and health
care information [5,7]. Specifically, research on circadian
rhythm analysis based on wearable devices in relation to
MetS is still in its early stages. This area requires multifac-
eted analysis, including the development of circadian rhythm
biomarkers specifically tailored for MetS and the application
of XAI for data interpretation.

Therefore, in this study, we detected circadian rhythm
markers based on step count and HR to develop a wear-
able-based circadian rhythm marker for MetS and ana-
lyzed circadian rhythm markers important for MetS through
artificial intelligence technologies such as Shapley Additive
Explanations (SHAP), explainable boosting machine (EBM),
and Tabular neural Network models (TabNet). Integration
with XAI in marker analysis can make the results more
actionable in health care applications due to its transparency
and interpretability.

Methods

Recruitment

The Korean Medicine Daejeon Citizen Cohort (KDCC)
dataset was used to validate the proposed biomarker. The data
from the KDCC, spanning from 2020 to 2023, encompassed
demographic, lifestyle, clinical, and biochemical measure-
ments collected from 2000 participants. Anthropometric data,
including height, weight, BMI, waist circumference, and hip
circumference, were measured under standardized conditions.
Height and weight were recorded using a digital stadiometer
(BSM370, InBody), and BMI was calculated as weight (kg)
divided by the square of height (m?). Waist circumference
was measured at the level of the navel, and hip circumference
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was measured at the widest part of the hips using a measuring
tape (Hoechstmass-Rollvix, Germany).

Systolic blood pressure, diastolic blood pressure, and
resting HR were measured using an automatic blood
pressure cuff (FT-500R PLUS, Jawon Medical, South Korea).
Measurements were taken after at least 5 minutes of rest, with
an additional I-minute interval between repeated readings.
The average of 2 measurements was used for analysis.
Venous blood samples (22.5 mL) were collected in the
morning after overnight fasting. After 30 minutes, blood
samples were centrifuged at 3450 rpm for 10 minutes, and all
samples were transported within 24 hours to Seoul Clini-
cal Laboratories (Seoul, Korea) for analysis. The biochem-
ical analysis included complete blood count, kidney and
liver function tests, lipid profile (triglycerides, high-density
lipoprotein, low-density lipoprotein, and total cholesterol),
glucose metabolism markers, thyroid function tests, and
inflammation markers [14].

Kim et al

Daily data was obtained using Fitbit Versa or Inspire
2 wristbands (Fitbit) [15]. Of the initial 2000 participants
enrolled in the KDCC cohort, not all consented to wearable
device use. Consequently, 745 participants provided usable
Fitbit data. Participants who wore Fitbit for less than 5
consecutive weekdays or had data for more than 6 hours
of nonwearing in a 24-hour period were excluded from the
745 participants. Finally, 500 of the 745 participants were
included in the analysis.

MetS was defined as meeting 3 or more of the following
criteria, based on a 5-criteria system that uses the criteria
described in the modified third national cholesterol educa-
tion program adult treatment panel by modifying the waist
circumference cutoff point for Koreans [15] in Textbox 1.

Textbox 1. Third National Cholesterol Education Program Adult Treatment Panel.

medications

for lipid abnormalities

¢ Waist circumference (=90 cm for men, =85 cm for women)
* Systolic blood pressure (=130 mm Hg) or diastolic blood pressure (=85 mm Hg), or current use of antihypertensive

* Low high-density lipoprotein cholesterol levels (<40 mg/dL in men and <50 mg/dL in women) or use of medication

* Triglyceride level (=150 mg/dL) or medication for lipid abnormalities
* Fasting blood glucose level (=100 mg/dL) or medication for type 2 diabetes

Among 500 participants (158 males and 342 females), 88
participants (44 males and 44 females) met the criteria for
MetS, and 184 participants (28 males and 156 females) did
not meet any of the 5 criteria and were classified as non-
MetS.

Ethical Considerations

This study was conducted following the Declaration of
Helsinki and was approved by the institutional review board
of Dunsan Korean Medicine Hospital, Daejeon Univer-
sity (approval number DJIDSKH-17-BM-12) and the Korea
Institute of Oriental Medicine (approval number I-1703/002-
002). Before participation, all individuals provided written
informed consent, including consent for collecting human
biological materials. Participants were informed that they
could withdraw their consent at any time without any
consequences.

Participants received US $36 as compensation for
transportation costs. Written consent was obtained from
the individuals involved for the publication of potentially
identifiable images or data. All included images were
reviewed to ensure that personal identities could not be
inferred. This study was designed and conducted in compli-
ance with ethical standards for human research, ensuring
participant rights, privacy, and safety throughout the study
process.

Circadian Rhythm and Sleep Indicator

Wearable data included minute-level HR and step-count
records collected from Fitbit devices. In addition, the sleep
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duration records provided by Fitbit were collected. Notably,
the minute-level HR records from the Fitbit devices occa-
sionally had missing values, represented by zeros. Missing
values were converted to the nearest HR. Missing data
mainly consisted of long periods of nonwearing, such as
during charging or showering. Spline interpolation resulted in
exaggerated patterns, such as sudden increases or decrea-
ses in HR during long periods of nonwearing. Given these
considerations, linear interpolation was chosen to minimize
distortion and better handle long intervals.

The most commonly used indicators in sleep analysis are
midsleep time (MST), total sleep time (TST), and wake after
sleep onset [7,8]. MST is used to determine phenotype, such
as whether an individual is a morning or evening sleeper.
Knowing MST and TST can reveal the amount of sleep and
phenotype, but it does not provide information about sleep
efficiency. Therefore, the ratio of total sleep time to total
time spent in bed for sleep is used. However, it is difficult
to estimate sleep efficiency with step count and HR data
provided by Fitbit.

Cosinor analysis is frequently used to analyze circadian
rhythms based on activity and HR. Cosinor analysis fits
sine waves to time series using the least squares method
[16]. It is often used in biological time series analysis and
can be applied to time series with nonuniform intervals.
Cosinor analysis expresses observed time series data as a
cosine function, as shown in Equation 1. Y(t) is the obser-
vation at time t, M is the mean (MESOR), A is the ampli-
tude, T is the period, t is the time, and ¢ is the phase.
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MESOR is the middle value of periodic oscillations and
represents the central tendency of the data. The amplitude
is the amount of variation in the period and represents how
much the data deviates from the mean. The phase is the
location of the variation corresponding to a specific time in
the period and can mean the time when the peak of the data
occurs. Amplitude, acrophase, MESOR, and CQ (amplitude
or MESOR) are used as cosinor-related indicators [8,9,12].

Y(i) =M+ Acos(@ + go) €))
Nonparametric indicators used in circadian rhythm studies
related to daily activity include RA, IV, and IS, which
evaluate the stability and variability of individual activity
patterns and circadian rhythms [8-10]. RA is an index that
evaluates the amplitude of activity in circadian rhythms and is
calculated by the difference in activity between the maximum
and minimum activity times as shown in Equation 2. M10
means the mean activity during the 10 hours with the highest
activity during the day, and L5 means the mean activity
during the 5 hours with the lowest activity during the day.
The higher the RA, the greater the difference in activity
between day and night, indicating a more distinct circadian
rhythm.

IV is an index that evaluates the variability of activity
patterns within a day, as shown in Equation 3. N is the total
number of measured time data, Y, is the activity at time t,

and Y is the mean activity over all times. The numerator of
Equation 3 is the sum of the squares of the activity variance
between consecutive time periods. The larger the change in
activity between time periods during the day, the larger the IV
value. The denominator is the total change in activity by time,
which expresses the variability for the mean activity during
the day.

IS is an index that evaluates how consistently activity
levels are maintained at the same time across multiple days.
It indicates how regular and consistent the activity patterns
are maintained by the time zone of the day. In Equation 4, N
is the total number of measured time data, S is the number
of data per day, and Xis the hourly mean. The numerator
represents the squared deviations of the hourly means from
the overall mean, whereas the denominator reflects the total
variance of the entire series. As the ratio of these 2 terms
increases, the IS value becomes larger, and activity patterns
that recur at identical clock times on successive days yield
higher IS values.

M10—-L
RA = 35713 @
_ NZ{\T:z(Yz—Yt—l)Z
V= sy ®)
S = =2
IS = NYpn=13p—%) (4)

ST (- %)

Dimension reduction technology is being utilized as a method
of analyzing biosignals, which is a method of converting
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high-dimensional data into low-dimensional data to easily
visualize or analyze the data [17,18]. Dimension reduction
is mainly used to reduce computational costs, remove noise,
and express data more concisely while preserving the features
of the data. Principal component analysis, linear discriminant
analysis, and SVD are used as dimension reduction methods.
In a study that applied dimension reduction technology to
circadian rhythm, circadian activity rthythm energy (CARE)
was proposed to detect the energy of subsignals with a cycle
of less than 24 hours through singular spectrum analysis
based on SVD to analyze the circadian rhythm of cognitive
function. CARE showed a higher correlation coefficient than
RA for melatonin amplitude [10].

The activity and HR obtained from wearable devices have
a 24-h periodicity. Wavelet transform (WT) is used as a
method to analyze signals that have time periodicity [19]. WT
is a powerful tool that can analyze signals in the time and
frequency domains simultaneously. WT analyzes frequency
information in each time interval by decomposing them into
wavelets of various sizes. CWT calculates wavelet changes
for all times. Morlet wavelet is a sinusoidal waveform that
is attenuated by a Gaussian curve, which is very advanta-
geous in detecting the temporal changes of specific frequency
components, allows for high-resolution frequency analysis,
and captures continuous and periodic signal components well
[14,20]. The CWT for a signal x(t) is obtained by computing
the inner product with the Morlet wavelet. In Equations 5
and 6, Wx(a, b) is the CWT coefficient of a given signal
x(t), a is a scale factor that controls the frequency variation.
A smaller a corresponds to a higher frequency component,
and a larger a corresponds to a lower frequency component.
b is a shift parameter that controls the variation in time, and
the signal is analyzed along the time axis as b changes. P*is
the complex combination of the Morlet wavelet, t is time,
and x(t) represents the signal to be analyzed. i (f) is the
Morlet wavelet function, w, is the center frequency, and 1
is the imaginary unit. The magnitude (energy) of the CWT
coefficients Wx(a, b) represents how strongly the signal x(t)
exists at a given scale a and time b. This energy is used
to generate a spectrogram, which is a map that shows the
intensity of the signal in the time-frequency plane. The center
frequency means that the Morlet wavelet is optimized for
analyzing signals in a specific frequency band. To obtain
circadian rhythm markers for the acquired 5-day HR and step
count per min, spectrograms were obtained for each signal,
and then the total energy of the center frequency was derived
as a marker by adding up all the energy over time for each
center frequency. The proposed CWT-based circadian rhythm
energy is called CCE.

¢(t) = Fee e (5)

Wx(a, b) = o/ 2ux() 9 ()t (6)
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Feature Selection and XAl

XAI is a methodology used to interpret the results of machine
learning models. XAI enabled us to analyze the contribution
of the features to the model outcomes. The local interpret-
able model-agnostic explanation (LIME) and SHAP are
commonly used XAI algorithms, particularly for analyzing
tabular data. As LIME often focuses on local explanations, it
may not effectively explain the global behavior of the models.
SHAP is a model-agnostic post hoc algorithm that is gaining
attention. SHAP offers special implementations of tree-based
models and provides more accurate and efficient explanations
[21]. A tree-based model was used to identify MetS. Thus,
SHAP was used to analyze the important features. SHAP
provides insight into the contribution of each feature to the
model outcomes, considering both the positive and negative
impacts of wearable-based daily life features on the identifi-
cation of MetS. XGBoost was used as the SHAP learning
model, and the resulting SHAP values were as follows [5]:

@i(v) = Z

S € N{i}

IS|!(n—[S] —=1)
n!

LS Uil —uS) (7)

XGBoost is a boosting model for decision trees that enhances
the performance of gradient-boosting machines in terms of
their speed. Boosting models iteratively update the parameters
of previous classifiers to create a more powerful classifier,
thereby increasing the accuracy and reducing the gradient of
the loss function [5].

EBM is an interpretable structure of the model itself,
unlike SHAP, which explains how each feature contributes
to the prediction [22]. EBM is based on a generalized additive
model (GAM), and GAM models the relationship between
features and target variables as a sum of functions for each
feature [23]. EBM can visualize how each feature contrib-
utes to the prediction so that users can easily understand the
influence of individual features on the results. Equation 8
represents GAM, where (3, is a constant term, and f; (x;)
is a function learned for each feature, indicating how each
feature contributes to the prediction. g is a link function
that adjusts GAM to various settings, such as regression or
classification. EBM learns each function f;(x;) of GAM
using boosting techniques. Boosting is a method of sequen-
tially learning multiple weak models and correcting errors
made by previous models, as shown in equation 9. hy, (x;)
is the m-th weak model, «,, is the weight of the m-th weak
model, and M represents the boosting step. EBM, including
GAM and boosting techniques, is shown in Equation 10, and
EBM can automatically detect pairwise interactions between
each feature that are important for prediction and include
them in the model, as shown in Equation 11.

g(E[y]) =Bo+ f1(x1) + f2(x2) + f3(x3) + -+ fr(xn) (8)
filx) = z%: 1amhm(xi) )
8E[Y]) = Bo+ D0 1 D M_ mhin(x)
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gE]) =B+ X fi(x) + X fij(xx;) (11)
In addition to EBM and XGBoost, TabNet, a deep learning
architecture designed for tabular data, was used. TabNet
leverages a novel attention mechanism that automatically
selects relevant features and effectively learns their interac-
tions [24]. TabNet is particularly well-suited for analyzing
complex datasets because it handles missing values and
displays the most influential features for prediction, provid-
ing interpretability. In TabNet, the method to automatically
evaluate the importance of each feature to the model is related
to the attention mechanism and Gated Linear Units (GLU).
To evaluate the importance of each feature in a given input
X, the attention weights W, are calculated as in Equation
12. Z is the input value of the current layer, A is the learna-
ble weight, and P is the prior-scale term that reflects how
frequently the corresponding feature has been selected in
earlier steps. Consequently, A becomes a probability vector
indicating the importance of each feature. TabNet performs
prediction through features selected from each layer, and the
set of selected features is defined as in Equation 13. GLU is
used in the process of performing prediction using selected
features. GLU can emphasize or suppress input features
through nonlinear transformation, as shown in Equation 14.
Wis a weight matrix, b is a bias, and o is a sigmoid activation
function, which provides a ratio representing the importance
of each feature. The output computed through the attention
weights and GLU of each layer evaluates the importance of
each feature to the final prediction.

A = Sparsemax(P+(W Z)) (12)
Kielected = Ao X (13)
GLU(x) = (W1x + by)sa(W,x + b,) 14)

The XGBoost parameters used were booster=gbtree and
objective=binary logistic. The other parameters were set to
the default values in Python (v3.10.9), NumPy (v1.23.5),
and scikit-learn (v1.2.2). EBM was implemented using the
interpret library version 0.6.4, and TabNet was implemented
using pytorch-tabnet version 4.1.0 with max_epochs=2000
and batch_size=32.

Results

Associations of Sleep and Circadian
Rhythm Indicators With MetS

Based on HR, step count, and sleep data obtained from
wearable devices, bio-digital markers of circadian rhythm
for MetS were detected and the significance of the markers
was analyzed. For the analysis, continuous wearable data
for 5 days during the week of 88 MetS and 184 non-MetS
obtained from smart bands on the wrist were used. Demo-
graphic and clinical information used to determine MetS are
shown in Table 1. The age of the MetS group was 48.94
years, which was 4 years older than that of the non-MetS
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group. The average BMI of MetS was 27.9. Systolic blood
pressure, diastolic blood pressure, triglyceride, high-density
lipoprotein, and glucose used to determine MetS all showed

Kim et al

statistically significant results (P<.001). The P value was
obtained using an independent 7 test.

Table 1. Demographic and clinical characteristics of MetS and non-MetS groups. Demographic data (age and sex) and clinical variables, including

BMI, waist circumference, blood pressure, lipid profile, and glucose levels, are presented for participants classified into MetS (n=88) and non-MetS

(n=184) groups. Statistical significance was tested using ¢ tests.

Non-MetS? MetS P value
Sex, n (%)
Male 28 (38.9) 44 (61.1)
Female 156 (78.0) 44 (22.0)
Age (years), mean (SD) 44.04 (6.48) 48.94 (6.92) <.001
BMI (kg/m?), mean (SD) 21.70 (2.08) 27.90 (2.94) <.001
Waist (cm), mean (SD)
Male 81.82 (5.28) 96.98 (7.41) <.001
Female 7588 (5.11) 90.45 (8.04) <.001
SBPP (mm Hg) 110.32 (8.98) 130.68 (15.42) <.001
DBP¢ (mm Hg) 67.97 (8.80) 83.07 (11.31) <.001
Triglyceride (mg/dL) 78.29 (26.62) 210.01 (102.54) <.001
HDL{ (mg/dL) 68.17 (14.21) 46.40 (11.35) <001
LDLS® (mg/dL) 123.02 (33.19) 124.13 (35.95) 74
Total_Cholesterol (mg/dL) 204.94 (35.05) 200.51 (42.11) 45
Glucose (mg/dL) 82.97 (6.52) 99.89 (20.84) <.001

4MetS: metabolic syndrome.
PSBP: systolic blood pressure.
°DBP: diastolic blood pressure.
9HDL: high-density lipoprotein.
°LDL: low-density lipoprotein.

Twenty-six indicators were identified as sleep and circadian
rhythm markers. The sleep-related indicators consist of 4
measures: the mean and SD of MST and TST. MESOR,
amplitude, acrophase, and CQ for both step count and HR,
derived from cosinor analysis, make up 8 indicators. In total,
10 indicators, including L5, M10, RA, IS, and IV for step
count and HR, were calculated as nonparametric indicators.
In addition, one indicator was based on dimension reduction
proposed in a previous study, and 3 indicators using CCE
based on HR were introduced in this study.

The statistical significance of MetS in the results obtained
by analyzing the energy of the CWT based on the central
frequency of the circadian rhythm for step count and HR, in
order to detect MetS markers related to the CCE proposed
in this study, is shown in Figure 1. The CCE value for step

https://medinform.jmir.org/2025/1/69328

count showed the lowest P value at a central frequency of 70
minutes, but it did not reach a value below .001. However,
HR exhibited statistical significance below 0.001 at central
frequencies of 70 minutes and 1000 minutes. Therefore, the
total CCE value was obtained for the central frequencies
between 69 and 80 minutes (midfrequency) and between
900 and 1100 minutes (low-frequency). In addition, the
ratio of the 2 central frequency ranges (mid_low ratio) was
calculated as a single indicator. The energy of HR accord-
ing to the central frequency reaches its highest at the 1440-
minutes circadian cycle and also shows high energy in the
700-minutes range (Figure 2). In the central frequency range
of 69-80 minutes, the energy of MetS is lower than that of
non-MetS, while in the 900-1100-min range, the energy of
MetS is higher.
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Figure 1. Statistical significance of continuous wavelet transform energy derived from step count and heart rate (HR) data across different central
frequencies in the identification of metabolic syndrome (MetS). P values for each frequency range compare MetS (n=88) and non-MetS (n=184)
groups, using HR and step count data recorded from Fitbit devices over 5 weekdays. HR circadian rhythm energy (CCE) showed statistical
significance (P<.001) at 70 min and 1000 min, whereas step count CCE did not reach this threshold.
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Figure 2. Comparison of heart rate (HR) energy at different central frequencies between metabolic syndrome (MetS) and non-MetS groups based on
continuous wavelet transform analysis of wearable data. HR energy peaked at 1440 min (circadian cycle) and 700 min. In the 69-80 min range, MetS
energy was lower than non-MetS, while in the 900-1100 min range, MetS energy was higher.
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In Tables 2 and 3, the means, SD, and statistical significance (independent ¢ test) and nonparametric testing (Wilcoxon rank
of 26 indicators for MetS and non-MetS can be observed. sum test) [25].
Statistical significance was assessed using parametric testing

Table 2. Comparison of sleep, cosinor, and nonparametric circadian rhythm indicators between metabolic syndrome (MetS) and non-MetS groups in
Korean adults. Means, SD, and statistical tests (¢ test and Wilcoxon rank-sum test) are reported for each indicator derived from wearable-recorded

step count and heart rate data, including sleep duration, midline estimating statistic of rhythm, amplitude, relative amplitude, interdaily stability, and

others.
Indicator Non-MetS MetS t test (P value) Wilcoxon (P value)
Sleep
Midsleep time Mean 207.55 (36.36) 207.08 (28.06) 92 66
SD 39.76 (24.48) 45.00 (35.50) .16 .19
Total sleep time Mean 414.92 (72.72) 410.70 (57.33) .63 46
SD 79.50 (48.96) 84.00 (44.81) A7 25
Cosinor
https://medinform.jmir.org/2025/1/e69328 JMIR Med Inform 2025 | vol. 13 169328 | p. 7
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Indicator Non-MetS MetS t test (P value) Wilcoxon (P value)
Midline estimating statistic of rhythm  SC? 7.37 (3.63) 642 (2.44) 027 .102
HRP 71.89 (6.39) 75.05 (7.23) <.001 <.001
Amplitude SC 6.61 (3.76) 5.65 (2.46) 030 .102
HR 11.66 (3.99) 11.22 (3.29) 37 A7
Acrophase SC 14.77 (2.06) 14.32 (1.83) 084 11
HR 14.97 (1.95) 15.00 (1.89) .899 75
Circadian quotient SC 0.89 (0.21) 0.89 (0.20) 818 .79
HR 0.16 (0.05) 0.15 (0.05) 076 04
Nonparametric
L5 SC 0.172 (0.307) 0.203 (0.239) 41 <.001
HR 61.60 (6.43) 65.96 (7.25) <.001 <.001
M10 SC 12.80 (6.42) 11.02 (4.39) 02 07
HR 83.51(7.24) 86.18 (7.68) 006 01
Relative amplitude SC 0.973 (0.043) 0.961 (0.043) 03 <.001
HR 0.152 (0.04) 0.134 (0.03) <.001 <.001
Interdaily stability SC 0.507 (0.165) 0.440 (0.129) <.001 <.001
HR 0.684 (0.142) 0.630 (0.130) 003 002
Intradaily variability SC 1.246 (0.311) 1.249 (0.274) 93 91
HR 0.535 (0.157) 0.495 (0.156) 05 04

4SC: step count.
PHR: heart rate.

Table 3. Comparison of dimension reduction and frequency analysis values in metabolic syndrome (MetS) and non-MetS groups. Mean values, SD,

and statistical significance for frequency-based circadian rhythm markers and dimension reduction indicators are presented. Statistical significance

was assessed using independent # tests and Wilcoxon rank sum tests.

Indicator Non-MetS MetS - test (P value) Wilcoxon (P value)
SSA_CARE sc? 0.066 (0.040) 0.061 (0.030) 37 69
CCEP
Mid-Frequency HR® 0.029 (0.010) 0.024 (0.008) <.001 <.001
Low-Frequency HR 0.029 (0.013) 0.034 (0.015) 003 003
Mid_Low Ratio HR 1.247 (0.859) 0.865 (0.466) <.001 <.001

4SC: step count.
PCCE: circadian rhythm energy.
°HR: heart rate.

Sleep-related indicators did not show statistical significance
for MetS (P<.05). For the Cosinor and non-parametric
methods, step count showed statistical significance with
Amplitude (MetS was 0.96 smaller, P=.03), L5 (MetS was
0.031 larger, P<.001), RA (MetS was 0.012 smaller, P<.001),
and IS (MetS was 0.067 smaller, P<.001). HR showed
statistical significance with MESOR (MetS increased by 3.14,
P<001), L5 (MetS increased by 4.36, P<.001), M10 (MetS
increased by 2.67, P=.012), RA (MetS decreased by 0.018,
P<.001), IS (MetS decreased by 0.054, P=.002), and IV
(MetS decreased by 0.04, P=.04). The CARE method based
on step count did not show statistical significance for MetS.
In this study, the proposed indicators CCE showed statisti-
cal significance in midfrequency (MetS decreased by 0.005,
P<.001), low-frequency (MetS increased by 0.005, P=.003),
and mid_low ratio (MetS decreased by 0.382, P<.001).

https://medinform.jmir.org/2025/1/69328

XAlI-Based Importance Analysis of Sleep
and Circadian Rhythm Indicators for
MetS

An importance analysis was conducted on the 26 detected
sleep and circadian rhythm indicators using SHAP (with
XGBoost), EBM, and TabNet. Figure 3 presents the SHAP
plot, where the color gradient from red to blue reflects the
value of each indicator, with higher values appearing in
red. The x-axis represents the contribution direction: positive
values indicate a higher contribution to predicting MetS,
while negative values correspond to a higher contribution
to non-MetS. Indicators positioned higher on the y-axis are
considered more important.
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Figure 3. Important indicators identified for metabolic syndrome (MetS) using Shapley Additive Explanations (SHAP). Importance analysis was
conducted on 26 sleep and circadian rhythm indicators using SHAP with an extreme gradient boosting (XGBoost) model. The color gradient from
red to blue represents the values of each indicator, with higher values in red. The x-axis indicates the contribution direction, where positive values
correspond to a higher contribution to predicting MetS, while negative values indicate a higher contribution to non-MetS.
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Figures 4 and 5 display the importance values of indica- amplitude of HR (RA_HR) consistently ranked among the top
tors using EBM and TabNet, respectively. Among the three 3 indicators across all three methods. These findings highlight
models, the midfrequency of CCE (CCE_MF), proposed in the critical role of both CCE_MF and RA_HR in distinguish-
this study, exhibited the highest importance for identifying ing between MetS and non-MetS groups.

MetS-related circadian rhythm patterns. In addition, relative

Figure 4. Important indicators identified for metabolic syndrome (MetS) using explainable boosting machine (EBM). Importance values of 26 sleep
and circadian rhythm indicators were analyzed using EBM. The midfrequency of continuous wavelet circadian energy (CCE_MF) exhibited the
highest importance for distinguishing MetS.
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Figure 5. Important indicators identified for metabolic syndrome (MetS) using Tabular Neural Network. Feature importance was analyzed using
TabNet, a deep learning model optimized for tabular data. Similar to explainable boosting machine, CCE_MF showed high importance in distinguish-

ing MetS, while RA_HR also remained among the top-ranked indicators.
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Apart from CCE_MF and RA_HR, differences in impor-
tance rankings were observed between the tree-based models
(SHAP and EBM) and the deep learning-based TabNet. In
the SHAP plot, both CCE_MF and RA_HR showed a higher
contribution to MetS as their values decreased. Figure 6
further visualizes the changes in scores based on CCE_MF

400 500 600 700 800

Importance

and RA_HR using EBM. The average value of CCE_MF
was 0.024 for the MetS group and 0.029 for the non-MetS
group, with most data points concentrated in the range of
0.0195-0.0245. A lower CCE_MF value was associated with
a higher contribution to MetS, while non-MetS data were
distributed over a broader range from 0.03 to 0.08.

Figure 6. Score changes for CCE_MF and RA_HR identified by explainable boosting machine in metabolic syndrome (MetS) classification. Lower
CCE_MF values were associated with a higher MetS risk, with most MetS cases clustered between 0.0195-0.0245, while non-MetS values ranged
from 0.03-0.08. For RA_HR, values above 0.15 increased the likelihood of non-MetS, while those exceeding 0.25 were linked to a reduced
probability of MetS. CCE: circadian rhythm energy; CCE_MF: midfrequency of CCE; RA_HR: relative amplitude of heart rate.
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Similarly, RA_HR values were distributed between 0.1 and
0.2, with a shift observed in the EBM plot. When RA_HR
exceeded 0.15, its contribution to non-MetS increased, while
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values above 0.25 were associated with a reduction in the
probability of MetS.
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Among the top 10 indicators, SHAP identified 5 HR-rela-
ted and 5 SC-related indicators. EBM included 5 HR-related,
4 SC-related, and 1 sleep-related indicator, while TabNet
identified 5 HR-related, 3 SC-related, and 2 sleep-related
indicators. Across all three methods, HR-related indicators
showed a high contribution to MetS. Notably, CCE_MF,
RA_HR, and L5_HR consistently appeared as key contribu-
tors across all models.

The results presented above are based on the analysis
of the entire dataset. To evaluate the robustness of the
marker and model, the data were cross-validated 5 times. The
proposed CCE_MF marker showed the highest importance
in 3 of the 5 results for SHAP and was explained as the
second most important marker, after RA_HR, in two results.
In the EBM model, CCE_MF showed the highest importance
in all five times. In the TabNet model, CCE_MF was selected
within the top 10 markers, but the most important marker
varied, so the probability was not shown. Therefore, the
reliability of the results of the TabNet model was low.

Additionally, an analysis was conducted using SHAP,
EBM, and TabNet to evaluate the impact of key demographic
variables, including age, sex, and BMI, on the importance of
sleep and circadian rhythm variables in the MetS prediction
model.

As presented in Table 1, age, sex, and BMI are closely
associated with MetS and may influence the assessment of the
independent contributions of other variables when included in
the model. Therefore, by comparing models that include and
exclude these variables, the independent importance of sleep
and circadian rhythm markers can be more clearly analyzed.
The top 10 indicators in SHAP, EBM, and TabNet, when
age, sex, and BMI were included, are as follows: (1) SHAP:
BMI, Age, IS_SC, CCE_MF, MST_Mean, Amplitude_HR,
RA_HR, M10_HR, M10_SC, and Amplitude_SC; (2) EBM:
BMI, Age, Sex, CCE_MF, IS_SC, RA_HR, Age & BMI,
CCE_Ratio, CQ_SC and BMI, and L5_HR; and (3) TabNet:
BMI, TST_Mean, Sex, L5_SC, CCE_MF, MST_Mean, Age,
IS_SC,L5_HR, and Amplitude_HR.

In models that included age, sex, and BMI, these varia-
bles significantly impacted prediction, leading to a relative
decrease in the importance of some sleep and circadian
rhythm markers. However, when age, sex, and BMI were
excluded, the proposed CCE_MF consistently ranked among
the top 3 most important markers across all methods and
was identified as the most significant marker. The results
indicate that the CCE_MF marker exerts a strong independent

Kim et al

influence on MetS prediction even after accounting for
potential confounding factors.

Notably, IS_SC showed a higher contribution than
RA_HR and L5_HR, which is a finding worth highlighting.
The findings confirm that CCE_MF plays a crucial role
in MetS prediction independently of age, sex, and BMI
and suggest that IS_SC contributes more significantly than
traditional HR-based markers, including RA_HR and L5_HR.

Finally, the comparison between the statistical meth-
ods and the XAl-based importance analysis revealed that
sleep-related indicators, which did not achieve statistical
significance, emerged among the top 10 indicators in the
XAl-based analysis. These findings underscore the value
of explainable artificial intelligence methods in uncovering
hidden patterns that may be missed by traditional statistical
approaches.

Discussion

Primary Findings

Currently, studies analyzing circadian rhythm digital markers
related to MetS are still in their early stages. Previous
research has primarily focused on individual factors such
as physical activity levels and sleep patterns, but in-depth
analysis of circadian rhythm markers for metabolic diseases
using wearable devices has rarely been conducted [26-28].
This study aimed to identify and analyze circadian rhythm
indicators related to MetS using data from wearable devices.

In addition to existing circadian rhythm indicators, recent
studies are proposing new indicators tailored to each target
disease area. Table 4 shows studies focused on wearable-
based sleep and circadian rhythm analysis. For instance, Cui
proposed CARE as a circadian rhythm marker for cognitive
function, comparing it with existing indicators like RA [10].
Similarly, Shim introduced a new marker called CosinorAge,
which analyzes the relationship between aging and mortal-
ity, in addition to Cosinor-based indices such as MESOR,
amplitude, and acrophase [12]. In this study, we proposed
a time-frequency analysis-based circadian rhythm indicator
called CCE and compared it with indicators used in previ-
ous studies. As a marker, CARE analyzes circadian rhythms
using an energy-based approach, similar to the CCE marker.
However, although CARE proved to be a strong marker for
cognitive function, it did not show high significance in MetS.

Table 4. Previous studies on sleep and circadian rhythm indicator analysis using wrist-worn wearable devices. A summary of studies investigating

sleep and circadian rhythm indicators in various health conditions using wearable devices. Each study includes target condition, device type, key

indicators analyzed, and methodology used. Indicators include sleep parameters (eg, sleep duration and onset latency), circadian rhythm markers (eg,

midline estimating statistic of rhythm, amplitude, and interdaily stability), and novel metrics (eg, circadian activity rhythm energy and midfrequency

circadian rhythm energy).

Author Target Device Indicator Methodology
Kiss et al 2024  Obesity Fitbit Charge HR? 2 Sleep onset, sleep offset, sleep duration, sleep Explainable boosting machine
[7] onset latency, sleep inertia, MSTb, total step

count, sleeping HR, and resting HR

https://medinform.jmir.org/2025/1/69328
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Author Target Device Indicator Methodology
Zhang et al Major depressive  Fitbit Charge HR 2 or  Sleep duration, sleep onset, sleep offset, sleep Linear mixed-effects models
2024 [8] disorder 3 variability, daily step, step IV, step IS, L5

onset, M10 onset, HR MESOR®, HR

amplitude, and HR acrophase
Alietal 2023  Major depressive  Actigraphy ActiCal MESOR, Amplitude, CQY, Acrophase, M10,  Two-tailed 7 test and Mann-Whitney
[9] disorder (Philips) L5,RAS, IVf, and IS8 U test, and Kolmogorov-Smirnov

test

Cuietal 2023  Cognitive AX3 (Activity) CARE", and RA Regression models
[10] Function
Ravindraetal  Prematurity Motionwatch8 RA,IS,and IV Deep learning and novel
2023 [11] (CamNTech) interpretability algorithms
Shim et al 2024 Aging and AX3 (Axivity) or MESOR, amplitude, acrophase, and Harrel concordance index and
[12] Mortality GT3X+ (ActiGraph)  CosinorAge Akaike information criterion
Kim et al 2022 MetS GalaxyWatch Activel Walking hours, physical activity hours, and Paired ¢ test and chi-square test
[26] step counts
Yamagaetal  MetS Fitbit Versa TST, total step count, and total activity Multilevel mixed-effects logistic
2023 [27] minutes regression
Ours MetS Fitbit Versa or Inspire  MST, TST, MESOR, amplitude, acrophase, XAIX models such as SHAPI,

2 CQ,L5,M10,RA, IS, IV, CARE, and CCEl

EBM™, and TabNet

3HR: heart rate.

bMST: midsleep time.

“MESOR: midline estimating statistic of rhythm.
ClCQ: circadian quotient.

°RA: relative amplitude.

fIV: interdaily variability.

g[S: interdaily stability.

hCARE: circadian activity rhythm energy.
ITST: total sleep time.

JCCE: circadian rhythm energy.

KX AL explainable artificial intelligence.
ISHAP: Shapley Additive Explanations.
MEBM: explainable boosting machine.

Existing statistical analysis methods may have limitations
in detecting complex temporal patterns or interactions. In
contrast, XAl offers clearer insights into hidden data patterns
by making the predictions of complex models explaina-
ble [29]. Kiss et al [7] analyzed the relationship between
sleep and HR indicators and obesity through EBM, while
Ravindra et al [11] investigated circadian rhythm indica-
tors for prematurity using novel interpretability algorithms
that integrate unsupervised clustering, model error analy-
sis, feature attribution, and automated actigraphy analysis.
This highlights the growing importance of using XAl to
analyze target diseases and circadian markers. Our study
aims to address the limitations of previous research by
examining the significance of circadian rhythm indicators
related to MetS using XAI models such as SHAP, EBM,
and TabNet. Analyzing the contribution and significance of
circadian rhythm indicators across various models enhances
the development of objective markers that more effectively
explain MetS.

XAl-based analysis of circadian rhythm indicators
revealed that CCE_MF is the most important marker for
identifying circadian patterns related to MetS. A decrease in
CCE_MF with a I-hour cycle correlated with an increased
contribution to MetS. The HR variability observed in the
1-hour cycle can be related to exercise, physical activity,

https://medinform.jmir.org/2025/1/69328

eating, digestion, and fluctuations in the autonomic nervous
system [30,31]. A low energy level in the 1h cycle indi-
cates minimal amplitude or frequency components, suggest-
ing strong physical activity, low metabolic changes, or an
absence of exercise. Our study also noted low step counts in
the same cycle. Additionally, the RA_HR consistently ranked
high across all models and displayed low values in MetS. A
low RA_HR indicates reduced HR variability, which can act
as a cardiovascular risk factor. For example, HR variability
tends to decrease in conditions such as hypertension, MetS, or
heart failure [32].

XAI methods, including SHAP, EBM, and TabNet,
enabled us to comprehensively understand the contribu-
tion of individual indicators to MetS prediction. While
SHAP and EBM, both tree-based models, identified similar
HR and sleep-related indicators, TabNet, a deep learning
approach, highlighted a different set of significant sleep-rela-
ted indicators. Notably, some sleep-related indicators that
did not achieve statistical significance in traditional analy-
ses emerged among the top indicators in the XAI method.
This underscores the limitations of conventional statistical
approaches that may overlook essential relationships and
interactions among variables. The ability of XAI to uncover
these hidden patterns suggests its valuable role in advancing
research on MetS and related diseases.
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Adding CCE markers to existing markers and comparing
the results of MetS prediction can be another method to
demonstrate the importance of CCE markers. The results of
predicting MetS with sleep and circadian rhythm markers
showed that incorporating the CCE marker into the EBM
model increased the prediction accuracy from 64.31% to
65.44%, while the RF model showed the highest prediction
accuracy, increasing from 68.38% to 69.47%. When sex,
age, height, weight, and BMI were included, the accuracy
increased from 88.23% to 88.93% in the EBM model, and the
highest model showed an increase from 89.70% to 90.43%
in XGBoost. All prediction results were validated using
five-fold cross-validation. In a previous study on obesity
prediction, the prediction accuracy of wearable devices and
questionnaires (such as age, sex, race, income, and education
level) was 72.6% when the EBM model was used. Although
new markers have been proposed in various fields, they have
not achieved a high level of prediction, and the proposed CCE
model showed an increase in prediction accuracy of 1% but
did not significantly improve overall performance. However,
the introduction of new markers provides valuable insights
by explaining MetS through interpreting circadian rhythms,
rather than relying simply on existing known factors such as
sex, age, and BMI.

The growing prevalence of wearable devices, such as
smart bands and watches, is fostering an environment where
individuals’ everyday health information can be collected
and analyzed in real time. These data could be instrumen-
tal in personalized health care, particularly in the early
detection and prevention of chronic diseases such as MetS.
Keshet provided an overview of wearable and digital devices
capable of alerting individuals to specific metabolic out-
comes, emphasizing the unique opportunities for creating
personalized prevention and treatment strategies for cardio-
metabolic diseases [2]. This study may contribute to the
healthcare landscape by developing wearable data-based
circadian rhythm markers, addressing the need for technolo-
gies aimed at preventing and treating MetS in everyday life.

Kim et al

Limitations

This study has some limitations. The dataset used was
limited in size and was collected from specific regions or
population groups, making the generalization challenging.
Further research should delve deeper into investigating the
stability and generalizability of the model when consider-
ing real-world medical applications. Additionally, there was
an issue of data imbalance for MetS and metabolic dis-
eases, potentially leading to model bias toward the major-
ity class. Although ensemble methods such as EBM and
XGBoost, which are robust to data imbalance, were used
[33], random undersampling was performed five times during
model training to further address this issue, and the results
were analyzed. In particular, the proposed CCE_MF marker
emerged as the most important marker in four of the five tests
using SHAP and EBM, and as the second most important
marker in one test. However, the most important markers are
not consistent in the TabNet model, indicating that a larger
dataset is needed for deep learning models to achieve more
stable and consistent results. Future studies should further
explore deep learning models based on larger datasets.

Conclusions

The study analyzed a total of 26 digital biomarkers related to
MetS using wearable wrist sensor data, with a particular focus
on the newly proposed CCE. The XAI techniques, includ-
ing SHAP, EBM, and TabNet, were applied to assess the
significance and importance of each biomarker. Key findings
demonstrated that circadian rhythm markers based on HR,
particularly CCE and RA_HR, showed high importance
across multiple models, reinforcing their potential as robust
biomarkers for MetS monitoring. The study also highlighted
that traditional sleep markers did not exhibit strong statistical
significance, suggesting that circadian rhythm analysis could
provide additional insights for MetS research.
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