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Abstract

Background: Clinical practice guidelines (CPGs) serve as essential tools for guiding clinicians in providing appropriate
patient care. However, clinical practice does not always reflect CPGs. This is particularly critical in acute diseases requiring
immediate treatment, such as acute ischemic stroke, one of the leading causes of morbidity and mortality worldwide. Adher-
ence to CPGs improves patient outcomes, yet guidelines may not address all patient scenarios, resulting in variability in
treatment decisions. Identifying such gaps would augment CPGs but is challenging when using traditional methods.

Objective: This study aims to leverage real-world data coupled with machine learning (ML) techniques to systematically
identify and quantify gaps in German thrombolysis-in-stroke guidelines.

Methods: We analyzed observational data from the German Stroke Registry — Endovascular Treatment (GSR-ET), a
prospective national registry involving 18,069 patients from 25 stroke centers in whom endovascular treatment of a large
vessel occlusion was attempted between 2015 and 2023. Key variables included demographic, clinical and imaging informa-
tion, treatment details, and outcomes. A random forest model was used to predict intravenous thrombolysis treatment decisions
based on three different sets of features: (1) guideline-recommended features, (2) clinician-selected features, and (3) features
as documented in the GSR-ET before thrombolytic treatment. Feature importance scores, permutation importance, and Shapley
Additive Explanations values were used, with clinician guidance, to interpret the model and identify key factors associated
with guideline deviations and independent clinician judgments.

Results: Of all GSR-ET patients, 13,440 (74.4%) were analyzed after excluding those with incomplete or implausible data.
The random forest model’s performance, measured by area under the receiver operating characteristics curve, was 0.71 (95%
CI 0.68-0.73), 0.74 (95% CI1 0.73-0.75), and 0.77 (95% CI 0.76-0.78) for the guideline-recommended, clinician-selected, and
GSR-ET feature sets, respectively. Across all sets, time from symptom onset to admission was the most important predictor
of thrombolysis treatment decisions. Age, which according to the German guidelines is not to be considered for thrombolysis
administration, emerged as a significant predictor in the GSR-ET feature set, suggesting a potential gap between guidelines and
clinical practice.
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Conclusions: In our study, we introduce an innovative approach that combines real-world data with ML techniques to identify
discrepancies between CPGs and actual clinical decision-making. Using intravenous thrombolysis in large vessel occlusion
stroke as a model, our findings suggest that treatment decisions may be influenced by factors not explicitly included in the
current German guideline, such as patient age and pre-stroke functional status. This approach may help uncover clinically
relevant variables for potential inclusion in future guideline refinements.
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guideline adherence

Introduction

Background

Ischemic stroke is a major global health concern being
one of the leading causes of death and long-term disabil-
ity worldwide, with more than 6 million deaths reported
in 2019 [1]. Effective management of ischemic stroke is
critical for lowering morbidity and mortality [2]. Clinical
practice guidelines (CPGs), developed by expert panels and
health care organizations, are part of an evidence-based
practice toolkit designed to standardize medical treatment and
ensure that patients receive the best possible care. The acute
ischemic stroke guidelines encompass recommendations for
pre- and in-hospital care, early diagnosis, timely administra-
tion of intravenous thrombolysis, and the implementation of
endovascular thrombectomy as needed [3-5].

Despite the availability of these guidelines and the effort
made to keep them current, adherence in clinical practice
varies greatly [6,7]. Physicians may rely on independent
clinical judgment in the absence of specific recommenda-
tions or intentionally deviate from guidelines due to sev-
eral reasons, including addressing individual patient needs
[8-10]. Such situations expose potential gaps in the guide-
lines, indicating areas where further guidance could improve
standardization and patient care. In our study, a gap in
CPGs refers to a discrepancy between guideline recommen-
dations and the decisions observed in real-world clinical
scenarios. According to research, deviations from recommen-
ded practices and the need for clinical discretion when no
guidance is provided can result in suboptimal outcomes
including increased rates of death and disability [11,12].
Currently employed traditional methods of detecting gaps
in guidelines, such as comparing national and international
guidelines and manual chart reviews, are labor-intensive,
time-consuming, and susceptible to human error [13-17].

Recent research has shown that artificial intelligence and
machine learning (ML) are effective in various health care
applications, including predicting patient outcomes, identify-
ing risk factors, and assisting clinicians with decision-mak-
ing [18-21]. Another promising way to enhance patient
outcomes in health care is the usage of real-world data,
which includes routinely collected data (eg, electronic health
records and registry data) to optimize treatment protocols
based on real-world evidence [22]. There has been limited
research within the realm of CPGs aimed at generating
or enhancing health care guidelines by leveraging ML and
real-world data [23-27]. To the best of our knowledge, the
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application of ML algorithms combined with real-world data
to identify gaps in CPGs remains unexplored. Analyzing
routine data with ML algorithms, such as random forests,
which can handle complex interactions between variables and
provide insights into the relative importance of various factors
influencing clinical decisions, can be pivotal in systemati-
cally identifying areas where clinical practice diverges from
CPGs, including areas not covered by existing recommen-
dations. This approach can pinpoint specific deficiencies in
CPGs and highlight potential areas for improvement, thereby
offering a valuable addition to the traditional methods used
for identifying gaps in CPGs.

Objective

To investigate whether intravenous thrombolysis treatment
decisions follow the current German acute ischemic stroke
guideline or are informed by additional features that are not
part of the guideline recommendations. Specifically, we aim
to:
1. Assess the performance of an ML model in predict-
ing thrombolysis treatment when implemented on 3
different sets of features.
2. Identify key factors in thrombolysis administration that
are currently not included in the guidelines.

Methods

Data Collection

The data used in this study were retrieved from the German
Stroke Registry — Endovascular Treatment (GSR-ET) [28],
a nationwide registry comprising pseudonymized, prospec-
tively documented records of 18,069 patients who underwent
endovascular stroke treatment as part of routine clinical care
at 25 stroke centers across Germany between 2015 and 2023.
For this study, we extracted patient-level data from structured
fields in the GSR-ET, limited to variables available before the
intravenous thrombolysis decision, thereby ensuring clinical
relevance at the time of decision-making.

The dataset included the demographic age and sex,
pre-stroke functional status, as measured by the modi-
fied Rankin Scale (mRS); relevant comorbidities included
previous stroke, diabetes mellitus, dyslipidemia, arterial
hypertension, and atrial fibrillation, as well as smoking status
and antiplatelet or anticoagulation therapy at stroke onset.
Living status before stroke was categorized as living at home,
in a nursing home, or receiving nursing services at home.
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At the time of admission, clinical variables included
stroke severity, assessed using the National Institutes of
Health Stroke Scale (NIHSS), and systolic and diastolic
blood pressure. Radiological data included imaging modal-
ities (ie, noncontrast enhanced computed tomography, CT
angiography [CTA], computed tomography [CT] perfusion,
magnetic resonance imaging, magnetic resonance angiogra-
phy [MRA], magnetic resonance perfusion, and imaging-
based findings such as the Alberta Stroke Program Early
CT Score [ASPECTS]), indicating the extent of ischemic
brain tissue damage; the Thrombolysis in Cerebral Infarction
(TICI) score on CTA or MRA, indicating the degree of
orthograde perfusion of the affected territory; the laterality
(left, right, and bilateral) and location of the vessel occlusion
(anterior or posterior circulation); the presence of tandem
stenosis, and signs of ischemia outside the occluded vessel
territory.

Process-related variables included the time from symptom
onset (or last seen well) to hospital admission and whether
the patient was primarily admitted to an interventional stroke
center.

The primary outcome of interest in this study was whether
a patient received intravenous thrombolysis before endovas-
cular therapy.

Data Cleaning and Preparation

Before analysis, the data was cleaned, and patients were
excluded based on prespecified exclusion criteria including
incomplete or implausible data (see Figure 1 and Multimedia
Appendix 1). To estimate missing values for age, admission
blood pressure, scores on the NIHSS, and the pre-stroke
mRS score, we employed the multiple imputation by chained
equations technique, provided in the Python library [29].
To assess the robustness of our imputation strategy, we
compared model performance by dropping missing values
and using mean and k-nearest neighbor imputation strat-
egies. To reduce the risk of multicollinearity, we performed
correlation analysis using the Pearson method for numer-
ical variables and Cramer V for categorical variables.
In addition, the reported antithrombotic medication intake
by patients was grouped into 2 categories: anticoagulants
(apixaban, rivaroxaban, edoxaban, dabigatran, phenprocou-
mon, and heparins) and antiplatelets (aspirin, clopidogrel, and
others). This approach helped manage correlation between
variables, ensuring that each group represented a distinct
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set of clinical effects. Comorbidity features such as hyperten-
sion, diabetes mellitus, atrial fibrillation, and dyslipidemia
were excluded from the analysis as we were not sure when
exactly this information was documented (before or after the
target feature). Occluded vessel features were grouped into 2
distinct groups: anterior and posterior circulation occlusion.
Categorical and ordinal variables were transformed using
one-hot encoding and ordinal encoding respectively to ensure
compatibility with the ML model.

Out of the 206 available features, a total of 26 features all
obtained before the target feature and relevant to thrombolysis
administration were extracted from the GSR-ET. To measure
the performance of our random forest model in predicting
initiation of thrombolytic treatment, we created 3 distinct
feature sets (see Multimedia Appendix 2 for more details) that
we call the “Guideline”, the “Clinician”, and the “GSR-ET”
feature sets and define as follows:

* Guideline feature set: this feature set includes the
11 features explicitly outlined in the German acute
ischemic stroke guideline which are deemed rele-
vant for intravenous thrombolysis decision-making.

The inclusion of these features was based on their
established clinical relevance in assessing treatment
eligibility and aligning with evidence-based practice.
The guideline feature set was chosen to directly reflect
the guideline’s criteria, ensuring the model is evaluated
against well-defined clinical standards.

* Clinician feature set: this feature set is derived from
expert clinician judgment and includes 18 features
identified by 2 independent stroke physicians (TJ
and PS) as crucial for thrombolysis decision-making.
Selection was based on their real-world experience and
understanding of a broader range of patient factors
that influence treatment decisions. While some of
these features may not be explicitly outlined in formal
guidelines, they are considered essential in clinical
practice.

e GSR-ET feature set: this feature set includes all 26
features from the GSR-ET dataset that are documen-
ted before thrombolysis administration. Their inclusion
ensures that the model captures a comprehensive view
of the patient’s condition as recorded by clinicians
in real-world settings, incorporating factors that may
influence treatment decisions beyond what is specified
by guidelines or expert judgment.
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Figure 1. Flowchart illustrating patient selection. GSR: German Stroke Registry.
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Outcome of Interest

Treatment with intravenous thrombolysis was chosen as
the outcome of interest for this study. Thrombolysis is
a critical and time-sensitive treatment for acute ischemic
stroke [30-36], and it offers a clear, binary outcome suita-
ble for classification algorithms, making it an ideal target
for ML models such as random forests. In addition, throm-
bolysis represents an important quality indicator of stroke
care. Despite known contraindications and gaps in existing
guidelines, clinicians rely on their independent judgment
and often administer thrombolysis, because it, along with
endovascular thrombectomy, represents the only effective
treatment option in the acute phase of stroke. We consider
predicting intravenous thrombolysis treatment valuable as it
captures the initial and crucial acute stroke decision-making
process.
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Machine Learning Model

To efficiently identify a suitable classification model for
our analysis, we tested various ML algorithms using the
lazypredict library [37], which quickly trains and compares
the performance of many different classifiers on a given
dataset.

Based on whether symptom onset was known or not,
patients were divided into 2 subgroups for which we suspect
possible different behavior concerning the target variable:

* Group A: Recorded symptom onset (n=8467, 62.9%

patients).

* Group B: Recorded “last seen well” or “time of

symptom recognition” (n=4973, 37.1% patients).

All subsequent steps of model development, training,
and evaluation were conducted independently within each
subgroup to ensure that analyses reflect their unique clinical
and decision-making characteristics.
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The dataset was split into training (80%) and validation
(20%) sets for both subgroups to separate training and
validation of the models and thereby detect overfitting and
allow for a robust performance evaluation.

To optimize model performance, we used the nes-
ted cross-validation approach [38]. We performed an
inner cross-validation using RandomizedSearchCV from the
Python library scikit-learn on the training set to tune
hyperparameters [39]. The hyperparameter search space
included the number of estimators (n_estimators: 50-500)
and the maximum depth of trees (max-depth: 1-20). A total
of 5 hyperparameter configurations were randomly sam-
pled, balancing exploration with computational efficiency.
The model was evaluated across different combinations of
features, and the best-performing configuration from the
process was selected for final evaluation on the validation
set.

Model Performance Assessment and
Interpretability

Our model was evaluated on the validation set, primar-
ily using the area under the receiver operating characteris-
tic curve (AUROC). To ensure robustness, maintain class
proportions, and prevent overfitting, we performed an outer
cross-validation using stratified k-fold cross-validation (with
k=5) on the tuned model to derive AUROC results. This
method divides the training set into 5 subsets (4 for train-
ing and 1 for validation) and ensures that each fold of
the cross-validation maintains the same proportion of class
labels, which is particularly important given the potential
imbalance in the chosen treatment (intravenous thrombol-
ysis). We further addressed class imbalance by applying
the synthetic minority over-sampling technique within the
cross-validation loop to oversample the minority class in
the training data. Secondary performance measures included
Fi-score, accuracy, precision, and recall.

To assess the importance of each feature in their respective
sets, in predicting intravenous thrombolysis treatment, we
used a comprehensive analysis combining several methods.
Initially, feature importance scores were extracted from the
random forest model to provide a foundational understand-
ing of each feature’s contribution. To capture each feature’s
impact on model accuracy, permutation feature importance
was applied. This loss-based approach quantifies feature
importance by measuring the decrease in model performance
when individual features are randomly permuted [40]. In
addition, to ensure the robustness of the feature importance
evaluations, we computed the confidence intervals for each
feature within its respective feature set based on permutation
importance results, applying the correlated t-test approach
[41,42]. This method enabled us to visualize the variabil-
ity and reliability of the feature importance scores. Finally,
Shapley Additive Explanations (SHAP), a variance-based
method, was also employed to examine the influence of
each feature at the prediction level, offering deeper insights
into feature contributions to both predictions (intravenous
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thrombolysis or no intravenous thrombolysis) [43]. Together,
these methods enabled a thorough exploration of features that
play an important role in the model’s predictions.

Statistical Analyses

For categorical features, absolute and relative frequencies
were computed. The interquartile ranges, minimum and
maximum values of continuous features including NIHSS
(ordinal), and pre-stroke mRS (ordinal) were also computed.
The chi-square test was used to compare proportions between
groups for categorical variables. For continuous and ordinal
variables, the Wilcoxon rank-sum test was applied.

The descriptive comparison focused on the differences
between patients who received intravenous thrombolysis and
those who did not. These included demographic characteris-
tics (eg, age, sex, and living status), comorbidities (eg atrial
fibrillation, diabetes, and previous stroke), imaging modal-
ities, occlusion sites, and pretreatment clinical status (eg
NIHSS and pre-stroke mRS).

To quantify uncertainty in the AUROC estimates, 95%
CIs were calculated using the correlated ¢ test. All tests were
2-sided, and a P value of <.05 was considered statistically
significant. Given the exploratory nature of the analysis,
P values were not adjusted for multiple testing. Statistical
analyses were conducted using Python (version 3.9.18).

Ethical Considerations

Data collection for the GSR-ET was centrally approved
by the leading ethics committee at Ludwig-Maximilians
University, Munich (689-15). Additional approvals were
obtained from local ethics committees or institutional review
boards at each participating center, including the ethics
committee of the University of Tiibingen (057/2016B0O2),
in accordance with local regulations. Informed consent was
obtained from patients for data collection. The data used
in this study were pseudonymized to ensure privacy and
confidentiality. No personally identifiable information is
included in the manuscript or supplementary materials. No
compensation was provided to participants, as the registry
relies on routine clinical data.

Results

The results presented in this section are solely for the patients
with recorded symptom onset (group A). Results for group B
can be found in Multimedia Appendix 3.

Descriptive Statistics

A total of 8467 (62.9%) patients with recorded symp-
tom onset were included in the analysis. 4809 (56.8%)
patients received intravenous thrombolysis. Table 1 shows
the descriptive statistics of patients who underwent thrombol-
ysis and patients who did not. Most of the features were
statistically associated with the target variable of thromboly-
sis (P<.05).

JMIR Med Inform 2025 | vol. 13 169282 I p. 5
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e69282

JMIR MEDICAL INFORMATICS Miiller et al
Table 1. Descriptive statistics of patients with recorded symptom onset in relation to the outcome of interest.
Intravenous thrombolysis No intravenous thrombolysis
Features (n=4809, 56.8%) (n=3658,43.2%) P value
Categorical features

Sex, n (%) <.001
Male 2444 (50.8) 1835 (50.2)
Female 2364 (49.2) 1822 (49.8)

Baseline antithrombotic medication, n (%)
None 3042 (63.2) 2015 (55.1) <.001
ASS? 1486 (31.0) 821 (22.4) <.001
Clopidogrel 121 (2.5) 157 (4.3) <.001
Heparins 36 (0.7) 169 (4.6) <.001
Apixaban 25(0.5) 165 (4.5) <.001
Edoxaban 5(0.1) 65 (1.8) <.001
Rivaroxaban 21(0.4) 134 (3.6) <.001
Dabigatran 13 (0.3) 22 (0.6) 002
Phenprocoumon 146 (3.0) 333 (9.1) <.001
Others 0(0.0) 0(0.0) >.99

Living status, n (%) 002
Home 4248 (88.3) 3142 (85.9)
Nursing home 273 (5.7) 217 (5.9)
Nursing at home 155 (3.2) 171 (4.7)

Comorbidity, n (%)
Diabetes mellitus 933 (19.4) 914 (24.9) <.001
Dyslipidemia 1868 (38.8) 1559 (42.6) 001
Arterial hypertension 3486 (72.5) 2872 (78.5) <.001
Atrial fibrillation 1494 (31.1) 1938 (52.9) <.001
Prior stroke 350 (7.3) 488 (13.3) <.001

Smoking, n (%) 004
Nonsmoker 3200 (66.5) 2447 (66.9)
Current smoker 808 (16.8) 533 (14.8)
Previous smoker 447 (9.3) 395 (10.7)

Imaging, n (%)
Noncontrast enhanced computed tomography 4529 (94.2) 3266 (89.3) <.001
CTAP 4265 (88.7) 3079 (84.2) .66
CT¢ perfusion 2366 (49.2) 1780 (48.7) 03
Magnetic resonance imaging (MRI) 225 (4.7) 231 (6.3) <.001
Magnetic resonance angiography (MRA) 170 (3.5) 166 (4.5) .83
Magnetic resonance perfusion (MR perfusion) 87 (1.8) 90 (2.5) i

Occluded vessel, n (%)
Cerebral artery — extracranial 319 (6.6) 238 (6.5) >.99
Cerebral artery — intracranial without carotid-T involvement 280 (5.8) 212 (5.8) 90
Cerebral artery — intracranial with carotid-T involvement 675 (14.0) 528 (14.4) 39
Middle cerebral artery M 1-segment, proximal 1514 (31.5) 1064 (29.1) 08
Middle cerebral artery M1-segment, distal 750 (15.6) 447 (12.2) <.001
Middle cerebral artery M2-segment 858 (17.8) 602 (16.4) 22
Anterior cerebral artery (ACA) 146 (3.0) 93 (2.5) 25
Posterior cerebral artery (PCA) 164 (3.4) 110 (3.0) 41
Basilar artery (BA) 357 (74) 342 (9.3) 001
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Intravenous thrombolysis No intravenous thrombolysis
Features (n=4809, 56.8%) (n=3658,43.2%) P value
Vascular artery (VA) 73 (1.5) 64 (1.7) .39
Occluded vessel side, n (%) <.001
left 2203 (45.8) 1611 (44.0)
right 2126 (44.2) 1536 (41.9)
bilateral 40 (0.8) 54 (1.5)
Not applicable (eg basilar artery) 276 (5.7) 290 (7.9)
Tandem stenosis, n (%) 544 (11.3) 335 (9.1) 45
Ordinal features
Imaging aspects, n (%) <.001
10 1810 (37.6) 1063 (29.0)
Not applicable (eg, basilar artery) 542 (11.2) 614 (16.8)
9 784 (16.3) 559 (15.2)
8 640 (13.3) 477 (13.0)
7 394 (8.2) 324 (8.8)
6 211 (4.4) 176 (4.8)
5 132 (2.7) 123 (3.4)
4 53(1.1) 51(14)
3 20 (0.4) 32(0.9)
2 11(0.2) 11 (0.3)
1 12 (0.2) 4(0.1)
Thrombolysis in Cerebral Infarction score (TICI) on CTA or <.001
MRA, n (%)
0 4100 (85.2) 2998 (81.9)
1 220 (4.6) 147 (4.0)
2a 80 (1.6) 69 (1.9)
2b 38 (0.8) 36 (0.9)
3 43(0.9) 30 (0.8)
Not applicable 189 (3.9) 219 (5.9)
Pre-stroke modified Rankin Scale score, median (IQR) 0(0-1) 0 (0-2) <.001
National Institute of Health Stroke Scale on admission, median 14 (8-18) 13 (7-18) 007
(IQR)
Continuous features
Age (years), median (IQR) 75 (63-82) 77 (66-83) 001
Systolic blood pressure, median (IQR) 150 (135-170) 150 (132-170) 13
Diastolic blood pressure, median (IQR) 80 (72-92) 80 (70-92) 32
Time between symptom onset and admission, median (IQR) 93 (56-182) 135 (65-255.75) <.001

4ASS: acetylsalicylic acid.
PCTA: computed tomography angiography.
°CT: computed tomography.

Machine Learning Model

Table 2 summarizes the performance of different ML
classification models on our dataset and shows similar
performance of the first 3 models across the 3 features sets
(see Multimedia Appendix 4 for complete table). Despite
comparable performance with LGBMClassifier, we selected
the random forest model for subsequent data analysis due
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to its built-in feature importance metrics, which facilitate
clinical interpretation, and its robustness to overfitting in
datasets with noise or imbalance. In addition, since our study
focuses on identifying key clinical features, random forest’s
ability to effectively handle complex feature interactions
makes it well-suited for our goals [44].
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Table 2. Performance metrics of various machine learning classification models.

Model AUROC? Accuracy F1-score
RandomForestClassifier 0.71 0.72 0.72
LGBMClassifier 0.71 0.72 0.72
AdaBoostClassifier 0.70 0.72 0.71
LogisticRegression 0.70 0.72 0.71

2AUROC: area under the receiver operating characteristic curve

Model Performance Assessment and
Interpretability

Our model was evaluated for its performance on the different
feature sets and subpopulations and predicted the treatment
outcome. Table 3 shows the performance metrics for patients
with recorded symptom onset.

Figure 2 shows the AUROC for all feature sets: guide-
line, clinician and GSR-ET, with each curve representing
the mean AUROC across 5 cross-validation folds in the
given feature set. The GSR-ET feature set achieved the
highest mean AUROC of 0.77 (SD 0.01), followed by the
clinician feature set with 0.74 (SD 0.01), and the guide-
line feature set with 0.71 (SD 0.01). Multimedia Appen-
dix 5 shows the plot consisting of the individual k-fold
results. There was no significant improvement in performance
after applying Synthetic Minority Oversampling Technique
(SMOTE), indicating that class imbalance had minimal
impact on the model performance. The imputation methods
yielded similar results (eg, for the GSR-ET feature set, mean
imputation AUROC: 0.75, k-nearest neighbor AUROC: 0.75,
and multivariate imputation by chained equations: 0.77),
thereby improving over the approach of dropping rows with
missing values (AUROC: 0.66).

Figures 3 and 4 show the feature importance and permu-
tation feature importance for each feature set, with their
corresponding importance scores and rankings. The annota-
tions on the bars represent the feature’s rank within its
respective feature set. These plots highlight the varying
significance of features depending on the feature set used
during prediction (See Multimedia Appendix 5 for feature
importance plot with confidence intervals).

The top 10 features in all 3 feature sets in both plots
were mostly similar, however with differences in their

rankings within the respective feature set. The “Time between
symptom onset and admission” and “Anticoagulation at
stroke onset” emerged as the most important features across
all sets (ranked number 1 and 2 respectively). Other signifi-
cant features included “NIHSS,” “Age,” “Imaging aspects,”
“Pre-stroke mRS score” and “blood pressure,” all of which
had high importance scores in both plots. Less influential
features included various imaging modalities, “Living status”
and “Sex,” with consistently low importance rankings across
feature sets in the feature importance plot.

As seen in the beeswarm plots (Figures 5-7), the
SHAP analysis further confirmed the findings provided
by the random forest feature importance and permutation
feature importance analyses. Each point represents a specific
observation’s SHAP value, with colors corresponding to
feature values (blue [cooler] color=lower value, red [warmer]
color=higher value). The features are ranked in terms of mean
absolute SHAP values indicating importance from the top
(most important) to the bottom (least important).

The plots show each feature’s impact on the model’s
prediction of the patients who did not receive intravenous
thrombolysis. “Anticoagulation at stroke onset” and “Time
between symptom onset and admission” have the highest
SHAP values, indicating they strongly influence predictions
for patients not receiving intravenous thrombolysis. Specifi-
cally, higher values of “Time between symptom onset and
admission” (shown in red) push the model towards predict-
ing no intravenous thrombolysis. Similarly, “Pre-stroke mRS
score” and “NIHHS” and “Prior stroke” (in the GSR-ET
set) also have high SHAP values. Higher scores for these
features increase the likelihood of predicting no intravenous
thrombolysis administration.

Table 3. Performance metrics of the random forest model on all 3 feature sets in the subgroup of patients with known symptom onset.

Feature set AUROC?, mean (SD) Accuracy Precision Recall F1-score
Guideline 0.71 (0.02) 0.70 0.69 0.85 0.76
Clinician 0.74 (0.01) 0.70 0.70 0.86 0.77
GSR-ET 0.77 (0.01) 0.71 0.71 0.84 0.77

2AUROC: area under the receiver operating characteristic curve
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Figure 2. Mean area under the receiver operating characteristic curve (AUROC) across all 3 feature sets for patients with recorded symptom onset.
GSR-ET: German Stroke Registry — Endovascular Treatment.
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Figure 3. Feature importances for each feature set for patients with recorded symptom onset. CT: computed tomography; CTA: computed tomogra-
phy angiography; GSR-ET: German Stroke Registry — Endovascular Treatment; MR: magnetic resonance; MRA: magnetic resonance angiography;
NCCT: noncontrast computed tomography; NIHSS: National Institute of Health Stroke Scale; TICI: Thrombolysis in Cerebral Infarction.
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Figure 4. Permutation feature importances for each feature set for patients with recorded symptom onset. CT: computed tomography; CTA:
computed tomography angiography; GSR-ET: German Stroke Registry — Endovascular Treatment; MR: magnetic resonance; MRA: Magnetic
resonance angiography; NCCT: noncontrast computed tomography; NIHSS: National Institute of Health Stroke Scale; TICI: Thrombolysis in
Cerebral Infarction;
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Figure 5. Shapley additive explanations summary plot for the German Stroke Registry — Endovascular Treatment feature set. This plot illustrates the
contribution of each feature to the model’s prediction of no intravenous thrombolysis administration. Positive SHAP values increase the likelihood of
predicting no intravenous thrombolysis, while negative values decrease it. Features are ranked by importance from top (most influential) to bottom
(least influential). CT: computed tomography; CTA: computed tomography angiography; MRA: magnetic resonance angiography; mRS: modified
Rankin Scale; NCCT: noncontrast computed tomography; NIHSS: National Institute of Health Stroke Scale; SHAP: Shapley Additive Explanations;
TICI: Thrombolysis in Cerebral Infarction.
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Figure 6. SHAP summary plot for the clinician feature set. This plot illustrates the contribution of each feature to the model’s prediction of no
intravitreal administration. Positive SHAP values increase the likelihood of predicting no IVT, while negative values decrease it. Features are ranked
by importance from top (most influential) to bottom (least influential). CT: computed tomography; CTA: computed tomography angiography; MR:
magnetic resonance; MRA: magnetic resonance angiography; MRI: magnetic resonance imaging; mRS: modified Rankin Scale; NCCT: noncontrast
computed tomography; NIHSS: National Institute of Health Stroke Scale; SHAP: Shapley Additive Explanations; TICI: Thrombolysis in Cerebral

Infarction.
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Figure 7. SHAP summary plot for the guideline feature set. This plot illustrates the contribution of each feature to the model’s prediction of no
intravitreal administration. Positive SHAP values increase the likelihood of predicting no intravitreal, while negative values decrease it. Features are
ranked by importance from top (most influential) to bottom (least influential). CT: computed tomography; CTA: computed tomography angiography;
MR: magnetic resonance; MRA: magnetic resonance angiography; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stroke

Scale; SHAp: Shapley Additive Explanations.
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Discussion thrombolysis initiation, achieved the mean AUROC curve
score of 0.77. These results suggest that real-world decisions
. as documented in the GSR-ET incorporate additional clinical
Overview

The results of this study provide valuable insights into how
ML models can be used to highlight discrepancies between
guideline-recommended practices and clinical practice. By
integrating ML with real-world registry data, we sought to
identify gaps in CPGs. Specifically, we developed and tested
a random forest model on three feature sets: (1) guideline
set (features explicitly recommended by the German acute
stroke guideline), (2) clinician set (features selected by stroke
experts), and (3) the GSR-ET set, which consists of all
relevant features provided in the GSR-ET that were available
to treating physicians before taking the decision to initiate
thrombolysis in ischemic stroke patients with large vessel
occlusion undergoing endovascular reperfusion therapy.

Principal Findings
Model Performance (AUROC Curves)

The AUROC curve for the 3 feature sets reveals a clear
hierarchy in predictive performance. The GSR-ET feature
set, which includes all reasonable features documented before

https://medinform jmir.org/2025/1/e69282

features beyond those recommended by the guidelines or
even those included by stroke experts (clinician feature set),
which enhances the model’s ability to predict intravenous
thrombolysis administration. The relatively lower perform-
ance of the guideline feature set (AUROC=0.71) indicates
that relying solely on guideline-indicated features may not be
sufficient to capture the complexity of intravenous thrombol-
ysis decision-making. This finding highlights a potential gap
in the current guidelines, which may not fully account for all
relevant clinical variables influencing intravenous thromboly-
sis administration.

Key Features and Possible Gaps in the
German Acute Ischemic Stroke Guidelines

The top 10 features across all 3 sets were generally consis-
tent, with the “Time between symptom onset and admission”
emerging as the most important feature across all sets. This
result underscores the critical role of timely intervention in
stroke management, as shorter times from symptom onset
to admission are associated with better outcomes and are
a key determinant of intravenous thrombolysis eligibility
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[26]. “Time between symptom onset and admission” not
only ranked first in all 3 feature sets but also had the
greatest impact on model performance when permuted,
further emphasizing its importance in predicting intravenous
thrombolysis administration.

The “Pre-stroke mRS score” measures a patient’s pre-
stroke functional status where a high score implies a greater
level of disability, which might reduce the likelihood of
receiving intravenous thrombolysis if the expected benefit is
limited due to pre-existing impairment. “Imaging aspects”
evaluates the extent of early ischemic changes on imaging.
Lower ASPECTS scores suggest more extensive ischemic
damage, potentially dissuading intravenous thrombolysis
administration due to higher bleeding risk and reduced
likelihood of tissue salvage despite successful reperfusion.
Both features were amongst the top 10 important features
in the clinician and GSR-ET feature sets. This reflects the
emphasis on functional status and stroke severity in treatment
decisions. These features could, together with other scores
such as the NIHSS, a guideline-recommended score which
assesses neurological severity of stroke (ranked 3rd in the
feature importance plot), offer a comprehensive view of both
current severity and pre-existing functional limitations to
guide intravenous treatment decisions.

Notably, “Age,” which was not included in the guideline
feature set, in line with the German acute ischemic stroke
guidelines, emerged as relatively important in the GSR-ET
feature set (ranked 4th). Its permutation also resulted in a
drop in model performance. The SHAP values for “Age”
showed that advanced age correlates with a tendency to
withhold intravenous thrombolysis. This trend may reflect
clinicians’ caution in treating older patients due to increased
risks, such as bleeding complications or potentially lower
efficacy of the treatment in older populations. While the
German guidelines may not emphasize “Age” as a fac-
tor, data-driven models recognize its relevance in intrave-
nous thrombolysis decision-making. A correlation analysis
revealed a weak positive correlation (Pearson correlation
coefficient=0.28) between “Age” and “Pre-stroke mRS
score”, suggesting that “Age” is not merely an epiphenome-
non but an independent feature influencing clinical decisions.
This discrepancy between guideline recommendations and
clinical practice points to a potential gap in the guidelines
where clearer, age-specific recommendations could support
clinicians, particularly given the established association
between age and stroke outcomes [31,45].

Although demographic and lifestyle features such as
“Smoking,” “Living status,” “Sex,” and “Prior stroke” were
included in the GSR-ET feature set, their relatively lower
importance scores suggest that these features may play a
more indirect role in treatment determination. They con-
tribute to the overall risk profile of stroke patients, poten-
tially influencing clinician perception of stroke severity or
recovery potential and could therefore enhance individual-
ized assessment for long-term outcomes and guide secondary
prevention strategies [46].

https://medinform jmir.org/2025/1/e69282
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Patients’ use of antiplatelet and anticoagulation medica-
tions showed an influence on treatment decisions. While
anticoagulation therapy is recognized as a contraindication
for intravenous thrombolysis in specific scenarios, this is
not explicitly detailed in the German guidelines, which
instead refer clinicians to the summary of product character-
istics. Similarly, the role of antiplatelet medication is less
defined, as it is generally not believed to alter the bene-
fit-risk ratio despite slightly increased bleeding risk. Our
findings suggest that clinicians consider these factors, likely
weighing the risks of hemorrhagic complications. A potential
update to the guidelines regarding these medications could
provide clinicians with granular recommendations regarding
intravenous thrombolysis treatment in patients with varying
antithrombotic regimens [36].

The minimal influence of “Tandem stenosis” on intrave-
nous thrombolysis prediction suggests that the presence of
concurrent stenosis in other vessels might be a significant
factor in decision-making, likely due to its implications
for clot accessibility and reperfusion success. This feature’s
importance signals a potential need to include vascular status
assessments in intravenous thrombolysis eligibility criteria
within the German acute ischemic stroke guidelines.

The feature “Primary admission at interventional hospital ”
positively influenced the likelihood of intravenous thromboly-
sis treatment, suggesting that hospital resources, including the
presence of specialized stroke intervention teams, play a role
in treatment decisions.

Other key features such as blood pressure and imaging
features consistently achieved high and minimal importance
respectively across all sets. These findings reinforce the
importance of managing cardiovascular risk factors and
imaging in stroke patients, especially in relation to intrave-
nous thrombolysis eligibility.

Comparison With Previous Work

The integration of ML into clinical decision-making,
especially in real-world treatment decisions, has been
explored in several health care domains, but not in the context
of gap search in CPGs. This section compares our approach
with previous work to highlight how we contribute to the
existing literature on identifying gaps in CPGs.

Though not aimed at directly refining CPGs, Abd-Alrazaq
et al [47] used ML to identify gaps in COVID-19 litera-
ture. Another similar study focused on uncovering variation
in clinical decision-making using registry data and ML is
presented by James et al [48]. Smyth et al [14] conducted
a study, using a mixed methods approach of surveys, chart
reviews, and focus groups, focusing on syncope manage-
ment, aiming to identify gaps between guideline-recommen-
ded care and actual clinical practice. They emphasized that
guideline adherence was suboptimal, leading to overuse of
some diagnostic tests while underutilizing recommended
evaluations. Similarly, Bregni et al [16] tackled rectal cancer
management by systematically comparing recommendations
from multiple national and international CPGs and revealed
the presence of “grey areas” where guidelines either lacked
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sufficient evidence or were not clear, resulting in variable
treatment approaches. Spranger et al [17] examined the gap
between hypertension guidelines and clinical practice, finding
that adherence to guidelines was often inconsistent, leading to
both undertreatment and overtreatment [18]. They retrospec-
tively analyzed medical records using chart reviews and
identified factors such as clinician experience and patient
characteristics as major contributors to deviations from
guidelines. Ebben et al [23] developed a methodology using
real-world data and clinical decision trees to continuously
identify and prioritize potential areas for improvements in
guidelines.

Across these approaches, there is a common theme:
research gaps exist across various medical fields, often driven
by real-world complexities not fully captured by CPGs. Our
study extends this body of work by leveraging ML not only to
identify these gaps but also to quantify the predictive power
of features that are often overlooked or deemphasized in
CPGs. In addition, our results suggest that updating guide-
lines to incorporate these potentially critical features could
improve treatment consistency and outcomes, similar to some
of the cited studies, which advocate for guideline refinement
based on empirical evidence from clinical practice.

Limitations

While this study provides valuable insights into the poten-
tial gaps between guideline-recommended and clinician-led
decision-making, several limitations must be acknowledged.

Registry Data

The GSR-ET consists solely of patients with a diagnosis of
acute ischemic stroke, a large vessel occlusion, and patients
who underwent or to whom an endovascular treatment was
attempted. It is therefore important to note that within the
GSR-ET, thrombolysis is only administered in conjunction
with endovascular treatment but not as standalone reperfusion
therapy. This means that the effect of better prediction in the
GSR-ET feature set may be related to the fact that GSR-ET
patients are a subset of strokes with large vessel occlusion and
may therefore not reflect thrombolysis decision-making in the
overall stroke patient.

Feature Interaction

While feature importances can identify variables that enhance
the decision-making accuracy of our ML model, they do not
reveal on a deeper level how these features interact with other
variables in the GSR-ET. Consequently, simply knowing that
a feature is influential does not clarify its optimal placement
or threshold within the CPG decision framework.

Guideline Flexibility

CPGs are inherently flexible and are designed to provide
general recommendations that accommodate a broad range

Miiller et al

of clinical scenarios. Consequently, they may not include
all the possible factors that inform real-world decision-mak-
ing by clinicians. Even though our study identified features
not explicitly mentioned in the guidelines, it is possible
that these features may still be deliberately excluded, as
guideline developers may prioritize flexibility over incorpo-
rating factors that, while influential in decision-making, are
not deemed essential for standardization in future guideline
updates.

Limited Focus on Clinical Outcomes

This study focused primarily on predicting intravenous
thrombolysis administration and identifying which variables
were involved in decision-making but did not investigate the
long-term clinical outcomes associated with these decisions.
While deviations from the guidelines and independent clinical
judgments were identified, it is unclear whether these
decisions led to better or worse patient outcomes. This makes
it difficult to assess whether the identified features should
indeed be included in future guidelines based solely on the
results of this study.

Future Directions

The methodology applied in this study offers a system-
atic approach to uncover discrepancies between CPGs and
real-world decision-making. Future research using larger
datasets could strengthen these findings and support guideline
refinements. Integrating such approaches into clinical
workflows may enable rapid identification of guideline gaps
or nonadherence, ultimately contributing to improved patient
care.

Conclusion

This study demonstrates the potential of combining ML
with real-world data to systematically identify gaps between
clinical practice and current CPGs. In the case of intravenous
thrombolysis for large vessel occlusion stroke, factors such
as age and pre-stroke disability, which are not explicitly
addressed in current German guidelines, emerged as relevant
to treatment decisions. These features may merit considera-
tion in future iterations of CPGs to improve alignment with
clinical realities.

Providing clear guidance on them would not only support
clinicians in navigating complex patient profiles and making
ethical, patient-centered decisions but also enhance their
moral confidence and potentially offer legal protection.
Specifically, future CPGs may emphasize that advanced age
alone should exclude patients from thrombolysis, as it can
enable recovery to pre-stroke conditions. However, a severely
impaired pre-stroke functional status, particularly in advanced
age, may not always represent a meaningful therapeutic goal.
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SHAP: Shapley Additive Explanations
SMOTE: Synthetic Minority Oversampling Technique
TICI: Thrombolysis in Cerebral Infarction
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