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Abstract

Background: Offline reinforcement learning (RL) has been increasingly applied to clinical decision-making problems.
However, due to the lack of a standardized pipeline, prior work often relied on strategies that may lead to overfitted policies
and inaccurate evaluations.

Objective: In this work, we present a practical pipeline—Pipeline for Learning Robust Policies in Reinforcement Learning
(PROP-RL)—designed to improve robustness and minimize disruption to clinical workflow. We demonstrate its efficacy in the
context of learning treatment policies for administering loop diuretics in hospitalized patients.

Methods: Our cohort included adult inpatients admitted to the emergency department at Michigan Medicine between 2015
and 2019 who required supplemental oxygen. We modeled the management of loop diuretics as an offline RL problem using
a discrete state space based on features extracted from electronic health records, a binary action space corresponding to the
daily use of loop diuretics, and a reward function based on in-hospital mortality. The policy was trained on data from 2015 to
2018 and evaluated on a held-out set of hospitalizations from 2019, in terms of estimated reduction in mortality compared to
clinician behavior.

Results: The final study cohort included 36,570 hospitalizations. The learned treatment policy was based on 60 states: the
policy deferred to clinicians in 36 states, recommended the majority action in 22 states, and diverged significantly from
clinician behavior in 2 of the states. Among the cases where the policy meaningfully diverged from the behavior policy, the
learned policy was estimated to significantly reduce the mortality rate from 3.8% to 2.2% by 1.6% (95% CI 0.4-2.7; P=.006).

Conclusions: We applied our pipeline to the clinical problem of loop diuretic treatment, highlighting the importance of robust
state representation and thoughtful policy selection and evaluation. Our work reveals areas of potential improvement in current
clinical care for loop diuretics and serves as a blueprint for using offline RL for sequential treatment selection in clinical
settings.
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Introduction

Reinforcement learning (RL) is a branch of artificial
intelligence that, through interactions with an environment,
learns the optimal sequence of actions that will maximize a
desired outcome [1]. RL methods are especially well suited
to tackle problems that require sequential decision-making
where the rewards are delayed. This makes it an attractive
solution for learning dynamic treatment policies in health
care problems (eg, sepsis [2], diabetes [3], and hypotension
[4]) where decisions are made sequentially over a prolonged
period of time and the outcome (eg, in-hospital mortality)
is observed at a later time point. Due to safety and ethi-
cal concerns, training and evaluation of RL policies in this
domain often rely on a fixed set of historical data and require
the use of offline RL algorithms [5].

However, effectively applying offline RL poses sev-
eral challenges. First, deriving a robust and informative
state representation from high-dimensional health features
can be challenging, especially with limited data. Second,
the performance of offline RL algorithms is sensitive to
hyperparameters [6-8], often leading to policies that perform
well during development but fail once deployed. Yet a
standardized approach for hyperparameter selection has not
been established for offline RL. Third, the learned policy may
differ substantially from current clinician behavior, result-
ing in low confidence in evaluation results and potential
disruption to clinical workflows [9]. While some of these
issues have been solved in isolation [10-12], there is a
notable absence of a standard pipeline for applying offline
RL, comparable to the training-validation framework in
supervised learning, that integrates these individual solutions.
We address this gap by presenting a pipeline (Pipeline
for Learning Robust Policies in Reinforcement Learning;
PROP-RL) along with a codebase for applying offline RL to
health care settings, and demonstrate its efficacy by apply-
ing it to the problem of learning treatment policies for loop
diuretics.

Loop diuretics are one of the most commonly prescribed
medications in hospitals and are used to control volume
and edema in the body by increasing urinary sodium and
water excretion [13]. They are used to treat patients with
acute shortness of breath from fluid accumulation in their
lungs, typically associated with conditions such as congestive
heart failure or acute pulmonary edema [14]. There remains
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substantial uncertainty and variability regarding when to start
and stop loop diuretics [15,16]. This uncertainty leads to
inadequate use of loop diuretics, which has been associated
with worse clinical outcomes, including higher rates of acute
kidney injury and electrolyte disturbances [17,18].

In this paper, we apply offline RL to learn a loop diuretics
treatment policy —designed to aid health care professionals —
from electronic health records (EHRs) of hospitalized patients
at a large academic hospital. In doing so, we establish
a pipeline—PROP-RL—for applying offline RL in health
care settings that incorporates state representation learning,
hyperparameter selection, and modification of the learned
policy to minimize disruption to existing workflows. We
demonstrate the effectiveness of PROP-RL through off-policy
evaluation (OPE) and ablation studies [19].

Methods
Study Cohort

We included adult patients (=18 years) admitted to the
hospital through the emergency department at Michigan
Medicine during the years 2015-2019, who required any
amount of supplemental oxygen support during the first 24
hours of admission. Patients who underwent surgery within
24 hours of admission were excluded as the supplemental
oxygen support provided may not be due to a primary
respiratory condition (Section Al in Multimedia Appendix
1). The cohort was split into a development set and a held-out
test set consisting of data from patients admitted in 2015-
2018 and 2019, respectively.

Data Preprocessing

To formulate the management of loop diuretics as an RL
problem with discrete time steps, we split the hospitaliza-
tion data into chronological windows. With the exception of
the first and second windows, all windows were 24 hours
long, starting and ending at 6 AM (Figure 1A; Section
A2 in Multimedia Appendix 1). In each window, medica-
tion records were analyzed to determine whether an oral or
intravenous loop diuretic was administered. We assumed all
treatment decisions made within a window were based on
the patient’s state in the previous window. A 6 AM cutoff
time was chosen as most clinical rounds (where decisions
are made) occur immediately after this point. Analysis was
constrained to the first 8 days of hospitalization.
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Figure 1. (A) Diagram of the windowing rule for hospitalizations. (B) Overview of pipeline. (1) Data partition: the development data Dg,, are
partitioned in multiple ways to create the data partitions D;, i € {1...10}. (2) Defining the state space: a set of candidate discrete state definitions,
characterized by the data partition D; used to derive the state definition and the number of states k, is generated by learning a lower-dimensional
representation of the features and clustering them. (3) Estimating the behavior policy: the behavior policy 7, is estimated from the development
state using each state definition S; . While 7 is dependent on S, for simplicity, we refer to the behavior policy as 7 in general. (4) Training and
selecting the RL policy: a policy i, j k.1 is trained for each possible hyperparameter combmatlon across all data partitions. The best hyperparameter
is used to train the final policy 7" on the entire development set. (5) Final policy evaluation: 7" is evaluated on the test set Dy, EHR: electronic

health record; RL: reinforcement learning.
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For each window, EHR features including age, vital sign
measurements, laboratory test results, medications, fluid input
and output, and Sequential Organ Failure Assessment (SOFA)
scores were extracted (Section A3 in Multimedia Appendix
1). These features capture the patient’s most recent health
state as well as past treatments, which are necessary for
determining future treatments. We used the Flexible Data-
Driven Pipeline (FIDDLE) software to convert these into
243-dimensional feature vectors (Section A2, A3, and A16
in Multimedia Appendix 1) [20].

Model Development and Evaluation

Overview

We modeled the patient environment as a Markov decision
process (MDP) defined by (S, A, P, R, y). S and A repre-
sent the state and action spaces. Given a hospitalization,
5;E€ S represents the patient’s health on day ¢ and a;, € A
is the treatment decision made based on s;. P (Spt1lss, ap)
is the transition function, R(s;) = r; is the reward function,
and y € [0, 1] is the discount factor. The discrete state
space S was defined by clustering the EHR features in a
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learned embedding space. The action space A = {0, 1} was
defined to encode binary treatment decisions, corresponding
to whether the patient received loop diuretics (Section A4 in
Multimedia Appendix 1). All intermediate rewards were set
to 0, and a terminal reward was given when the patient’s
hospitalization ended or reached 8 days (whichever is earlier).
The terminal reward was 100 if the patient was discharged
alive and —-100 if the patient died. Our objective was to
learn a policy m: SXA = [0, 1] which maps s; to a probabil-
ity distribution over a;, in order to maximize the expected

. [Z?zoth(st)] where 7=0.99.
This roughly corresponds to an objective that focuses on
minimizing the overall mortality rate.

cumulative reward J(m) =

PROP-RL consists of the following 5 steps (Figure 1B):
(1) data partition, (2) defining the state space, (3) estimating
the behavior policy, (4) training and selecting the RL policy,
and (5) final policy evaluation.
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Step 1. Data Partition

We created 10 partitions of the development set by ran-
domly assigning each hospitalization to either the training or
validation split. These partitions were used for steps (2) and

CF

Step 2. Defining the State Space

We used a data-driven approach to establish state definitions.
For each data partition, a function mapping the 243-dimen-
sional feature space to a discrete state space was learned
by training a neural network embedding model and applying
ensemble k-means clustering in the embedding space (Section
A5 in Multimedia Appendix 1) [21,22]. k, the size of the
discrete state space, was a hyperparameter that varied from
{2040....,160} (Section A6 in Multimedia Appendix 1). The
state definition itself was treated as a hyperparameter.

Prior to policy learning, the state definitions were
evaluated for generalizability and informativeness. We
verified that each hospitalization transitioned across multiple
different states and that the state distribution was not heavily
skewed toward a few specific states. Failing to meet both
criteria implies an overfitted state definition unlikely to
generalize to new patients. Second, to ensure the embeddings
captured important information, we conducted a principal
component analysis of the cluster centers. We visualized the
distribution of the cluster centers using the average and SD of
the mortality rates, SOFA scores, and clinicians’ previous and
next actions among the windows belonging to each state.

Step 3. Estimating the Behavior Policy

We estimated the behavior policy by computing the average
observed action for each state within the development set.
This is a stochastic policy that maps each state to a proba-
bility over the binary actions. To further validate the state
definitions, we performed 2 evaluations using the estimated
behavior policy. First, we compared the estimated mortality
rate of the behavior policy on the held-out test set to the true
mortality rate. Significant differences in these values would
either indicate a significant change in clinicians’ behavior
between the 2 datasets, or the state definitions’ inability to
encode the behavior policy. Second, we investigated whether
the estimated behavior policy aligns with clinical understand-
ing by visualizing trends in the behavior policy with respect
to key features of the states (Section A7 in Multimedia
Appendix 1).

Step 4. Training and Selecting the RL Policy

After learning the transition matrix from the training data, we
learned the optimal policy using a modified version of value
iteration with 2 offline RL constraints: batch-constrained
Q-learning (BCQ) and pessimistic Markov decision proc-
ess (pMDP) [1,23,24]. These constraints mitigate extrapo-
lation error, which refers to inaccurate value estimations
for state-action pairs that were rarely or never observed
during training [23]. In brief, BCQ constrains the policy
to avoid actions unlikely to be selected by the behavior
policy, and pMDP encourages the policy to avoid areas
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in the state-action space with high uncertainty (Section A8
in Multimedia Appendix 1). Both BCQ and pMDP have
additional hyperparameters.

Recent work found hyperparameter selection in offline
RL to be sensitive to the partitioning of the dataset [7]. To
mitigate this, we use the Split-Select-Retrain (SSR) pipe-
line that selects the optimal hyperparameters by aggregat-
ing validation performance over multiple partitions of the
development set [7]. The final policy is then learned from the
entire development set using the selected optimal hyper-
parameters. We leveraged the same 10 partitions (train
and validation split) described in step (1) (Section A9 in
Multimedia Appendix 1).

Performance was measured using the OPE method
weighted importance sampling (WIS), known for its
simplicity and reliance on relatively few assumptions [25].
WIS is a biased but consistent estimator, with estimates
converging to the true value as sample size increases. WIS
estimates both the performance and effective sample size
(ESS) of the policy, which is a measure of confidence in
the performance estimate [26]. ESS values closer to the
size of the dataset used for evaluation (ie, validation set)
indicate higher confidence in the performance estimate. For
the main analysis, we focus on WIS, but for robustness, we
also consider 3 additional OPE methods: fitted Q evaluation,
approximate model, and weighted doubly robust estimates
(Section A10 in Multimedia Appendix 1 for methodological
details). P values are estimated by a one-sided bootstrap
resampling test [27].

In order to minimize disruption to clinical workflow
without sacrificing policy performance, we modified the
learned policy prior to evaluation by identifying “unimportant
states,” inspired by Shen et al [28]. In unimportant states,
no action can significantly impact the outcome. Our policies
deferred to clinicians’ decisions in unimportant states, thus
minimizing the amount of potential deviation from clinician
behavior. The threshold used to determine unimportance
was considered a hyperparameter (Section All and Al2 in
Multimedia Appendix 1).

Step 5. Final Policy Evaluation

The final policy was evaluated on the held-out test set using
WIS. Improvement in performance compared to the behavior
policy was measured across 1000 bootstrapped samples in
terms of expected cumulative reward and mortality. The level
of disagreement between the average clinician and the final
learned policy was compared to the level of disagreement
among clinicians (Section A13 in Multimedia Appendix 1).

To understand how the learned policy differs from the
behavior policy, we focused on “divergent” states where the
action recommended by the learned policy diverged from the
majority action of the behavior policy. The learned policy
was then evaluated on a subset of the cohort where the
patient’s hospitalization included divergent states. We further
characterized these states by comparing the average values of
their key features to those of the general population (Section
Al4 in Multimedia Appendix 1).
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Ablation Studies of Pipeline

Our pipeline included 3 key elements designed to improve the
robustness of the learned policy: (1) using unimportant states
to “relax” the learned policy, (2) evaluation across multiple
data partitions (SSR), and (3) treating state definitions as a
hyperparameter. To demonstrate the effect of each element
on the robustness of the learned policy, we conducted an
ablation study by selectively removing each component from
the pipeline. As a proxy for measuring robustness, we looked
at the worst-case OPE performance of the learned policies to
establish an empirical lower bound.

Ethical Considerations

This study was approved by the Institutional Review Board at
the University of Michigan Medical School (HUMO00141899)
with a waiver of informed consent among study patients.
All data collected were deidentified and were accessed via a
secure cloud storage platform and a secured, Health Insur-
ance Portability and Accountability Act (HIPAA)—compliant
server. Participants were not compensated for the use of
their data in this study. The study followed the TRIPOD+AI
(Transparent Reporting of a Multivariable Prediction Model

Lee et al

for Individual Prognosis or Diagnosis+Artificial Intelligence)
reporting guideline [29] (Checklist 1). As this study was
retrospective in nature, no formal study protocol was
developed and the study was not registered. No patients or
the public were involved in any aspect of this study.

Results

Study Cohort and Patient Characteristics

The initial cohort consisted of 57,907 hospitalizations.
We removed cases where supplemental oxygen was not
given within 24 hours (n=14,902), patients were moved
to surgery within 24 hours (n=6283), and hospitalizations
lasting shorter than 2 windows (n=152). The final study
population contained 23,945 unique patients and 36,570
unique hospitalizations divided temporally by admission
year into the development (n=29,765; 2015-2018) and test
set (n=6805; 2019) (Table 1; Section Al in Multimedia
Appendix 1). The mortality rate of the entire cohort was 5.4%
(1978/36,570), and 5.2% (1555/29,765) and 6.2% (423/6805)
for the development and test set, respectively.

Table 1. Cohort characteristics. Values are numbers (percentages) unless stated otherwise.

Cohort Overall (2015-2019) Development set (2015-2018) Test set (2019)
Hospitalizations, n 36,570 29,765 6805
Age (years), median (IQR) 64 (53-74) 64 (52-74) 65 (54-75)
Age range (years), n (%)
18-25 1142 (3.1) 1010 (3.4) 124 (1.8)
26-45 4747 (13.0) 3889 (13.1) 858 (12.6)
46-65 13,770 (37.7) 11,266 (37.8) 2504 (36.8)
66-85 14,317 (39.1) 11,477 (38.6) 2840 (41.7)
>85 2594 (7.1) 2123 (7.1) 471 (6.9)
Sex, n (%)
Female 17,364 (47.5) 14,241 (47.8) 3123 (45.9)
Male 19,206 (52.5) 15,524 (52.2) 3682 (54.1)
Self-reported race, n (%)
White or Caucasian 30,529 (83.5) 24,853 (83.5) 5676 (83.4)
Black or African American 4295 (11.7) 3503 (11.8) 792 (11.7)
Asian 642 (1.8) 516 (1.7) 126 (1.8)
American Indian or Alaska Native 141 (04) 115(0.4) 26 (0.4)
Native Hawaiian or Other Pacific Islander 27 (0.1) 21 (0.1) 6(0.1)
Other 659 (1.8) 546 (1.8) 113 (1.7)
Unknown 209 (0.6) 160 (0.5) 49 (0.7)
Patient refused 68 (0.2) 51(0.2) 17 (0.2)
Hospitalization outcome, n (%)
Alive 34,592 (94.6) 28,210 (94.8) 6382 (93.8)
Death 1978 (5.4) 1555 (5.2) 423 (6.2)
Length of stay (days), median (IQR) 6 (4-9) 6 (4-9) 6 (4-10)
Length of stay (days), n (%)
1-3 8216 (22.5) 6939 (23.3) 1277 (18.8)
4-5 9446 (25.8) 7736 (26.0) 1710 (25.1)
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Cohort Overall (2015-2019) Development set (2015-2018) Test set (2019)
6-9 10,027 (27 4) 8063 (27.1) 1964 (28.9)
10-15 5136 (14.0) 4046 (13.6) 1090 (16.0)
>15 3745 (10.2) 2981 (10.0) 764 (11.2)

Evaluation of State Definitions

The final state definition S; (j=7, k=60) was selected from
the hyperparameter search. Overall, 98.3% (29,270/29,765)
of hospitalizations in the development set and 98.9%
(6730/6805) in the test set contained at least 2 distinct states,
indicating at least one transition between different states

within these hospitalizations (Figure 2A). All states appeared
relatively uniformly in the data with each state constituting
1.7% (SD 0.5%) of all windows on average in both the
development set (3769, SD 1187; 226,178 total windows)
and test set (893, SD 268; 53,591 total windows) (Figure 2B;
Section B2 in Multimedia Appendix 1 for test set results).

Figure 2. Sanity checks for the state definitions on the development set. The first row shows histograms depicting (A) number of states in each
trajectory and (B) the number of windows in each state. The second and third rows show principal component analysis of the representations of the
cluster centers that define each state. The hue and size of each dot represent the average and SD of the feature value of all samples in that state. The
features are (C) mortality rate, (D) SOFA score, (E) whether loop diuretics were administered in the past 24 hours, and (F) whether clinicians chose to

administer loop diuretics. SOFA: Sequential Organ Failure Assessment.
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Plots of the cluster centers show that information regarding
mortality and clinicians’ actions is encoded in the states.
Figure 2C and 2D indicate that a visible gradient exists in
the state representation space with respect to both average
mortality and average SOFA score. Figure 2E and 2F show a
distinct separation in the state representation space in terms of
both the clinician’s previous and next actions. Note that even
without being explicitly trained for it, the state representation
space captures information about the previous action.

Evaluation of the Estimated Behavior
Policy

The estimated mortality rate of the clinician behavior policy
across 1000 bootstrapped samples was 6.2% (95% CI 5.6-6.8)

Lee et al

(Section B9 in Multimedia Appendix 1). This was compa-
rable to the true mortality rate of 6.2% (95% CI 5.6%-
6.8%) observed in the held-out test set, suggesting the state
definitions have accurately captured clinicians’ behavior.
Qualitatively, we found the estimated behavior policy to
recommend loop diuretics if the patient is older, given loop
diuretics the previous day, has higher brain natriuretic peptide
(BNP) values, and has higher blood urea nitrogen values
(Figure 3). We report trends for additional features in Section
B3 in Multimedia Appendix 1.

Figure 3. The relationship between the clinician’s likelihood of administering loop diuretics and key features. Features shown are (from left to right,
top to bottom): mortality, SOFA score, age, whether loop diuretics were administered in the past 24 hours, BNP value, and blood urea nitrogen value.
The height of the bars represents the average value of each feature within the state, and the color represents the clinician’s likelihood of administering

loop diuretics. BNP: brain natriuretic peptide; SOFA: Sequential Organ Failure Assessment.
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Evaluation of the Final Learned Policy

Of the 60 states, 36 were unimportant and the learned policy
deferred to clinicians (Figure 4A). For the remaining 24
states, the learned policy tended to recommend the major-
ity action: among 21,759 windows belonging to these states
in the test set, only 3858 (17.7%) windows were assigned
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a different action under the learned policy. Yet in 2 diver-
gent states (states 10 and 44), the learned policy did not
follow the majority action. While the learned policy always
recommended loop diuretics to be administered for both
states, clinicians only took this action 34% (454/1326) and
35% (568/1614) of the time, respectively (Figure 4B).
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Figure 4. (A) Comparison of the actions recommended by the clinician behavior policy and the learned policy for each state. The color of the boxes
indicates the probability of giving loop diuretics. States are ordered by decreasing likelihood of clinicians prescribing loop diuretics. Hatched boxes
indicate “unimportant” states where the learned policy recommends the same actions as the behavior policy. (B) Likelihood of agreement between the
clinician behavior policy and the learned policy for each state. On the left graph, states are ordered by decreasing likelihood of agreement with the
clinicians. The right bar graph focuses on the 10 states where the clinicians disagree the most with the learned policy. States 10 and 44, where the
likelihood of agreement is less than 0.5 (learned policy does not follow majority action), are defined as “divergent” states.
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On the entire held-out test set, the learned policy outper-
formed the behavior policy 967 times across 1000 bootstraps
(96.7%) and was estimated to reduce mortality from 6.2%
to 5.7%, by 0.5 (95% CI 0.0-1.1; P=.03) percentage points
on average (Table 2). The ESS of the learned policy was
3168.45 (95% CI 3090.91-3256.65), nearly half the size of
the dataset (n=6805) indicating a high confidence in the WIS
estimate (Section B7 in Multimedia Appendix 1 for validation
set results). On the subset of hospitalizations with divergent
states, the learned policy outperformed the behavior policy

T

T T T

Agreement Prob.

994 times across 1000 bootstraps (99.4%) and significantly
decreased the estimated overall mortality from 3.8% to
22% by 1.6 (95% CI 0.4-2.8; P=.006) percentage points
on average (Table 2). The ESS of the learned policy was
55039 (95% CI 511.49-588.70), approximately 25% of
the sample size (n=2152) and indicated a high confidence
in the performance estimate. Similar improvements were
observed with other OPE methods (Section B10 in Multime-
dia Appendix 1).

Table 2. Quantitative evaluation of behavior and learned policy on the held-out test set and a subset of the test set where the patient trajectories

included the 2 divergent states. Values in parentheses indicate the 95% CI across 1000 bootstraps.

Subset with divergent states (n=2152)

Behavior policy Learned policy

Dataset Held-out test set (n=6805)

Policy Behavior policy Learned policy
Estimated J (;7) (95% CI) 87.56 (86.42 to 88.74)  88.59% (87.10 t0 90.01)
Estimated improvement in J (7)  —¢ 1.03 (-0.05 to 2.10)
(95% CI)

Estimated mortality (%) (95% 6.22 (5.63 10 6.79) 5.70 (4.99 to 6.45)

CI)

Estimated decrease in mortality — 0.52 (-0.03 to 1.05)
(%) (95% CI)

92.40 (90.89 t0 93.96)  95.57° (93.10 to 97.89)

3.17 (0.77 to 5.46)

3.80 (3.02 to 4.56) 2.22(1.06 to 3.45)

158 (0.38 to 2.75)

https://medinform.jmir.org/2025/1/69145

JMIR Med Inform 2025 | vol. 13 169145 | p. 8
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e69145

JMIR MEDICAL INFORMATICS

Lee et al

Dataset Held-out test set (n=6805) Subset with divergent states (n=2152)
Policy Behavior policy Learned policy Behavior policy Learned policy
Effective sample size (95% CI) 6805 3168.46 (309091 to 3256.65) 2152 550.39 (511.49 to 588.70)
% of time outperformed behavior — 96.70 — 99.40
policy
Disagreement with clinician (%) 2291 (22.61 t023.18)  21.19 (20.86 to 21.49) 30.80 (30.63 to 30.96)  32.38 (32.19 to 32.57)
(95% CI)
ap=03.
5p=1006.
“Not applicable.

State visualization (Section B4 in Multimedia Appendix 1)
found that states 10 and 44 are close in the embedding
space. Feature importance analysis of classifiers for each
state showed a large overlap in key features (Section B5
in Multimedia Appendix 1), including age, previous loop
diuretic, BNP value, and blood urea nitrogen value. Both
states consisted of slightly older patients with an average age
of 69.8 (SD 13.9) (state 10) and 68.7 (SD 13.5) (state 44)
compared to the population mean of 63.4 (SD 16.2). Patients
in both groups had higher BNP values (539.7, SD 960.8 vs
405.5,SD 781.8 vs 397.1, SD 687.0 for state 10, state 44, and
the population, respectively) and mild kidney impairment as
characterized by higher blood urea nitrogen values (35.6, SD

252 vs 32.9,SD 21.6 vs 28.2, SD 21.3 for state 10, state 44,
and the population, respectively; Section B6 in Multimedia
Appendix 1).

Ablation Study of Pipeline

In all cases, the worst-case performance of the learned
policy when one or more components were removed from
the pipeline was significantly lower than the worst-case
performance of the policy derived from the full pipeline
(Table 3). We focus on the 2 novel aspects of the pipeline
here: relaxing the unimportant states and tuning the state
definitions.

Table 3. Worst-case performance of the learned policy when one or more of the 3 key elements in the pipeline were removed. The 3 elements are: (1)

use of unimportant state relaxation (no vs yes), (2) number of data splits (single vs multiple), and (3) number of state definitions (single vs multiple).

Values in parentheses indicate the 95% CI across 1000 bootstraps.?

Unimportant state Number of data Number of state Estimated improvement Estimated mortality % Time outperformed
relaxation splits definitions inJ (1) (95% CI) (1) % (95% CI) (4) behavior policy (1)
No Single Single No viable policy —b —

No Single Multiple No viable policy — —

No Multiple Single No viable policy — —

No Multiple Multiple No viable policy — —

Yes Single Single —2.48 (-8.80 t0 2.09) 746 (493 t010.76)  20.20

Yes Single Multiple —0.04 (-0.63 to 0.55) 624 (55910 690)  44.90

Yes Multiple Single 045 (-1.48102.22) 6.00 (4.93 t0 7.18) 70.70

Yes Multiple Multiple 1.03 (-0.05 to 2.10) 5.70 (4.99 to 6.45) 96.70

aThe estimated improvement in J (;1) (T ) and estimated mortality % (4 ) for the behavior policy is 0.00 (95% CI —1.14 to 1.18) and 6.22 (95% CI

5.63 to 6.79), respectively.
bNot applicable.

Removing the unimportant state relaxation led to a cata-
strophic failure, as no policy obtained an ESS of at least
10% the validation dataset size. This indicates overfitting, and
we were unable to get a reliable estimate of the policies’
performance on the test set. Using a fixed state definition
instead of tuning the state definitions led to significant
variation in the performance of the learned policy depend-
ing on the data split used to learn the fixed state definition
(Section B8 in Multimedia Appendix 1). In the worst-case
scenario, the improvement in value of the learned policy
compared to the behavior policy was —0.04 (95% CI —-0.63
to 0.55), which was significantly lower than the improvement
in value of 1.03 (95% CI —-0.05 to 2.10; P=.01) of the policy
derived from the full pipeline.

https://medinform.jmir.org/2025/1/69145

Discussion

Principal Findings

Offline RL has been applied to various health care domains
[2-4]. However, a clear guide that practitioners can refer to
has not been established. We present a blueprint based on
previous literature to streamline the development of offline
RL policies and further facilitate this through a public code
base. We demonstrated the utility of our rigorous pipeline
in the context of learning treatment decision policies for
loop diuretics in hospitalized patients. Overall, in retrospec-
tive analysis, the learned policy was estimated to lead to
significant improvement in outcome for the general patient
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population, especially for a subset of patients where the
learned policy differed the most from clinician behavior.
Though it will require prospective validation, our results
reveal areas of potential improvement in current clinical care.

A key challenge in offline RL is ensuring the robustness
of the learned policy. Two elements in our pipeline contrib-
uted to the improvement in robustness and performance.
The first element—tuning state definitions—addresses the
issue of hyperparameter sensitivity in offline RL. To select
the optimal hyperparameters, prior work often relied on the
hold-out method which partitioned the development dataset
into training and validation sets [3,30,31]. Recently, Nie
et al [7] found policy performance to be sensitive to this
partitioning itself and proposed the SSR pipeline which uses
multiple dataset partitions during evaluation. Building upon
this insight, we show that while common practice has been
to use a fixed state definition derived from a single train-vali-
dation split [3,30,31], the partitioning used to learn the state
definitions can also result in significant variability of the final
policy’s performance, and thus jointly tuning state definitions
and policy learning over multiple data partitions is important
for robustness of the learned policy.

The second element—relaxing the learned policy via
unimportant states—is a form of policy constraint that
mitigates the impact of extrapolation error by reducing the
deviation of the learned policy from the behavior policy
[5]. Using unimportant states to constrain the policy post
hoc also helps reduce disruptions to the current workflow,
an important consideration in health care settings. During
deployment, the policy acts as an alert system to notify
providers of the appropriate treatment [32]. Yet a well-
known consequence in alert systems is “alert fatigue,” where
providers ignore alerts due to the high frequency of irrelevant
or unhelpful alerts [32,33]. By generating recommendations
only when the action will meaningfully impact the outcome,
unimportant state relaxation presents a simple solution to
reduce disruptions to existing workflows while minimally
compromising the policy’s performance.

In analyzing our learned policy, we found that loop
diuretics had a limited effect on patient outcome for a sizable
portion of the cohort. Our pipeline could thus be used to
identify patient groups that are likely responsive to treat-
ments. In these treatment-responsive cases, the learned policy
tended to agree with the majority of clinicians, indicating
that our policy could help reduce heterogeneity in treatment
decisions. Patients in the 2 divergent states were slightly
older and had mild kidney impairment, which could explain
clinicians’ hesitancy in prescribing loop diuretics. However,
the high BNP values indicate that the patients are fluid
overloaded and may still benefit from diuretic treatment.

Our study is not without limitations. The pipeline used a
single OPE method (WIS) during hyperparameter selection

Lee et al

and a single dataset. While designed to be agnostic to both,
future studies using external datasets and different OPE
methods during hyperparameter tuning will further validate
the generalizability of PROP-RL. Our problem formulation
enforced decisions to be binary and to occur every 24 hours
at fixed time points (Section B1 in Multimedia Appendix 1
for results across different decision points). A finer-grained
problem formulation—such as specifying the exact dosage,
incorporating additional actions (ie, other medications), and
using shorter or more flexible time intervals for actions
—along with additional data will be required to learn a
policy that can be deployed in clinical settings. A promising
direction for future work is incorporating clinician feedback
after deployment to further refine the alert threshold and
better understand when recommendations are most useful to
clinicians, beyond our current approach of using unimportant
states (Section A15 in Multimedia Appendix 1).

Another important limitation is our reliance on retrospec-
tive evaluation. In the absence of a reliable simulator and
safety concerns associated with real-world evaluation, we
relied on OPE methods which may not reflect the policy’s
true performance during deployment. We mitigate this by
imposing a large cutoff on the ESS during hyperparameter
selection and by confirming our findings across multiple OPE
methods. Nonetheless, retrospective evaluation should only
be viewed as a preliminary step for identifying promising
policies prior to investing in prospective studies. Future work
must include robust prospective validation in accordance
with guidelines such as the DECIDE-AI reporting framework
[34]. The potential for unmeasured confounding is also a
fundamental limitation of OPE methods. To mitigate this,
we derived our state space using a comprehensive set of
EHR features, selected in close consultation with a clinical
collaborator with deep domain expertise. However, residual
confounding may remain. Since these challenges are present
in any realistic problem setting, our approach serves as a
guide for other researchers to follow when learning offline
RL policies.

Conclusion

In summary, we present a standardized pipeline to stream-
line the development of offline RL policies in health care
settings. We demonstrate the utility of this pipeline in the
context of learning treatment decision policies for loop
diuretics in hospitalized patients and show that the learned
RL policy could potentially lead to a significant improvement
in a key subset of the patient population. Our work high-
lights important considerations for applying RL to observa-
tional data to learn treatment decision policies, and our
open-sourced code base can facilitate future development of
offline RL policies on other clinical problems.
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WIS: weighted importance sampling
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