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Abstract

Background: The presence of stigmatizing language within electronic health records (EHRS) poses significant risks to patient
care by perpetuating biases. While numerous studies have explored the use of supervised machine learning models to detect
stigmatizing language automatically, these models require large, annotated datasets, which may not always be readily available.
In-context learning (ICL) has emerged as a data-efficient alternative, allowing large language models to adapt to tasks using only
instructions and examples.

Objective:  We aimed to investigate the efficacy of ICL in detecting stigmatizing language within EHRs under data-scarce
conditions.

Methods: We analyzed 5043 sentences from the Medical Information Mart for Intensive Care-1V dataset, which contains EHRs
from patients admitted to the emergency department at the Beth Israel Deaconess Medical Center. We compared ICL with
zero-shot (textual entailment), few-shot (SetFit), and supervised fine-tuning approaches. The ICL approach used 4 prompting
strategies: generic, chain of thought, clue and reasoning prompting, and a newly introduced stigma detection guided prompt.
Model fairnesswas evaluated using the equal performance criterion, measuring true positive rate, fal se positive rate, and F,-score

disparities across protected attributes, including sex, age, and race.

Results: In the zero-shot setting, the best-performing ICL model, GEMMA-2, achieved a mean F;-score of 0.858 (95% Cl
0.854-0.862), showing an 18.7% improvement over the best textual entailment model, DEBERTA-M (mean F,-score 0.723, 95%
Cl 0.718-0.728; P<.001). In the few-shot setting, the top ICL model, LLAMA-3, outperformed the leading SetFit models by
21.2%, 21.4%, and 12.3% with 4, 8, and 16 annotations per class, respectively (P<.001). Using 32 labeled instances, the best ICL
model achieved a mean F;-score of 0.901 (95% CI 0.895-0.907), only 3.2% lower than the best supervised fine-tuning model,
ROBERTA (mean F;-score 0.931, 95% CI 0.924-0.938), which was trained on 3543 labeled instances. Under the conditions
tested, fairness evaluation revealed that supervised fine-tuning models exhibited greater bias compared with ICL modelsin the
zero-shot, 4-shot, 8-shot, and 16-shot settings, as measured by true positive rate, false positive rate, and F;-score disparities.

Conclusions. ICL offersarobust and flexible solution for detecting stigmatizing language in EHRS, offering amore data-efficient
and equitable alternative to conventional machine learning methods. These findings suggest that |CL could enhance bias detection
in clinical documentation while reducing the reliance on extensive labeled datasets.
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Introduction

Background

Electronic health records (EHRSs) are comprehensive digital
systems that capture, store, and facilitate the retrieval and
analysis of detailed longitudinal information about a patient’s
health status[1]. Asacentral repository of patient information,
EHRsareindispensablefor facilitating efficient communication
and collaboration among medical professionals[2,3]. Giventhe
widespread adoption of EHR systems in hedlth care settings
globally and their vital role in streamlining heath care
communication [4,5], concerns have emerged regarding the
preval ence of stigmatizing language within these records[6-9].
Specifically, a recent large-scae study [10] reported that
stigmatizing language appears in a substantial proportion of
clinical notes, with prevalence ranging from 42.8% to 59.1%
in history and physical notes, consultation notes, and discharge
summaries.

Stigmatizing language in health care refers to language that
carries negative connotations, labels patients negatively,
attributes blame, or renders judgment based on their social
identities, medical conditions, or personal experiences [11].
Such language can be explicit, asin the use of derogatory terms
such as“junkie” or “acoholic” [8]. However, it also frequently
manifests in more implicit forms, including subtle judgments
embedded in tone, phrasing, or contextua framing [7]. Research
in socia psychology has demonstrated that implicit biases,
which refer to unconscious attitudes or stereotypes, can be
reflected through people’s language [12,13]. In hedlth care,
implicit biases may surface through the language used to
describe patients. For instance, labeling a patient as
“noncompliant” may seem clinicaly objective, but it can
implicitly stigmatize their behavior by suggesting poor
self-management, rooted in preconceived notions or stereotypes,
without considering contextual factors such as mental capacity,
available resources, or externa circumstances. Implicit biases
reflect broader systemic inequities, asingtitutional practicesand
cultural norms often perpetuate and normalize the use of
stigmatizing languagein clinical settings[14,15]. Stigmatizing
language has been frequently observed in clinical specialties
such as substance use disorders, mental health conditions,
diabetes, and obesity, where it has shaped both clinical
terminology and professional attitudes[8,16-18]. Thissystemic
perpetuation of stigmatizing language reinforces negative
stereotypes and creates barriers to equitable health care,
undermining patient trust and treatment outcomes. By
embedding biased language into clinical notes, these
unconscious attitudes influence immediate clinical decisions
and may perpetuate negative stereotypes over time [15,19], as
subsequent clinicians rely on prior documentation [20]. These
patterns were confirmed in a recent analysis of 754 clinical
notes containing stigmatizing language [21], which found that
stereotyping accounted for 41.2% of instances, followed by
labeling patients as difficult (15.3%), disapproval (9.6%),
unilateral decision-making (7.3%), and questioning patient
credibility (5.3%). Such findings underscore the importance of
mitigating bias to advance health care equity.
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The presence of stigmatizing language can profoundly impact
the quality of care. A study [18] found that clinicians exposed
to the stigmatizing term “ substance abuser,” as opposed to the
more neutral phrase* person with substance use disorder,” were
more likely to view the patient as personally culpable and
deserving of punitive action rather than treatment. In addition,
anational survey of 655 emergency physicians, those who used
the stigmatizing label “sickler” to describe patients with sickle
cell disease, demonstrated lower compliance with national
trestment guidelinesand werelesslikely to prescribe appropriate
medications [17]. Complementing these findings, previous
research has also shown that physicians who read notes
containing stigmatizing language are more likely to develop
negative attitudes toward the patient and to provide less
aggressive pain management [22]. Notably, only 18% of
inpatient progress notes are manually entered, with the majority
being imported or copied from previous documentation [20].
The reliance on previous documentation rai ses concerns about
the potential perpetuation of stigmatizing language, which could
reinforce negative biases and influence clinical decision-making
over time. With the implementation of the 21st Century Cures
Act in 2021 in the United States, patients have gained access
to their EHRs [23], making these records increasingly integral
to the clinician-patient relationship. A large survey study [24]
found that 10% of patients feel judged or offended due to
labeling and evidence of disrespect in EHRs. Another study
[16] reported that 19% of patients indicated they would avoid
future medical appointmentsif their physi cians used stigmatizing
language toward them, while 21% stated they would seek anew
physician. Thereis also substantial evidence that stigmatizing
language in EHRs can jeopardize the therapeutic relationship,
leading to distrust, delayed care, and reduced treatment
engagement [7,25,26].

Giventhedetrimental effects of stigmatizing languagein EHRs
and the substantial resources required for its manual
identification, there is a growing interest in developing
automated detection methods. Manua detection typically
necessitates annotators possessing extensive clinical expertise
to accurately interpret context, aswell as linguistic proficiency
to discern subtleindicators of stigma[15,27]. In current practice,
manual annotation typically involves experienced physicians
reading and classifying individual sentences or notes from
EHRs, an approach that islabor-intensive and costly, particularly
when scaled acrosslarge datasets[15,27,28]. To overcomethese
challenges, researchers have increasingly explored machine
learning approaches for the automated detection of stigmatizing
language within EHRs. For instance, Sun et al [15] developed
a logistic regression classifier to assess whether sentences in
EHRs convey stigmatization, using aproprietary dataset, while
Harrigian et a [27] conducted acomparative analysis of logistic
regression and Bidirectional Encoder Representations from
Transformers (BERT) classifiers for the detection of
stigmatizing language. However, these studies have all used
supervised learning approaches, which generally require
thousands to tens of thousands of annotated data points to
achieve optimal performance. The assumption that such large
volumes of annotated data are readily available is often
unrealistic, asthe acquisition of labelsfor stigmatizing language
detection presents significant challenges. Stigmatizing language
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isfrequently subtle, covert, and highly contextual. Consequently,
acquiring annotated data for stigmatizing language detection
can be demanding and resource intensive. The previous studies
heavy reliance on supervised machine learning approaches has
highlighted asignificant limitation in addressing scenarioswhere
annotated data may be scarce.

In-context learning (ICL) is an emerging paradigm for
addressing natural language processing (NLP) tasks in
data-scarce settings[29-32]. ICL enables general-purpose large
language models (LL M) to adapt to new tasks by incorporating
instructions and either zero or a few examples directly within
the input prompt, thereby reducing reliance on extensively
annotated datasets [29,33,34]. By leveraging the robust
contextua understanding capabilitiesinherent in general-purpose
LLMs, thelCL approachis particularly well-suited for detecting
stigmatizing language, a task that requires the identification of
subtle nuances and a high level of contextual comprehension.
To the best of our knowledge, no study has systematically
examined the efficacy of the ICL approach for stigmatizing
language detection, underscoring asignificant gap in the current
research landscape.
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The effectiveness of thel CL approach is contingent upon prompt
engineering, which involves crafting precise, informative, and
contextually relevant prompts to guide the LLM in executing
specific tasks [29,35,36]. Therefore, the efficacy of the ICL
approach could be enhanced by a tailored prompting strategy
for stigmatizing language detection. Previous studies on
detecting stigmatizing language typically involve a 2-stage
process (Figure 1): first, the extraction of sentences containing
potentially stigmatizing words or phrases in accordance with
medical language guidelines, followed by the development of
the supervised machine learning model with the annotated data
set [15,27]. The potentially stigmatizing words or phrases
identified during the extraction process can provide valuable
information that can beincorporated into the prompting strategy.
By explicitly prompting the LLM to focus on these terms, we
anticipate an improvement in its sensitivity to detecting
stigmatizing language. Furthermore, given that stigmatizing
language is often covert and subtle [27,37], incorporating
common linguistic characteristics associ ated with such language
may further increase the model’s accuracy in identifying
instances of stigmatization. Customizing prompts to address
the unique aspects of stigmatizing language presentsavaluable
opportunity to enhance detection precision.

Figure 1. Workflow for developing a supervised machine learning model in stigmatizing language detection.

Electronic health records Potential stigmatizing
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While devel oping effective machine learning models to detect
stigmatizing languageisimportant, it isequally critical to ensure
that these models do not introduce or perpetuate existing biases
[38]. Numerous studies have demonstrated that machinelearning
classifierscan exhibit a gorithmic bias, resulting in performance
disparities across groups of patients with different protected
attributes, such as sex, race, age, and socioeconomic status
[39,40]. For example, Seyyed-Kalantari et a [41] found that a
leading machine learning classifier for detecting chest X-ray
pathol ogies exhibited a higher false negative rate for Hispanic
female patients. In the context of stigmatizing language
detection, algorithmic bias can lead to uneven identification
and correction of stigmatizing language, disproportionately
affecting certain groups and potentially exacerbating health
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nonstigmatizing)

disparities. To the best of our knowledge, no previous studies
have specifically examined thefairness of classifiersin detecting
stigmatizing language within EHRs, highlighting the need for
further investigation into how these models perform across
diverse patient populations. By rigorously evaluating thefairness
of these models, we can identify potential disparitiesand ensure
that they equitably benefit patients from diverse backgrounds.

Study Objectives

We aimed to investigate the effectiveness of the ICL approach
for detecting stigmatizing language in EHRs under data-scarce
conditions. First, we evaluated the performance of the ICL
approach against established approaches in zero-shot (no
annotated data) and few-shot settings (a small amount of
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annotated data), including thetextual entailment [42] and SetFit
[43]. For the ICL approach, we used 4 distinct prompting
strategies, including more sophisticated strategies, such as the
chain of thought (COT) [44] and the clue and reasoning
prompting (CARP) [30]. We a so introduced anovel prompting
strategy, termed “ stigma detection guided prompt,” specifically
designed to enhance the precision and effectiveness of detecting
stigmatizing language. Second, to further contextualize ICL's
performance, we conducted acomparative analysis of supervised
fine-tuning and ICL to evaluate the extent to which ICL can
achieve competitive performance under data-scarce conditions
relative to a well-established method that leverages a large
corpus of annotated data. This comparison provides valuable
insights for hospitals, enabling them to assess the cost-benefit
trade-offs associated with investing in annotated datasets for
detecting stigmatizing languagein clinical documentation. Third,
we assessed the fairness dimension of the classifiers used for
detecting stigmatizing language in this study by comparing their
performance across diverse patient groups characterized by
various protected attributes, including sex, age, and race.

Methods

Dataset Description

In this study, we used an open-source stigmatization detection
dataset prepared by Harrigian et al [27]. The dataset consists of
5043 sentences, of which 3249 (64.4%) are labeled as
stigmatizing and 1794 (35.6%) as nonstigmatizing. The original
creators randomly sampled these sentences from 4710 discharge
summaries associated with 4259 patients within the Medical
Information Mart for Intensive Care (MIMIC)—V database and
subsequently annotated them. The MIMIC-1V isan EHR dataset
that comprises 331,794 discharge summaries from the Beth
Israel Deaconess Medical Center in Boston, Massachusetts,
United States, from 2008 to 2019 [45]. The observed prevalence
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of stigmatizing language in this dataset is notably higher than
previously reported estimates, such as the 42.8% identified by
Weiner et al [10]. This difference is attributable to the broader
scope of stigmatizing expressions captured in the dataset
prepared by Harrigian et a [27], which encompasses a wider
range of terminology than earlier studies.

Discharge summaries were selected because they provide
detailed documentation of the patient’sclinical course, including
diagnoses, treatments, and physician observations, which are
particularly relevant for investigating stigmatization in clinical
notes. Sentences were extracted based on the presence of
potentially stigmatizing words or expressions, such as
“noncompliant” and “agitated.” A symmetric context window
of 15 tokens on either side of each sentence was applied to
preserve surrounding context and enhance model interpretation.
If fewer than 15 tokenswere available on either side, the context
window was shortened as needed to fit the available text. Each
sentence was independently annotated by 2 members of an
annotation team comprising 1 clinician and 2 research assistants
based on a predefined framework [27]. Any disagreementswere
resolved through discussion among all 3 annotators. The
annotation process achieved ahigh level of interrater agreement,
with an average pairwise Cohen k exceeding 0.9. The annotation
of stigmatization was determined based on framing and intent
of the sentence with its surrounding context (ie, whether the
sentence impliesthat the patient’s behavior is cast in anegative
light). Sentences that did not describe patient behavior, or that
neutrally described patient behavior, acknowledged structural
or clinical barriers, or conveyed empathy from health care
providers were not considered stigmatizing. The demographic
information of the dataset, including patient sex, age, and race,
is presented in Table 1. The “other or unknown” race category
included individuals who did not report their race. A more
detailed description of the dataset is provided in Multimedia
Appendix 1[15,18,19,22,27,37].

Table 1. Demographic information of the stigmatizing dataset used in this study.

Demographic attributes

Stigmatizing sentences, n (%)

Nonstigmatizing sentences, n (%)

Sex

Male (n=2600) 1731 (66.6)
Female (n=2443) 1518 (62.1)
Age(y)
0-25 (n=468) 303 (64.7)
26-50 (n=1639) 1184 (72.2)
51-75 (n=2005) 1249 (62.3)
>75 (n=931) 513 (55.1)
Race
Asian (n=125) 69 (55.2)
Black (n=945) 676 (71.5)
Hispanic (n=246) 159 (64.6)
Other or unknown (n=522) 305 (58.4)
White (n=3205) 2040 (63.7)

869 (33.4)
925 (37.9)

165 (35.3)
455 (27.8)
756 (37.7)
418 (44.9)

56 (44.8)
269 (28.5)
87 (35.4)
217 (41.6)
1165 (36.3)
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Ethical Consider ations

This study used a publicly available dataset consisting of EHR
sentences. All patient records were anonymized by the dataset’s
original creators, ensuring that no individual identifiable
information was accessible to the research team [45]. As such,
the study is exempt from research ethics board review in
accordance with Article 2.2 of the Tri-Council Policy Statement
[46]. The origina collection of data was approved by the
ingtitutional review boards of the Beth | srael DeaconessMedical
Center, Boston, Massachusetts, and the Massachusetts | nstitute
of Technology, Cambridge, Massachusetts (2001P001699). The
institutional review boards also granted a waiver of informed
consent and approved the sharing of the research resource,
thereby permitting secondary analysis of the deidentified data
without additional consent.

No compensation was provided or required for the use of this
secondary data. No identification of individual participants or
usersin any images of the manuscript or supplementary material
is possible. To access this dataset, the lead author fulfilled all
necessary regulatory requirements, including the compl etion of
the course “CITI data or specimens only research training”
(certification number 62353094). In addition, the lead author
signed adata use agreement to ensure the appropriate use of the
datain compliance with relevant policies and regulations.

Comparative Analysisfor Stigmatizing L anguage
Detection

Zero-shot and few-shot learning are machinelearning paradigms
that allow models to perform tasks with either no labeled data
or with only a minimal set of labeled examples, respectively
[47,48]. Zero-shot learning enables a model to perform atask
without any previous examples, relying solely on its pretrained
knowledge. In contrast, few-shot learning operates by providing
the model with alimited number of labeled examples, typically
ranging from 10 to 100.

In this study, we conducted a comprehensive evaluation of the
effectiveness of the ICL approach for detecting stigmatizing
language in EHRs under conditions of limited data availability.
We compared the performance of ICL against the textua
entailment approach [42] within a zero-shot learning context
and the SetFit approach [43] within afew-shot learning context,
specifically analyzing scenariosinvolving 4, 8, and 16 annotated
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examples per class. For the few-shot learning experiments, data
points were randomly selected as examples. To ensure
reproducibility and mitigate potential variability in performance
due to random sampling, the selection process was repeated 5
timesusing distinct random seeds. Thefinal performance results
reported in this study represent the average across these 5 runs,
providing a more robust and stable assessment of model
performance.

In addition, we extended our comparative analysis to include a
fully supervised fine-tuning approach. Thisbroader comparison
allows us to rigorously assess the strengths and potential
limitations of the ICL approach in the detection of stigmatizing
language within EHRs. All approaches used in this study
adhered to the framework established in previous studies (Figure
1), wherein sentences were extracted based on potentially
stigmatizing words or phrasesidentified from medical language
guidelines, followed by the devel opment of detection approaches
(ie, ICL).

Textual Entailment Approach

The textual entailment approach conceptualizes zero-shot text
classification as an entailment task [42]. This method isamong
the most widely adopted for zero-shot text classification and
has demonstrated state-of-the-art performance across various
benchmarks [49,50]. In this approach, the input text is
interpreted as a premise, and the model assesses whether this
premise logicaly entails the corresponding class label.
Specifically, in the context of stigmatizing language detection,
themodel first considersasentence from an EHR asthe premise
and then evaluates whether it entails stigmatization or
nonstigmatization. The textual entailment approach relies on
the knowledge embedded in pretrained |anguage models, which
have been trained on natural language inference datasets [51].
This training effectively enhances the model’s capability for
sentence comprehension. In our study, we used a selection of
widely recognized pretrained language models for natural
language inference to assess the effectiveness of the textual
entailment approach in detecting stigmatizing language (Table
2). These models were selected due to their widespread use in
zero-shot classification tasks[50,52,53] and their representation
of adiverse range of transformer architectures, enabling us to
fully explore the potential of the textual entailment approach
for detecting stigmatizing language.

Table 2. Pretrained language models used in the textual entailment approach.

Abbreviation Full model name

ROBERTA-M roberta-large-mnli

BART-M bart-large-mnli

DEBERTA-M deberta-large-mnli

BERT-M bert-base-multilingual-cased-multinli_tr

SetFit Approach

SetFit is a popular few-shot text classification approach that
has been applied across various domains [50,54,55]. The SetFit
approach consists of atwo-step process[43]. First, apretrained
sentence transformer is fine-tuned in a contrastive Siamese

https://medinform.jmir.org/2025/1/e68955

manner using pairs of labeled data. The objective of this
contrastive fine-tuning is to ensure that embeddings of
semantically similar sentences are close together in the feature
space while embeddings of semantically dissimilar sentence
pairs are maximally distanced. This process aims to generate
meaningful representationsthat accurately capture the semantic
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relationships between sentences. In the second step, a
classification head istrained using the representations produced
by the fine-tuned sentence transformer. For this study, we used
6 pretrained sentence transformersto eval uate the effectiveness
of the SetFit approach in detecting stigmatizing language (Table
3). MPNET-V2 and MINILM-V2 were the sentence
transformers used in the original work that proposed SetFit [43],
while the more contemporary E5-V2 and ROBERTA-V2 were

Table 3. Pretrained sentence transformers used in the SetFit approach.
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included due to their superior performance on various NLP
benchmarks [56,57]. We also incorporated 2 sentence
transformers pretrained on medical domain knowledge:
BERT-BIO-ST and BIOLORD. Theinclusion of these models
was based on the hypothesis that domain-specific pretraining
may enhance the model’s ability to capture contextually relevant
medical terminology and nuances, thereby improving its
effectivenessin detecting stigmatizing language [58].

Abbreviation Full model name

MPNET-V2 paraphrase-mpnet-base-v2

E5-V2 e5-base-v2

ROBERTA-V2 stsb-roberta-base-v2

MINILM-V2 paraphrase-multilingua-MiniLM-L12-v2
BERT-BIO-ST S-BioBert-snli-multinli-stsb

BIOLORD BioL ORD-2023

Fully Supervised Fine-Tuning Approach

The fully supervised fine-tuning approach involves adapting a
pretrained language model to a specific task by fine-tuning it
on alabeled dataset, where each instance is associated with its
corresponding label [29]. In this study, we used 5 pretrained
language models to examine the efficacy of afully supervised
fine-tuning approach for detecting stigmatizing language (Table
4). ROBERTA, ROBERTA-XLM, and BERT were selected
due to their extensive adoption and strong performance across
text classification tasks in different domains [50,59-61].
BERT-BIO and BERT-biomed were included for their
pretraining on biomedical text corpora, making them particularly
well-suited for NLP tasks involving medical terminology
[58,62]. We excluded certain contemporary medical pretrained
language models, such as Gatortron [45] and Clinicad BERT

[46], from our analysis. These models were omitted because
they were pretrained on the MIMIC dataset, which could
introduce dataleakage and potentially lead to an overestimation
of the model’s effectiveness. We specifically focused on
fine-tuning encoder-based language models, such as BERT,
rather than decoder-based models (ie, LLAMA) for 2 primary
reasons. First, previous research has demonstrated that
encoder-only models typically achieve superior or comparable
performance to decoder-based modelsin text classification tasks
with relatively small, labeled datasets, which aligns with our
study setting [63,64]. Second, BERT-based models currently
represent the state-of-the-art for supervised stigmatizing
language detection [27]. Thus, using these models as a
benchmark allows for a more rigorous evaluation of 1CL
performance against established methodologies.

Table4. Pretrained language models used in the fully supervised fine-tuning approach.

Abbreviation Full model name

ROBERTA roberta-base

BERT bert-base-uncased

BERT-BIO biobert-v1.1

ROBERTA-XLM xIm-roberta-base

BERT-BIOMED BiomedNL P-BiomedBERT-base-uncased-abstract-fulltext

Wefine-tuned these pretrained language models on 3543 | abeled
sentences from EHRS, representing approximately 70% of the
total data. The supervised fine-tuning approach was included
to provide a robust benchmark for comparison with the ICL
approach in detecting stigmatizing language. Hyperparameters
were tuned using a validation dataset of 500 data points,
representing approximately 10% of the total dataset.
Hyperparameter tuning was conducted for key parametersusing
grid search, including learning rate, batch size, and weight decay
rate, to optimize model performance and mitigate overfitting.
We used the AdamW optimizer [65] with default betas set to

0.9 and 0.999 and an epsilon of 1 x 10°® to ensure numerical

https://medinform.jmir.org/2025/1/e68955

stability. The number of epochs was determined using an early
stopping criterion, where training was terminated if the
validation loss did not decrease for 5 consecutive epochs. The
final hyperparameter settingswere selected based onthemodel’s
best performance on the validation dataset before being
evaluated on the held-out test dataset.

ICL Approach

The ICL approach leverages general-purpose LLMs through
prompting techniques to rapidly adapt to awide range of NLP
tasks [29]. The approach has demonstrated exceptional
performance in applications such as question answering,
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machinetranslation, text summarization, and text classification
[29,32-34]. In this study, we used 5 widely used open-source
genera-purpose LLMs to evaluate the efficacy of the ICL
approach in detecting stigmatizing language (Table 5). Werefer
to models such as LLAMA-3 as general-purpose LLMs to
emphasize their broad applicability across various NLP tasks
without extensive task-specific fine-tuning. We specifically
selected instruction fine-tuned models, as previous research has
shown that instruction fine-tuning significantly enhances model
performance across a range of NLP tasks, particularly in
zero-shot and few-shot settings[66,67]. In addition, weincluded
BIO-LLAMA-3, a domain-specific model that has undergone
instruction fine-tuning on a large biomedical dataset [68], to
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assessthe potential benefits of domain adaptation in stigmatizing
language detection. Due to the constraints of the MIMIC-1V
data use agreement, we were unable to use newer cloud-based
models, such as GPT-4 or Claude 3.5, as their use would
necessitate sharing data with external parties. Previous studies
have demonstrated that general-purpose LLMs are highly
sensitive to subtle variations in prompt formatting [69,70]. To
optimize the performance of the ICL approach, we devised a
validation data set for prompt format tuning, which included
adjustments such asthe wording and positioning of instructions.
A random sample of 30 data points was selected to construct
this validation set, designed to replicate a data-scarce scenario
consistent with previous research [71,72].

Table 5. General-purpose large language models (LLMs) used in the in-context learning approach.

Abbreviation Full model name Context window length (tokens)
LLAMA-3 Meta-Llama-3-8B-Instruct 8000

FLAN-T5 flan-t5-large 512

GEMMA-2 gemma-2-9b-it 8192

MISTRAL-0.2 Mistral-7B-Instruct-v0.2 32000

BIO-LLAMA-3 Bio-Medical-Llama-3-8B 8000

Prompting Strategiesfor the ICL Approach

The effectiveness of the ICL approach relies heavily on the
design of a well-structured prompting strategy that delivers
clear and precise task instructions. A prompting strategy refers
to the specific approach used to organize instructions, examples,
and guiding principles within a prompt to €elicit accurate and
reliable outputs from the LLM. These prompts are often

accompanied by either zero or a few illustrative examples to
guide the model in performing downstream tasks effectively
[29,32]. In this study, we evaluated 4 distinct prompting
strategies: generic, COT [44], CARP[30], and anew customized
prompting strategy we developed, referred to as the stigma
detection guided prompt. The prompting template for each
strategy is provided in Table 6. Figure 2 provides examples of
the prompting strategies used in this study.

Table 6. Prompting strategies and templates used in the in-context learning approach.

Prompting strategy ~ Prompt template

Generic

Chain of thought

Clue and reasoning

“Input: ‘{input sentence}.” Choose your answer: Based on the above sentence, does the text convey stigmatization? Yes/No”

“Input: ‘{input sentence}.” Determine if the input contains stigmatizing language. Let’s think step by step. Reasoning: ‘{rea-
soning} " Therefore, the answer (yesor no) is’:

“First, list clues (e.g., keywords, phrases, contextual information, semantic relations, tones, references) that support the deter-
mination of stigmatization in theinput. Second, deduce the diagnostic reasoning process from the premises (i.e., cluesand input)
that support the stigmatization determination. Third, based on the clues, reasoning, and input, determine whether the input

prompting

conveys stigmatization.

Input: ‘{input sentence}

Answer with ‘yes or ‘no’.

Answer:”
Stigma detection “ Stigmatizing language can exhibit the following characteristics:
guided prompt

1) Questioning credibility: Implication of physician disbelief in patient reports of their own experiences or behaviors.
2) Disapproval: Highlights poor reasoning, decision-making, or self-care, often in away that suggeststhe patient isunreasonable.
3) Stereotyping: Quoting incorrect grammar or unsophisticated terms.

4) Difficult patient: Inclusion of detailswith questionableclinical significance that portray the patient as belligerent or otherwise
suggest that the physician is annoyed.

5) Unilateral decisions: Language that emphasizes physician authority.

Input: ‘{input statement}

Keyword: “{ keyword}.”

Does the keyword in the input convey stigmatization? Answer with *Yes' or ‘No'.
Answer:”

https://medinform.jmir.org/2025/1/e68955
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Figure 2. Examples of 4 distinct prompting strategies used in this study. CARP: clue and reasoning prompting; COT: chain of thought; LLM: large

language model.

Generic

Prompt

Yes/No”

=0

Stigma detection

A P
guided prompt rompt

"Stigmatizing language can exhibit the following characteristics:
1) Questioning credibility: Implication of physician disbelief in
patient reports of their own experiences or behaviors...

Input: ‘{Patient became more intrusive and confrontational with

other patients. }

S

Answer:"

coT -
First prompt for

obtaining
reasoning

Second prompt
for obtaining
answer

with other patients.} ...

90

Keyword: ‘{confrontational}.’ Does the keyword in the input
convey stigmatization? Answer with 'Yes' or 'No'.

“Input: ‘{Patient became more intrusive and confrontational

Response

“Input: {Patient became more intrusive and
confrontational with other patients.}

Choose your answer: Based on the above
sentence, does the text convey stigmatization?

Yes

LLM

Response

Yes

LM

“Input: ‘{Patient became more intrusive and confrontational with
other patients.}.’ Determine if the input contains stigmatizing
language. Let's think step by step.”

Response

No

Reasoning: ‘'{To determine if the input contains stigmatizing

language, we should analyze ... it does not overtly meet the

criteria for stigmatizing language.}. Therefore, the answer (yes

or no) is:”

CARP

Prompt "First, list clues ...

Second, deduce the diagnostic reasoning

process...

Third, based on the clues, reasoning, and
input, determine whether the input conveys

stigmatization.

Input: ‘{Patient became more intrusive and
confrontational with other patients.}"

Answer with 'yes' or 'no’.
Answer:"

The generic prompting strategy involves providing the model
with minimal context, thereby relying primarily onits pretrained
knowledge to perform the task [69]. In this approach, the prompt
consists of a brief instruction about the task at hand, without
incorporating reasoning steps or specific domain knowledge.
For example, in the context of detecting stigmatizing language,
the prompt might simply query the model with “Choose your
answer: On the basis of the above sentence, doesthetext convey
stigmatization? Yes/No.” This strategy serves as a baseline for
comparing its performance with that of more advanced
prompting techniques, such as COT, CARP, and the stigma
detection guided prompt. In the few-shot scenario, a limited
number of example sentences accompanied by their
corresponding labels are embedded within the generic prompt
to guide the model in making informed predictions.

The COT prompting strategy is designed to enhance the
reasoning capabilities of general-purpose LLMs by guiding
them to generate intermediate reasoning steps before arriving
at afinal prediction [44]. This approach leverages the LLM’s
capacity to systematical ly reason through complex tasks, thereby
improving the reliability and accuracy of its outputs. For
instance, the prompt can be appended with “Let’sthink step by
step” to induce themodel to break down the problem into logical
and incrementa steps. By explicitly instructing the model to

https://medinform.jmir.org/2025/1/e68955

RenderX

LLM

Response

Clues:

+ Keywords/Phrases:
“intrusive”,
“confrontational” ...

+ Tone: Judgmental...

Reasoning: ...

Determination: Yes
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L1

articulate its reasoning, the COT strategy encourages more
thoughtful predictions. In the zero-shot setting, the COT strategy
involves prompting the model twice before making aprediction
[33]. The first prompt encourages the model to produce
intermediate reasoning by appending “Let’sthink step by step”
to the end of the prompt. This intermediate reasoning is then
incorporated into a second prompt, which is used to generate
thefinal prediction. In the few-shot setting, the model wasfirst
prompted to generate reasoning steps for randomly selected
data points. These data points, along with their corresponding
reasoning steps, were incorporated into the prompt asexamples
to enhance the model’s performance.

The CARP prompting strategy is specifically designed for text
classification tasks. It uses a progressive reasoning approach to
handle the linguistic complexities inherent in such tasks. This
strategy first prompts the model to identify superficial clues
withintheinput text, such askeywords, tone, semantic relations,
and references, which provideinitial indicatorsfor classification.
Once these clues are identified, the model engages in a
diagnostic reasoning process to infer the final prediction in a
logical manner [30]. For example, the presence of a negative
tone combined with specific keywords may collectively suggest
the presence of stigmatizing language. In the few-shot setting,
the model was first guided to generate clues and reasoning for
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randomly selected examples. These examples, along with their
associated clues, reasoning, and labels, were then incorporated
into the prompt to enhance the model’s performance [30]. The
detailed code implementation for the prompting strategies is
provided in Multimedia Appendix 2.

Design of the Stigma Detection Guided Prompt

In this study, we introduce a novel prompting strategy for
detecting stigmatizing language, termed the stigma detection
guided prompt. While prompt engineering has shown promise
in improving LLM performance, there is no universally
established framework for systematically designing prompts
tailored to specific tasks [32]. The design of the proposed
prompting strategy isinspired by recent research indicating that
incorporating task-tailored instructions and domain knowledge
can enhance the performance of the LLMs on downstream
medical tasks [73,74]. Our proposed strategy consists of two
key components. (1) explicitly directing the LLM to assess
potentially stigmatizing words or phrases and (2) incorporating
linguistic characteristics commonly associated with stigmatizing
language to enhance the model’s ability to identify subtle
instances of stigmatization in clinical text. In the subsegquent
section, we outline the rationale behind these components and
their contributions to improving stigma detection in clinical
documentation.

In the stigma detection guided prompt, we specifically instruct
the LLM to assess potentially stigmatizing words or expressions.
For instance, in the sentence “Patient became more intrusive
and confrontational with other patients” the moded is
specifically instructed to assess whether the term
“confrontational” conveys stigmatization based on its
surrounding context (Figure 2). We intentionally designed the
prompt to focus on sentences containing expert-identified terms
that are frequently used to convey stigmatization in clinical
documentation (ie, aggressive and noncompliant). In this task
formulation, the model is not asked to detect stigmatization
broadly, but rather to assess whether the use of a known
high-risk term conveys stigmatization in context. This reflects
a practical and clinically relevant problem, as the same term
may be neutral or stigmatizing depending on how itisused. In
addition, this keyword-based approach aligns with prevailing
practices in the literature. Previous studies have typically
devel oped machinelearning models or conducted analysesusing
sentences containing specific termsthat are frequently flagged
as stigmatizing according to medical language guidelines
[15,75]. Thisapproach remainswidely adopted, in part because
standardized definitions of stigmatizing language are till
underdeveloped, and the topic remains sensitive within health
care contexts. Therefore, focusing on predefined terms in the
prompt offers aconsistent and pragmatic approach for studying
stigmatizing language across datasets and research settings.
Conventional prompting strategies do not effectively leverage
this information. By explicitly integrating this task-tailored
instruction, our approach aimsto enhancethe LLM’s ability to
detect stigmatizing language with greater contextual awareness.

Within the proposed prompting strategy, we also integrate
linguistic characteristics commonly associated with stigmatizing
language to enhance the model’s ability to detect subtle and

https://medinform.jmir.org/2025/1/e68955
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implicit stigmatization. Stigmatizing language in EHRs
frequently manifests in indirect ways, where certain words or
phrases acquire negative connotati ons depending on the context
inwhich they are used [19,76]. For instance, theterm “claims”
in the phrase “Patient claims pain is 10/10” may suggest
disbelief, thereby contributing to stigma[7]. Previous work has
identified five recurring linguistic patterns associated with
stigmatizing language in clinical documentation, including (1)
questioning patient credibility, (2) expressing disapproval of
patient reasoning or self-care, (3) stereotyping based on race or
social class, (4) portraying patients as difficult, and (5)
emphasizing physician authority over the patient [37]. By
incorporating these linguistic markers into the prompting
strategy, our approach aims to enhance the LLM’s sensitivity
to context-dependent cues, improving its overall accuracy in
detecting stigmatizing language. In the few-shot setting, we
incorporated examples within the prompt, following a similar
approach to that used in the generic prompting strategy.

Perfor mance Evaluation and Comparison

In this study, stigmatizing language detection was framed as a
binary text classification problem. To eval uate the performance
of various approaches, we randomly sampled 1000 data points
to create a test dataset, ensuring no overlap with training or
validation datasets. We used 5 standard classification metrics:
accuracy, precision, recall, area under the receiver operating
characteristic curve (AUC-ROC), and F;-score. Accuracy
indicates the percentage of EHR sentences that are correctly
classified. Precision measures the proportion of sentences
identified as stigmatizing that are stigmatizing, reflecting the
model’s ability to avoid false positives. Recall, also known as
sensitivity, assesses the proportion of actual stigmatizing
sentencesthat are correctly identified, highlighting the model’s
capacity to capture true positives. The AUC-ROC evaluatesthe
model’s ability to distinguish between stigmatizing and
nonstigmatizing sentences across different classification
thresholds, with higher values indicating better discriminatory
power. The F,-score, which ranges from 0 to 1, is computed as
the harmonic mean of precision and recall, offering a balanced
measure of classification performance. The F;-score is
particularly critica for evaluating stigmatizing language
detection due to the highly imbalanced nature of the dataset.
Notably, the AUC-ROC metric was not computed for the ICL
approach, asit does not produce the probabilistic classification
required for the metric.

To obtain a robust estimate of the model’s performance, we
computed 95% Cls by training, tuning, and evaluating each
model on 10 different train-validation-test splits, each generated
using adifferent random seed. Thesetest datasets were designed
to have no overlap with the training or validation datasets,
thereby minimizing potential biasesin performance estimation.
To compare the top-performing models, we conducted paired
1-tailed t tests on F;-score, precision, and recall. Because each
model was evaluated on the same test splits, the paired t test
was chosen as it accounts for the dependency between paired
observations, reducing variance and increasing statistical power
compared to an independent t test. In the zero-shot setting, we
compared the highest-performing models based on F,-scorein
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both thetextual entailment and I CL approaches. Inthe few-shot
setting, we compared the best models when different numbers
of annotationswere availablein the SetFit and | CL approaches.
In addition, we compared the top-performing supervised
fine-tuning model with the best ICL model. To mitigatetherisk
of inflated type | error due to multiple comparisons, we applied
the Bonferroni correction to adjust the significance threshold.
Given that a total of 15 comparisons were conducted, the
adjusted significance level was set at P=.003 (.05/15).

Fairness Evaluation

The notion of machine learning fairness in health care can be
broadly classified into equal alocation and equal performance
considerations [39]. Equal alocation pertains to the equitable
distribution of health care resources across different patient
subgroups. For instance, in the context of kidney transplantation,
afair machinelearning model would ensure that transplantsare
allocated proportionally among patient groups, thereby
mitigating disparities in access to care [77]. In contrast, equal
performance requires that a model achieves comparable
predictive accuracy across both protected and nonprotected
groups. This can be quantified using metrics such as the true
positiverate (TPR) and false positive rate (FPR), among others
[39-41]. In the context of stigmatizing language detection, the
equal performance criterion is more suitable as it ensures that
the model identifies stigmatizing language consistently across
different demographic groups.

For the fairness evaluation, we used the criterion of equal
performance, assessing the model across 3 key performance
metrics: TPR, FPR, and F;-score. A classifier isconsidered fair
under thiscriterioniif its performance remains consistent across
subgroups defined by protected attributes. The TPR, also
commonly referred to as recall, quantifies the proportion of
EHR sentences contai ning stigmati zing language that the model
correctly identifies. Thismetriciscritical for fairness evaluation,
as alower TPR for certain demographic subgroups means the
model fails to detect stigmatizing language in their clinical
records at the same rate as others, potentially allowing harmful
biasesto persist unnoticed in medical documentation. Thiscould
lead to disparities in patient advocacy efforts, as undetected
stigmatizing language may influence heath care provider
perceptions and contribute to differences in the quality of care
received. Over time, systematic underdetection of stigmatizing
language in specific groups may reinforce existing biases in
health care systems, further marginalizing vulnerable
populations. FPR quantifies the proportion of nonstigmatizing
sentences that are incorrectly classified as stigmatizing. This
metric is essential for fairness evaluation, as an elevated FPR
for certain demographic subgroups indicates that the model is
more likely to incorrectly classify nonstigmatizing language as
stigmatizing for those groups, which could lead to unnecessary
scrutiny of their clinical documentation. Thisoverflagging may
cause hedlth care providers to become more hesitant in
describing patient conditions accurately, potentially leading to
vague or incomplete medical records. As a result, the quality
of clinical communication may be compromised, which could
negatively impact care coordination, patient trust, and clinical
decision-making. Finally, the F;-score providesacomprehensive
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measure of the model’s classification performance by balancing
precision and recall. Differencesin F;-score across demographic
subgroups indicate variability in the model’s utility—its
effectiveness in balancing the detection (recall) and accuracy
(precision) of stigmatizing language. A lower F;-score for
certain groups suggests that the model is either failing to detect
stigmatizing language when it should (low recall) or flagging
nonstigmatizing language incorrectly (low precision). This
inconsistency can underminethetrust and usability of the model
in clinical decision-making, potentially leading to biased
documentation practices and uneven policy enforcement,
ultimately reducing the overall fairness and effectiveness of the
system.

We assessed the fairness of the models concerning 3 protected
attributes: sex (male and female); age (0-25y, 26-50 y, 51-75
y, and >75 y); and race (White, Black, Hispanic, Asian, and
other or unknown). We adopted age groupings similar to those
used in previous studies examining the fairness of machine
learning classifiers [40,41]. Bias at the subgroup level was
quantified by measuring performance disparities across
demographic subgroups [41,78]. For sex-differentiated groups,
performance disparity was calculated as the difference in the
model’s performance between one sex group and its
complementary counterpart. For race- and age-differentiated
groups, performance disparity was determined by the difference
between the performance of a specific subgroup and the median
performance across all subgroups within that attribute. A
high-performance disparity indicates significant variation in the
model’s performance across different groups, suggesting a
higher level of unfairness. We measured performance disparity
for subgroups defined by sex, age, and race and reported the
highest absolute performance disparity for each demographic
attribute across models using ICL and supervised fine-tuning
approaches.

Results

Overview

We conducted a comprehensive evaluation of various
approaches for detecting stigmatizing language in data-scarce
settings. First, we assessed the effectiveness of textual
entailment and I CL approacheswithin azero-shot setting. Then,
we eval uated the SetFit and | CL approachesin few-shot settings,
using 4, 8, and 16 annotated data points per class. We compared
supervised fine-tuning with ICL to assess how well ICL can
perform with limited data compared to an established method
that relies on a large amount of annotated data. This section
presents the comparative performance of each approach in
detecting stigmatizing language.

Performance Evaluation for Zero-Shot Approaches

Table 7 presents the performance metrics of the various
pretrained language models using the textual entailment
approach under the zero-shot setting. Among the models
evaluated, DEBERTA-M achieved the highest mean F;-score
and accuracy of 0.723 (95% CI 0.718-0.728) and 73.8% (95%
Cl 73.2%-74.4%), respectively. Conversely, BERT-M exhibited
the lowest performance, with amean F;-score and accuracy of
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0.615 (95% Cl 0.606-0.624) and 64.2% (95% CIl 63.8%-64.6%),
respectively.

The performance of the various general-purpose LLMs using
the zero-shot ICL approach is presented in Table 8. The stigma
detection guided prompt strategy yielded the highest mean
accuracy of 80.7% and a mean F;-score of 0.838 across all
evaluated prompting strategies. Conversely, the generic
prompting strategy demonstrated the lowest performance, with
amean accuracy of 69.4% and a mean F;-score of 0.746. The
mean accuracy across the prompting strategies varied by 11.3
percentage points, and the mean F;-scores differed by 0.092,
indicating a significant variability in performance based on the
prompting strategy used. The stigma detection guided prompt
paired with GEMM A -2 achieved the highest performance, with
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amean accuracy of 83.5% (95% CI 82.9%-84.1%) and a mean
F,-score of 0.858 (95% CI 0.854-0.862). The zero-shot ICL
approach demonstrated superior performance metrics compared
to the textual entailment approach. Specificaly, the highest
mean F,-score in the ICL approach, achieved by GEMMA-2,
was 0.858, exceeding the best mean F;-score of 0.723 obtained
by DEBERTA-M in the textual entailment approach by 0.135,
representing an 18.7% improvement. A pared t test
demonstrated that GEMMA-2 significantly outperformed
DEBERTA-M in terms of mean F;-score, precision, and recall
(P<.001). The detailed statistical results are provided in
Multimedia Appendix 3. In addition, 3 out of 4 prompting
strategies within the ICL approach resulted in higher mean
accuracy and F;-scores than those observed with the textual
entailment method.

Table 7. Performance of pretrained language models using the textual entailment approach.

Pretrained language mod-  Accuracy (%), mean (SD) F4-score, mean (SD) Precision, mean (SD) Recall, mean (SD) AUC-ROC? mean (SD)

els

ROBERTA-M 72.9(0.7) 0.713 (0.008) 0.698 (0.007) 0.729 (0.008) 0.753 (0.009)
BART-M 69.6 (0.9) 0.691 (0.004) 0.701 (0.006) 0.681 (0.011) 0.736 (0.008)
DEBERTA-M 73.8(0.6) ° 0.723 (0.005) 0.717 (0.007) 0.730 (0.006) 0.781 (0.010)
BERT-M 64.2 (0.4) 0.615 (0.009) 0.623 (0.008) 0.608 (0.010) 0.701 (0.007)
Overall 70.1(0.7) 0.686 (0.006) 0.685 (0.007) 0.687 (0.009) 0.743 (0.008)

8AUC-ROC: area under the receiver operating characteristic curve.
Bitalicized values represent the best performance across models.
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Table 8. Performance of general-purpose large language models (LLMs) using the zero-shot in-context learning approach.

General-purpose LLM Accuracy (%), mean (SD)

F1-score, mean (SD)

Precision, mean (SD) Recall, mean (SD)

Generic
LLAMA-3 70.9 (0.8) 0.811 (0.005) 0.821 (0.006) 0.801 (0.004)
FLAN-T5 67.2 (0.6) 0.709 (0.007) 0.731 (0.008) 0.688 (0.005)
GEMMA-2 70.4 (0.9) 0.750 (0.004) 0.778 (0.004) 0.724 (0.004)
MISTRAL-0.2 68.4 (0.6) 0.705 (0.006) 0.713 (0.006) 0.698 (0.005)
BIO-LLAMA-3 70.1(0.8) 0.762 (0.006) 0.774 (0.005) 0.750 (0.004)
Overall 69.4 (0.7) 0.746 (0.005) 0.763 (0.007) 0.732 (0.004)
Chain of thought
LLAMA-3 745 (0.7) 0.781 (0.009) 0.792 (0.007) 0.771 (0.009)
FLAN-T5 73.6(0.3) 0.768 (0.007) 0.779 (0.006) 0.757 (0.005)
GEMMA-2 75.2 (0.6) 0.795 (0.005) 0.813 (0.007) 0.777 (0.004)
MISTRAL-0.2 72.5(0.4) 0.756 (0.008) 0.768 (0.004) 0.745 (0.009)
BIO-LLAMA-3 73.1(0.7) 0.775 (0.006) 0.787 (0.007) 0.764 (0.009)
Overall 73.8(0.5) 0.775 (0.007) 0.788 (0.006) 0.763 (0.007)
Clue and reasoning prompting
LLAMA-3 78.3(0.6) 0.830 (0.005) 0.842 (0.004)2 0.818 (0.005)
FLAN-T5 74.9 (0.7) 0.785 (0.008) 0.794 (0.008) 0.776 (0.007)
GEMMA-2 73.7(0.9) 0.803 (0.010) 0.811 (0.005) 0.795 (0.009)
MISTRAL-0.2 70.8 (0.5) 0.736 (0.007) 0.752 (0.005) 0.721 (0.007)
BIO-LLAMA-3 77.9 (0.6) 0.815 (0.005) 0.831 (0.007) 0.799 (0.004)
Overall 75.1(0.7) 0.794 (0.008) 0.806 (0.006) 0.782 (0.007)
Stigma detection guided prompt
LLAMA-3 82.4(0.6) 0.845 (0.005) 0.822 (0.006) 0.869 (0.008)
FLAN-T5 76.6 (0.8) 0.819 (0.005) 0.804 (0.004) 0.834 (0.007)
GEMMA-2 83.5(0.6) 0.858 (0.004) 0.841 (0.005) 0.876 (0.003)
MISTRAL-0.2 80.1(0.5) 0.830 (0.004) 0.813 (0.006) 0.847 (0.006)
BIO-LLAMA-3 81.0(0.5) 0.839 (0.005) 0.857 (0.007) 0.821 (0.004)
Overall 80.7 (0.6) 0.838 (0.005) 0.827 (0.006) 0.849 (0.005)

3 talicized values represent the best performance across models and prompting strategies.

Perfor mance Evaluation for Few-Shot Approaches

Table 9 presents the performance of the various pretrained
sentencetransformers using the SetFit approach in the few-shot
setting across different numbers of label ed data points per class.
MINILM-V 2 achieved the highest mean F;-score of 0.721 (95%
Cl 0.713-0.729) and the highest mean AUC-ROC of 0.791 (95%
Cl 0.785- 0.797) with 4 annotated data points per class.
However, E5-V2 outperformed the other models when 8 and
16 annotated data points per class were available, achieving
mean F;-scores of 0.735 (95% CI 0.728-0.742) and 0.802 (95%
Cl 0.798-0.806), respectively. On average, accuracy increased
from 72.1% with 4 annotated data points per classto 78% with
16 annotated data points per class, while the average F;-score
improved from 0.707 to 0.767. These results highlight the
positive impact of increasing the number of annotated data
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points on model performance within the few-shot SetFit
approach.

Table 10 presents the mean F;-score and accuracy of various
genera-purpose LLMs using the few-shot ICL approach with
different prompting strategies. Additional performance metrics,
including precision and recal, are provided in Multimedia
Appendix 4. Due to limitations in the number of tokens (or
words) that models can process at once (known as context
window limitation), it was not feasible to conduct experiments
with FLAN-T5 for the COT and CARP prompting strategiesin
the few-shot settings, nor with LLAMA-3 and GEMMA-2 for
COT and CARP when 16 annotated data points per class were
used. Thus, we do not report the mean performance of COT and
CARP prompting strategies across models. LLAMA-3, paired
with the stigma detection guided prompt, demonstrated the
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highest performance across all scenarios, achieving mean
F,-scores of 0.874 (95% Cl 0.864-0.884), 0.892 (95% ClI

0.886-0.898), and 0.901 (95% CI 0.895-0.907) with 4, 8, and
16 annotated data points per class, respectively. When using
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the generic and the stigma detection guided prompt, it was
observed that both the mean F,-score and accuracy improved

as the number of annotated data points per class increased.

Table 9. Performance of pretrained sentence transformers using the SetFit approach.

Precision, mean (SD)  Recall, mean (SD) AUC-ROC? mean (SD)

Sentence transformer  Accuracy (%), mean F,-score, mean (SD)
(SD)

4 annotated data per class
MPNET-V2 70.5 (0.4) 0.701 (0.005)
E5-V2 73.6(0.6) ° 0.704 (0.003)
ROBERTA-V?2 72.2(0.6) 0.708 (0.004)
MINILM-V2 73.0 (0.5) 0.721 (0.008)
BERT-BIO-ST 714 (0.7) 0.701 (0.008)
BIOLORD 72.0(0.7) 0.707 (0.008)
Overall 72.1(0.6) 0.707 (0.006)

8 annotated data per class
MPNET-V2 72.6 (0.8) 0.715 (0.003)
E5-V2 77.1(0.4) 0.735 (0.007)
ROBERTA-V?2 75.4(0.8) 0.723 (0.005)
MINILM-V2 74.3 (0.6) 0.732 (0.005)
BERT-BIO-ST 75.1(0.7) 0.726 (0.007)
BIOLORD 75.9 (0.4) 0.729 (0.008)
Overall 75.1(0.5) 0.727 (0.006)

16 annotated data per class
MPNET-V2 75.6 (0.3) 0.755 (0.005)
E5-V2 80.7 (0.5) 0.802 (0.004)
ROBERTA-V?2 78.3(0.4) 0.775 (0.006)
MINILM-V2 79.1(0.6) 0.785 (0.007)
BERT-BIO-ST 77.3(0.5) 0.745 (0.008)
BIOLORD 77.1(0.8) 0.739 (0.004)
Overall 78.0(0.7) 0.767 (0.006)

0.708 (0.007) 0.697 (0.005) 0.752 (0.005)
0.705 (0.004) 0.703 (0.003) 0.784 (0.007)
0.712 (0.005) 0.704 (0.005) 0.765 (0.005)
0.718 (0.007) 0.725 (0.005) 0.791 (0.006)
0.687 (0.004) 0.715 (0.006) 0.770 (0.008)
0.714 (0.005) 0.701 (0.009) 0.772 (0.005)
0.706 (0.006) 0.707 (0.005) 0.772 (0.006)
0.727 (0.006) 0.704 (0.004) 0.773 (0.005)
0.750 (0.006) 0.721 (0.008) 0.836 (0.006)
0.729 (0.006) 0.718 (0.004) 0.814 (0.006)
0.721 (0.004) 0.743 (0.005) 0.801 (0.007)
0.715 (0.008) 0.736 (0.005) 0.817 (0.005)
0.718 (0.005) 0.740 (0.007) 0.821 (0.004)
0.726 (0.007) 0.728 (0.006) 0.810 (0.005)
0.773 (0.005) 0.738 (0.006) 0.815 (0.007)
0.813 (0.006) 0.792 (0.003) 0.858 (0.006)
0.766 (0.007) 0.784 (0.004) 0.838 (0.005)
0.802 (0.006) 0.769 (0.005) 0.847 (0.009)
0.752 (0.007) 0.738 (0.008) 0.832 (0.004)
0.744 (0.005) 0.734 (0.004) 0.829 (0.006)
0.775 (0.005) 0.759 (0.007) 0.837 (0.007)

8AUC-ROC: area under the receiver operating characteristic curve.

btalicized values represent the best performance across models when different numbers of annotated data per class were available.

Table 11 presents a comparison between the top-performing
models using the SetFit approach and those using the few-shot
I CL approach across different numbers of annotated data points
per class. In al scenarios, the few-shot ICL models exhibited
superior performance compared to their SetFit counterparts.
Specifically, with 4 annotated data points per class, LLAMA-3
achieved amean F,-score of 0.874 (95% Cl 0.864-0.884), which
is 0.153 points higher than that of MINILM-V2, whose mean
F,-score was 0.721 (95% CI 0.713-0.729), representing an
approximate 21.2% improvement. For 8 annotated data points
per class, LLAMA-3 attained a mean F;-score of 0.892 (95%
Cl 0.886-0.898) compared to 0.735 (95% CI 0.728-0.742) for
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E5-V2, corresponding to an improvement of about 21.4%.
Finaly, at 16 annotated data points per class, LLAMA-3
demonstrated a mean F,-score of 0.901 (95% CI 0.895-0.907),
which is 0.099 points higher than that of E5-V2, whose mean
F,-score was 0.802 (95% CI 0.798-0.806), reflecting a 12.3%
improvement. For each setting (4,8, and 16 annotated data points
per class), a paired t test was conducted to compare the
top-performing models from the ICL and SetFit approaches
(refer to Multimedia Appendix 3 for details). In al cases, the
results indicated that the ICL models outperformed the SetFit
modelsin terms of F;-score, precision, and recall (P<.001).
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Table 10. Performance of genera-purpose large language models (LLMs) using the few-shot in-context learning approach.

Generd purpose-LLM 4 annotated data per class 8 annotated data per class 16 annotated data per class
Accuracy (%), Fq-score, mean (SD) Accuracy (%), Fj-score, mean (SD)  Accuracy (%), Fjp-score, mean (SD)
mean (SD) mean (SD) mean (SD)
Generic
LLAMA-3 74.8(0.8) 0.789 (0.006) 79.2 (0.9) 0.832 (0.008) 81.6 (0.8) 0.855 (0.006)
FLAN-T5 69.3 (0.5) 0.691 (0.007) 70.7 (0.8) 0.701 (0.008) 75.1(0.5) 0.762 (0.006)
GEMMA-2 71.1(1.2) 0.719 (0.007) 72.1(0.8) 0.739 (0.009) 76.2 (0.9) 0.773 (0.008)
MISTRAL-0.2  725(0.7) 0.730 (0.006) 70.5(0.9) 0.720 (0.010) 80.1 (1.0) 0.822 (0.007)
BIO-LLAMA-3  76.6(0.9) 0.820 (0.008) 77.3(0.5) 0.826 (0.004) 79.0 (0.6) 0.851 (0.006)
Overall 72.9(0.8) 0.75 (0.007) 74.0 (0.8) 0.764 (0.009) 78.4(0.6) 0.813 (0.007)

COoT
LLAMA-3 72.5(0.8) 0.756 (0.004) 83.1(0.9) 0.823 (0.007) _a —
FLAN-T5 — — — — — —
GEMMA-2 75.1(0.4) 0.796 (0.006) 79.5(0.8) 0.826 (0.005) — —
MISTRAL-0.2  71.3(0.3) 0.742 (0.005) 75.1(0.6) 0.767 (0.007) 76.9 (0.8) 0.781 (0.006)
BIO-LLAMA-3 716 (0.7) 0.743 (0.005) 81.4(0.8) 0.835 (0.006) — —

CARP
LLAMA-3 80.4 (0.8) 0.837 (0.005) 85.1(0.5) 0.876 (0.004) — —
FLAN-TS — — — — — —
GEMMA-2 75.4(0.7) 0.795 (0.006) 79.6 (0.4) 0.825 (0.009) — —
MISTRAL-0.2  71.8(0.5) 0.728 (0.008) 72.2 (0.5) 0.747 (0.006) 71.2 (0.6) 0.731 (0.005)
BIO-LLAMA-3  77.2(0.7) 0.813 (0.009) 81.6 (0.6) 0.849 (0.008) — —

Stigma detection guided prompt
LLAMA-3 84.3(0.6) 0.874(0.010) 85.5(0.7) 0.892 (0.006) 87.7(0.7) 0.901 (0.006)
FLAN-T5 74.2 (0.4) 0.782 (0.006) 76.8 (0.5) 0.805 (0.008) 82.8(0.3) 0.842 (0.004)
GEMMA-2 84.3(0.9) 0.872 (0.007) 84.9 (0.4) 0.881 (0.005) 86.1(0.5) 0.887 (0.006)
MISTRAL-0.2 805 (0.7) 0.849 (0.005) 82.0(0.6) 0.857 (0.004) 86.7 (0.7) 0.899 (0.005)
BIO-LLAMA-3 804 (1.1) 0.861 (0.010) 81.5(0.8) 0.870 (0.007) 82.7 (1.0 0.892 (0.009)
Overall 80.7 (0.8) 0.848 (0.008) 82.1(0.6) 0.861 (0.005) 85.2 (0.5) 0.884 (0.007)

3ot applicable due to limited context window length.

Btalicized values represent the best performance across models and prompting strategies when different amounts of annotated data per class were
available.

Table 11. Comparison of top-performing modelsin SetFit and few-shot in-context learning (ICL) approaches.

Approach and model 4 annotated data per class—Fq-score, 8 annotated data per class—Fq-score, 16 annotated data per class—F1-score,
mean (SD) mean (SD) mean (SD)
SetFit
MINILM-V2 0.721 (0.008) _a —
E5-V2 — 0.735 (0.007) 0.802 (0.004)
Few-shot | CL
LLAMA-3 0.874 (0.010) 0.892 (0.006) 0.901 (0.006)
3ot applicable.
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Performance Comparison of the ICL With the Fully
Supervised Fine-Tuning Approach
We presented the performance of the various pretrained

language model s using the fully supervised fine-tuning approach
in Table 12. Among the models evauated, ROBERTA

Chenet a

demonstrated the highest performance, achieving a mean
AUC-ROC of 0.973 (95% CI 0.968-0.978) and amean F,-score
of 0.931 (95% CI 0.924-0.938). In contrast, BERT-BIOMED
exhibited the lowest performance, with a mean AUC-ROC of
0.926 (95% CIl 0.918-0.934) and amean F;-score of 0.894 (95%
Cl 0.888-0.900).

Table 12. Performance of pretrained language models for the fully supervised fine-tuning approach.

Pretrained language model ~ Accuracy (%), mean

F1-score, mean (SD) Precision, mean (SD) Recall, mean (SD) AUC-ROC? mean (SD)

(SD)
ROBERTA 945(0.6) 0.931 (0.007) 0.950 (0.008) 0.913 (0.009) 0.973 (0.005)
BERT 94.2(0.7) 0.922 (0.005) 0.943 (0.007) 0.901 (0.011) 0.962 (0.004)
BERT-BIO 93.7 (0.8) 0.910 (0.009) 0.929 (0.006) 0.893 (0.006) 0.948 (0.003)
ROBERTA-XLM 94.0 (0.5) 0.911 (0.006) 0.945 (0.007) 0.879 (0.008) 0.943 (0.009)
BERT-BIOMED 91.5(0.7) 0.894 (0.006) 0.909 (0.004) 0.879 (0.008) 0.926 (0.008)
Overall 93.6 (0.6) 0.914 (0.007) 0.935 (0.007) 0.893 (0.008) 0.950 (0.006)

8AUC-ROC: area under the receiver operating characteristic curve.
Bitalicized values represent the best performance across models.

Table 13 presents the performance of the top-performing models
in the zero-shot, few-shot settings, and fully supervised
fine-tuning approach. In the zero-shot setting, the
best-performing model, GEMMA-2, achieved amean F;-score
of 0.858 (95% CI 0.854-0.862), which is 0.073 points lower
than the mean F;-score of fully supervised ROBERTA at 0.931
(95% Cl 0.924-0.938). This difference corresponds to an
approximate 8.5% improvement in mean F;-score for the fully
supervised approach. In the few-shot setting, LLAMA-3

emerged asthetop-performing model, achieving mean F,-scores
of 0.874 (95% Cl 0.864-0.884), 0.892 (95% CI 0.886-0.898),
and 0.901 (95% CI 0.895-0.907) with 4, 8, and 16 annotated
data points per class, respectively. Although the mean F;-score
with 16 annotated data points per class was about 3.2% lower
than that of fully supervised ROBERTA, it is notable that this
performance was attained using only 32 labeled instances,
whereas ROBERTA was trained with 3543 instances—more
than 100 times the amount of annotated data

Table 13. Performance of top-performing models in zero-shot, few-shot, and fully supervised fine-tuning approaches.

Approach or model GEMMA-2—F-score, mean

(SD)

LLAMA-3—F4-score, mean (SD) ROBERTA—F1-score, mean (SD)

Zero-shot 0.858 (0.004)

Few-shot: 4 annotated data per class —
Few-shot: 8 annotated data per class —
Few-shot: 16 annotated dataper class  —

Fully supervised fine-tuning —

a J—

0.874 (0.010) —
0.892 (0.006) —
0.901 (0.006) —
— 0.931 (0.007)

3ot applicable.

Statistical Comparison of Model Performance

Table 14 summarizes the key findings from paired t tests,
comparing the top-performing models in the zero-shot and
few-shot settings, as well as performance differences between
the best-performing ICL and supervised fine-tuning models.
Additional details on the statistical comparisons are provided
in Multimedia Appendix 3. In the zero-shot setting, paired t
tests revealed that GEMMA-2 significantly outperformed

https://medinform.jmir.org/2025/1/e68955

DEBERTA-M in terms of F;-score, precision, and recall (al
P<.001). In the few-shot setting, ICL models demonstrated
significantly higher performance across all 3 metrics compared
to SetFit models. When comparing the top-performing models
from the ICL and supervised fine-tuning approaches, ROBERTA
achieved significantly higher F;-score and precision (P<.001),
while LLAMA-3 demonstrated significantly higher recall
(P<.001).
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Table 14. Paired t test results comparing the top-performing models in the zero-shot and few-shot settings, and between the best-performing models

in in-context learning and supervised fine-tuning approaches.

Setting, comparison, and metric Mean difference P value
Zero-shot: DEBERTA-M versus GEMMA-2 coupled with stigma detection guided prompt
F1-score -0.136 <.001
Precision -0.125 <.001
Recall -0.146 <.001

Few-shot (4 annotations per label): MINILM-V2 versus LLAMA 3 coupled with stigma detection guided prompt

F4-score
Precision
Recall

-0.155 <.001
-0.138 <.001
-0.165 <.001

Few-shot (8 annotations per label): E5-V2 versusLLAMA 3 coupled with stigma detection guided prompt

F4-score
Precision
Recall

-0.158 <.001
-0.124 <.001
-0.192 <.001

Few-shot (16 annotations per label): E5-V2 versusLLAMA 3 coupled with stigma detection guided prompt

F1-score
Precision
Recall

-0.101 <.001
-0.052 <.001
-0.152 <.001

ICL versussupervised fine-tuning: ROBERTA versusLAMM A-3 coupled with stigma detection guided prompt (16 annotated data per class)

F1-score
Precision

Recall

0.029 <.001
0.086 <.001
-0.030 <.001

Fairness Evaluation and Comparison

The performance and disparities of various models devel oped
to detect stigmatizing language are presented in Multimedia
Appendix 5. Table 15 highlights the largest absolute
performance dispariti es across demographic attributes, including
sex, age, and race, for each model. M odel s using the supervised
fine-tuning approach exhibited relatively higher absolute
disparities compared to the | CL models under zero-shot, 4-shot,
8-shot, and 16-shot settings. On average, models trained using
the supervised fine-tuning approach demonstrated the largest
mean absolute TPR disparities of 0.037, 0.077, and 0.046 for
sex-, age-, and race-differentiated groups, respectively. These
disparities indicate that the TPR can differ by up to 7.7% in
certain demographi c subgroups. In contrast, ICL models showed
amore balanced TPR, with no mean disparity exceeding 0.007,
0.010, and 0.013 for sex-, age-, and race-differentiated groups,
respectively. A similar pattern was observed for FPR and
F,-scores. Supervised fine-tuning model s exhibited grester FPR
disparities, with mean values of 0.026, 0.027, and 0.031 for

https://medinform.jmir.org/2025/1/e68955

sex-, age-, and race-differentiated groups, respectively.
Conversely, the | CL models demonstrated lower FPR disparities
under different experimental settings, indicating a more
consistent FPR across groups. Table 16 presents the highest
performance disparities of ICL and supervised fine-tuning
models across sex, age, and race subgroups. Here, the highest
disparities refer to the highest observed differences in
performance metrics across demographic groups for each
modeling approach. For TPR, supervised models exhibited
disparities of up to 0.051 for sex, 0.108 for age, and 0.064 for
race. In contrast, both zero-shot and few-shot ICL models
showed substantially lower TPR disparities, with all valuesless
than 0.016. Similarly, FPR disparities reached up to 0.039 for
sex, 0.037 for age, and 0.043 for race in supervised models,
whereas FPR disparities for ICL models remained less than
0.027. Regarding F;-scores, the highest disparity among
supervised models reached 0.086, compared to less than 0.025
among ICL models. These findings suggest that ICL models
offer more equitable performance across demographic groups.
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Table 15. The largest absolute performance disparity across demographic attributes for different approaches in detecting stigmatizing language.

Approach and model Sex Age(y) Race

Largest absolute TPR?isparity
Supervised fine-tuning

ROBERTA 0.049 0.108 0.044
BERT 0.051 0.058 0.036
BERT-BIO 0.022 0.075 0.037
ROBERTA-XLM 0.033 0.089 0.052
BERT-BIOMED 0.032 0.053 0.064
Overall 0.037 0.077 0.046
Zero-shot ICLP
LLAMA-3 0.005 0.012 0.011
FLAN-T5 0.002 0.004 0.008
GEMMA-2 0.003 0.009 0.010
MISTRAL-0.2 0.007 0.005 0.006
BIO-LLAMA-3 0.006 0.010 0.013
Overall 0.005 0.008 0.010

Few-shot ICL (4 annotated data per class)

LLAMA-3 0.003 0.008 0.013
FLAN-T5 0.004 0.009 0.014
GEMMA-2 0.002 0.007 0.012
MISTRAL-0.2 0.014 0.006 0.015
BIO-LLAMA-3 0.008 0.008 0.010
Overall 0.006 0.008 0.013

Few-shot ICL (8 annotated data per class)

LLAMA-3 0.006 0.008 0.010
FLAN-T5 0.003 0.005 0.009
GEMMA-2 0.006 0.007 0.011
MISTRAL-0.2 0.014 0.004 0.007
BIO-LLAMA-3 0.005 0.008 0.007
Overall 0.007 0.006 0.009

Few-shot ICL (16 annotated data per class)

LLAMA-3 0.003 0.007 0.012
FLAN-T5 0.007 0.008 0.007
GEMMA-2 0.006 0.012 0.013
MISTRAL-0.2 0.007 0.011 0.009
BIO-LLAMA-3 0.006 0.013 0.010
Overall 0.006 0.010 0.010

Largest absolute FPRC disparity
Supervised fine-tuning

ROBERTA 0.018 0.022 0.028

BERT 0.016 0.015 0.023

BERT-BIO 0.035 0.033 0.027
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Approach and model Sex Age(y) Race
ROBERTA-XLM 0.021 0.023 0.043
BERT-BIOMED 0.039 0.037 0.032
Overall 0.026 0.027 0.031

Zero-shot ICL
LLAMA-3 0.003 0.008 0.008
FLAN-TS 0.007 0.011 0.010
GEMMA-2 0.008 0.018 0.019
MISTRAL-0.2 0.005 0.016 0.014
BIO-LLAMA-3 0.001 0.011 0.008
Overall 0.005 0.013 0.012

Few-shot ICL (4 annotated data per class)

LLAMA-3 0.006 0.013 0.007
FLAN-T5 0.007 0.015 0.011
GEMMA-2 0.005 0.013 0.015
MISTRAL-0.2 0.003 0.016 0.014
BIO-LLAMA-3 0.005 0.017 0.015
Overall 0.005 0.015 0.012

Few-shot ICL (8 annotated data per class)

LLAMA-3 0.002 0.007 0.009
FLAN-T5 0.011 0.026 0.019
GEMMA-2 0.012 0.013 0.010
MISTRAL-0.2 0.007 0.021 0.014
BIO-LLAMA-3 0.005 0.011 0.014
Overall 0.007 0.016 0.013

Few-shot ICL (16 annotated data per class)

LLAMA-3 0.007 0.015 0.012
FLAN-T5 0.009 0.011 0.009
GEMMA-2 0.004 0.013 0.014
MISTRAL-0.2 0.004 0.016 0.013
BIO-LLAMA-3 0.014 0.017 0.010
Overall 0.008 0.014 0.011

Largest absolute F 1 -scoredisparity

Supervised fine-tuning

ROBERTA 0.043 0.066 0.064
BERT 0.037 0.048 0.030
BERT-BIO 0.026 0.058 0.031
ROBERTA-XLM 0.064 0.086 0.032
BERT-BIOMED 0.041 0.053 0.051
Overall 0.042 0.063 0.042
Zero-shot ICL
LLAMA-3 0.006 0.015 0.006
FLAN-TS 0.004 0.018 0.011
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Approach and model Sex Age(y) Race
GEMMA-2 0.010 0.013 0.016
MISTRAL-0.2 0.006 0.015 0.010
BIO-LLAMA-3 0.005 0.005 0.009
Overall 0.006 0.013 0.010

Few-shot ICL (4 annotated data per class)

LLAMA-3 0.005 0.010 0.017
FLAN-T5 0.012 0.011 0.013
GEMMA-2 0.008 0.013 0.014
MISTRAL-0.2 0.004 0.016 0.013
BIO-LLAMA-3 0.010 0.011 0.018
Overall 0.008 0.012 0.015

Few-shot ICL (8 annotated data per class)

LLAMA-3 0.008 0.009 0.006
FLAN-T5 0.010 0.023 0.016
GEMMA-2 0.003 0.013 0.015
MISTRAL-0.2 0.018 0.017 0.024
BIO-LLAMA-3 0.015 0.012 0.019
Overall 0.011 0.015 0.016

Few-shot ICL (16 annotated data per class)

LLAMA-3 0.006 0.014 0.014
FLAN-T5 0.013 0.020 0.025
GEMMA-2 0.008 0.011 0.017
MISTRAL-0.2 0.015 0.014 0.018
BIO-LLAMA-3 0.005 0.013 0.011
Overall 0.009 0.014 0.017

3TPR: true positive rate.
BICL: in-context learning.
°FPR: false positive rate.
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Table 16. The highest observed performance disparities of in-context learning (ICL) and supervised fine-tuning models across sex, age, and race

subgroups.
Approach Sex Age(y) Race
Highest TPR? disparity
Supervised fine-tuning 0.051 0.108 0.064
Zero-shot ICL 0.007 0.012 0.013
Few-shot ICL 0.014 0.013 0.015
Highest FPRP disparity
Supervised fine-tuning 0.039 0.037 0.043
Zero-shot ICL 0.008 0.018 0.019
Few-shot ICL 0.014 0.026 0.019
Highest Fq-scoredisparity
Supervised fine-tuning 0.064 0.086 0.064
Zero-shot ICL 0.010 0.018 0.016
Few-shot ICL 0.018 0.023 0.025

3TPR: true positive rate.
bFPR: false positive rate.

Discussion

Overview

The prevalence of stigmatizing language in EHRS has raised
significant concern due to its detrimental impact on the quality
of care[7,15,22,24,26,79]. Numerous studies have investigated
the potential of using supervised machine learning approaches
for detecting stigmatizing language [15,27,28]. However, these
approaches typically require extensive amounts of labeled data
to achieve optimal performance. The creation of such a dataset
is particularly challenging, given the difficulty in identifying
stigmatizing language, which isoften subtle, implicit, and highly
contextual [27,37]. The ICL approach has emerged as a
promising alternative dueto its strong contextual understanding
capabilities and minimal reliance on labeled data [29-32]. In
this study, we extensively investigated the efficacy of ICL in
detecting stigmatizing language and compared its performance
with established zero-shot and few-shot text classification
methods. To the best of our knowledge, thisisthe first study to
explore the use of ICL, as well as zero-shot and few-shot
approaches, for detecting stigmatizing language. Furthermore,
we proposed anovel prompting strategy designed for detecting
stigmatizing language and evaluated its effectiveness against
state-of -the-art prompting strategies, such as COT and CARP.

Principal Findings

The ICL approaches have demonstrated a substantial advantage
in detecting stigmatizing language compared to both the popul ar
zero-shot textual entailment approach and the few-shot SetFit
approach. In the zero-shot setting, the top-performing 1CL
model, GEMMA-2, achieved a mean F,-score of 0.858 (95%
Cl 0.854-0.862), surpassing the best mean F;-score of 0.723
(95% CI 0.718-0.728) obtained by ROBERTA-M in the textual

entailment approach by 0.135 points, representing an 18.7%
improvement. Similarly, in the few-shot setting, the
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top-performing ICL model, LLAMA-3, exhibited mean F;-score
improvements of 21.2%, 21.4%, and 12.3% over the leading
SetFit models when using 4, 8, and 16 annotations per class,
respectively. The superior performance of the ICL approach
can be attributed to the enhanced contextual understanding
capability and rich knowledge of general-purpose LLMs[33,34].
These general-purpose LLMs have undergone sophisticated
training processes, such as instructional fine-tuning,
reinforcement learning from human feedback, and extensive
pretraining across a diverse range of NLP tasks, including
language modeling, text completion, and semantic understanding
on vast amounts of textual data [66,80,81]. These training
processes have enabled the general-purpose models to better
comprehend and contextualize subtle and complex linguistic
patterns, making the ICL approach particularly effective for
detecting stigmatizing language in EHRs. Therefore, in settings
where annotated data is limited, the ICL approach should be
prioritized for detecting stigmatizing language. However, it is
important to note that the ICL models do not produce
probabilistic classification outputs, which prevents the
computation of threshold-independent metrics, such as
AUC-ROC. This limitation affects the interpretation of results
in 2 key ways. First, it may obscure comparisons with
probabilistic models, which may exhibit strong overall class
separation but suffer from performance instability at specific
thresholds (ie, precision, recall, or F;-scores). Second, more
importantly, the lack of probability outputs prevents us from
adjusting the decision threshold to accommodate different
preferences for false positives versus false negatives, which is
a common requirement in some clinical applications. Some
clinical contexts may prioritize minimizing false positives to
avoid overaerting, while others may emphasize minimizing
false negatives to avoid missed harms.

Within the ICL approach, substantial performance variability
was observed across different prompting strategies. Specifically,
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in the zero-shot setting, the mean accuracy for the |CL approach
varied between 69.4% and 80.7% across different prompting
strategies, indicating a gap of 11.3%. In the few-shot setting,
the differences in mean accuracy across prompting strategies
were 7.8%, 8.1%, and 6.8% when using 4, 8, and 16 annotations
per class, respectively. These performance gaps highlight the
critical importance of selecting an appropriate prompting
strategy to optimize the effectiveness of the ICL approach in
detecting stigmatizing language. The new prompting strategy
that we proposed in this work, the stigma detection guided
prompt, outperformed the established strategies, such as COT
and CARP[30,44]. This strategy achieved the highest F;-scores
across both zero-shot and few-shot settings, with a mean
F,-scoreof 0.858 (95% Cl 0.854-0.862) in the zero-shot setting
and mean F;-scores of 0.874 (95% Cl 0.864-0.884), 0.892 (95%
Cl 0.886-0.898), and 0.901 (95% ClI 0.895-0.907) in the
few-shot settings using 4, 8, and 16 annotations per class,
respectively. The goal of the newly proposed prompt is to
encode domain-specific knowledge that can assist the LLM in
accurately identifying stigmatizing language. Thiswasinspired
by the fact that domain-specific information has been used in
various settings to improve the performance of artificial
intelligence (Al) agorithms, such as designing efficient search
heuristics for informed search [82] or enhancing machine
learning accuracy [83,84]. The prompt incorporated linguistic
cues commonly associated with stigmatizing language, such as
stereotyping, disapproval, and questioning credibility [37].
These elements enhance the model’s ability to detect nuanced
stigmatizing language that might otherwise be overlooked.
Consequently, the stigma detection guided prompt represents
acritical advancement in optimizing the ICL approach for this
task. Its demonstrated effectiveness underscores the importance
of leveraging medical informatics—driven insights to improve
the detection of stigmatizing language, thereby supporting
bias-aware clinical documentation practices.

To thoroughly assess the potential of the ICL approach, we
compared the top-performing model in the ICL approach with
that of the supervised fine-tuning approach, which is widely
regarded as the standard method for text classification [30,85].
The leading model in the supervised fine-tuning approach,
ROBERTA, achieved a mean F;-score of 0.931 (95% ClI
0.924-0.938). In comparison, the best-performing ICL model,
LLAMA-3, atained a mean Fj-score of 0.901 (95% Cl
0.895-0.907) with only 16 annotations per class. While the
F,-score difference of 0.030 corresponds to a 3.2% advantage
for the fully supervised fine-tuning approach, it isworth noting
that ROBERTA was developed using atraining dataset of 3543
annotated sentences and a validation dataset of 500 annotated
sentences, whereas LLAMA-3 used a training dataset of 32
annotated sentences and a validation dataset of 30 annotated
sentences. This comparison highlighted the remarkable
efficiency of the ICL approach.

Aspart of our analysis, we examined the fairness dimension of
the models of few-shot ICL and the supervised fine-tuning
approach. Theresultsindicate that models using the supervised
fine-tuning approach exhibited greater bias compared with ICL
models. Specifically, with respect to TPR, supervised fine-tuning
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models demonstrated mean TPR disparities of 0.037, 0.077,
and 0.046 across sex-, age-, and race-differentiated groups,
respectively, suggesting that the TPR could vary by up to 7.7%
for certain demographic subgroups. Similarly, with respect to
the FPR, supervised fine-tuning models exhibited mean
disparities of 0.026, 0.027, and 0.013 for sex-, age-, and
race-differentiated groups, respectively. Thesefindingsindicate
that supervised fine-tuning models are more likely to assign
fal se positive classifications at uneven rates across demographic
subgroups, potentialy leading to the overflagging of
stigmatizing language in certain populations. In contrast, ICL
models tested in zero-shot, 4-shot, 8-shot, and 16-shot settings
demonstrated a more balanced performance across subgroups,
with no mean TPR disparities exceeding 0.016. Previous studies
have shown that the supervised fine-tuning approach is
susceptible to bias due to its dependence on training datasets
that may have an imbal anced demographic distribution [86-88].
The primary objective of this approach is to optimize overall
model performance, which can result in an emphasis on the
majority or well-represented groups within the dataset.
Consequently, when certain groups are underrepresented in the
training data, the model’s performance tends to declinefor those
groups, resulting in disparities. In contrast, the ICL approach
generates predictions based on the specific context presented
in the prompt, minimizing the risk of inheriting and amplifying
biases present in the training dataset. Therefore, the adoption
of the |CL approach could contribute to more equitable detection
of stigmatizing language across all patient populations.

Clinical Adoption and Privacy Consider ations

Theintegration of a stigmatization detection model into clinical
documentation systems has the potential to enhance clinicians
awareness of implicit biases, leading to more neutra and
patient-centered documentation. However, its deployment
requires careful ethical consideration. If clinicians perceive that
their language is being excessively monitored or that following
language guidelines imposes a cognitive burden, they may
become resistant to the model or attempt to circumvent its use
by omitting clinically relevant details to avoid triggering the
model’s flagging system. Such reluctance could limit the
model’ s effectivenessin fostering moreinclusive documentation
practices and impact the accuracy and compl eteness of medical
records. Therefore, it is essential to clearly communicate the
model’s purpose, emphasizing its role as a supportive,
educational tool rather than a punitive mechanism [89]. In
addition, integrating a recommendation system that offers
context-sensitive, neutral language recommendations as
alternativesto flagged terms may improve clinician acceptance
and facilitate smoother adoption into clinical workflows.
Furthermore, real-world datasets often exhibit imbalances
concerning protected attributes [87], which may result in the
model disproportionately flagging certain patient groups (eg,
racial minority groups and individuals with specific medical
conditions) while underdetecting stigmatization in others. If left
unaddressed, this could inadvertently reinforce stereotypes and
exacerbate disparitiesin clinical documentation [90]. To mitigate
these risks, the model should undergo rigorous fairness
evaluations across diverse demographic groups and incorporate
appropriate bias mitigation strategies before deployment [86,88].
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Furthermore, we were unable to evaluate proprietary models,
such as GPT-4, due to data-sharing restrictions imposed by the
MIMIC-IV dataset [45]. While our findings highlight the
promise of open-source LLMs in data-scarce settings, the
exclusion of proprietary models limits the generalizability of
our findings. Proprietary models often incorporate more
advanced architectures and are trained on larger, more diverse
corpora, which may alow them to outperform open-source
alternatives [81]. Future studies leveraging synthetic data or
institutional data-sharing agreements may be needed to assess
if these proprietary models outperform open-source modelsin
detecting stigmatizing language.

With the growing adoption of Al scribes in clinical settings,
important considerations arise regarding the potential
introduction or perpetuation of stigmatizing language in
automatically generated clinical notes. Current Al scribing tools
often operate as stand-alone systems, transcribing
clinician-patient conversations and generating documentation
with limited real-time oversight [91,92]. While many advanced
LLMsaretrained using debiasing techniques to reduce the risk
of overtly harmful or abusive type of stigmatizing language (ie,
junkie) [93], these methods are not explicitly designed to detect
subtler forms of stigmatization commonly found in clinical
narratives. The detection tool devel opedin thisstudy can address
this challenge in 2 ways. First, it can be applied during model
development to identify and remove implicit forms of
stigmatizing content from training data, thereby preventing
LLMs from learning and reproducing such language. Second,
it can serve as a postgeneration filter to flag potentially
stigmatizing content in Al-generated clinical notes. In addition,
our models can be used to design a human-Al collaborative
scribing tool where Al-generated drafts are reviewed and
finalized by clinicians [94]. In this context, the tool devel oped
in this study can assist by alerting clinicians to potentially
stigmatizing language, thereby promoting more neutral and
patient-centered documentation. Future work should focus on
validating thetool’s effectivenessin real-world clinical scribing
environments and examining clinician acceptance and workflow
integration.

Beyond ethical and deployment considerations, the variability
of stigmatizing language across documentation typesand clinical
settings presents a practical consideration for deployment.
Previous studies indicate that stigmatizing language is more
frequently observed in history and physical notes, consultation
notes, and discharge summaries compared to other types of
clinical documentation and tends to be more commonin relation
to conditions such as substance use disorders, mental health
conditions, diabetes, and obesity [8,10]. These patterns
underscore the importance of accounting for documentation
context and clinical setting when developing stigma detection
tools. For instance, the ICL approach could be optimized by
incorporating examples drawn from specific note types or
clinical domainswhere stigmatizing languageis more prevalent.
Such tailoring may improve the model’s sensitivity to
context-dependent expressions of bias. Moreover, recognizing
that different specialties and note typesreflect distinct clinician
workflows, linguistic norms, and patient populations, it is
essential to validate model performance across these
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subdomains. These validation efforts are critical to ensuring
equitable performance across documentation formats and
minimizing unintended disparities during deployment.

In addition to detecting stigmatizing language, LLMs can serve
asvaluable preprocessing toolsfor identifying linguistic patterns
that may be integrated into downstream statistical models to
explore potential associations between language use and care
quality or operational decisions[15]. Furthermore, LLMscould
provide real-time alerts about the potential impact of specific
terms in clinical notes. These systems can draw on findings
from previous research on the effects of specific terminology
in clinical communication to prompt clinicians to reflect on
their language choices. For example, if a term such as
“aggressive’ is used in a clinical note and identified by LLM
as stigmatizing based on its contextual use, the system could
generate a prompt indicating that the term may lead to patient
discomfort or feelings of alienation. Such feedback could serve
as a reflective checkpoint, prompting clinicians to reconsider
their word choices and adopt more neutral, patient-centered
language.

From the perspective of patient privacy and confidentiality,
while deidentification is a crucial step in protecting patient
privacy [46,95], the use of potentialy sensitive data, such as
stigmatizing language, still presents confidentiality concerns.
Specifically, there are 2 key privacy risks associated with
deploying machine learning—based stigmatization detection
models in clinical settings. First, despite deidentification, the
model may learn associ ations between specific linguistic patterns
and particular patient populations [96]. For example, if the
model systematically classifies clinical notes from a specific
hospital, demographic group, or medical condition as
stigmatizing, it could lead to unintended disclosures about those
populations. If this information were to be combined with
external data sources, there is a potential risk of reidentifying
patient groups or even individuals. To mitigate such risks,
implementing strict access control measures is necessary to
ensure that only authorized clinicians and relevant personnel
can interact with the model [96,97]. Second, the dataset used
to train the model was curated based on sentences containing
potentially stigmatizing words or expressions, introducing
additional privacy concerns. Improper handling of the dataset
during preprocessing, storage, or transfer could pose privacy
risks[98]. To addressthis, robust data security measures should
be implemented, including secure storage environments with
access logging and monitoring, as well as strict protocols for
data transfer to prevent unauthorized access. These safeguards
are essential to balancing the benefits of stigmatization detection
with the need to protect patient confidentiality in real-world
clinical practice.

Comparison With Previous Work

LLMs are increasingly being used in health care for a wide
range of applications, demonstrating their capacity to process
and interpret complex clinical textual data [36,74,99]. These
applications encompass medical question answering, where
LLMs assist clinicians and patients by providing answers to
health-related queries [99], and medical text summarization,
which simplifies lengthy clinical documents into concise
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summaries for improved decision-making [99]. In addition,
LLMs are used for biomedical evidence extraction, enabling
the identification of relevant research findings and coreference
resolution, ensuring clarity and coherencein clinical narratives
[32]. Other notable applications include medication status
tracking, which monitors patient prescriptions and attribute
extraction, which identifieskey patient or clinical characteristics
from unstructured text to support data-driven insightsin health
care workflows [32]. Furthermore, LLMs have been used to
support clinicians in developing diagnostic reasoning, with
research demonstrating that, when paired with appropriate
prompting strategies, LLMs can effectively mimic common
clinical reasoning processes without compromising diagnostic
accuracy [100]. While these applications underscore the
versatility of LLMs in advancing clinical workflow efficiency
and decision-making, our manuscript addresses a distinct and
underexplored challenge: detecting stigmatizing language in
EHRs. Stigmatizing language within clinical documentation
can perpetuate biases, undermine patient trust, and negatively
impact the quality of care provided. By focusing on this critical
issue, our work ams to promote bias-aware clinical
documentation practices and foster equity in health care
communication, addressing a significant gap in the field of
medical informatics.

Sentiment analysis, awell-established area of research in NLP,
has informed a wide range of clinical applications, including
early studies on patient sentiment and health care provider
communication patterns [101]. It shares both conceptual and
methodological similarities with the task of detecting
stigmatizing language. From a conceptual standpoint, sentiment
analysis aims to classify the emotional tone of language,
typicaly as positive, negative, or neutral. In contrast,
stigmatization detection seeks to identify socially harmful or
biased expressions. While the 2 tasks differ in their end goals,
it is plausible that stigmatizing language often co-occurs with
negative sentiment. Investigating whether sentiment can reliably
predict stigmatization representsapromising direction for future
research. However, as our dataset does not include sentiment
labels, we were unable to empirically examine the potential
overlap between negative sentiment and stigmatizing content.
From the perspective of methodological similarity, both tasks
are commonly addressed using text classification models.
Indeed, the BERT-based models used in our study are widely
used in sentiment anaysis [102,103]. The primary
methodological distinction lies in the labeling: sentiment
analysis requires annotations for emotional tone, while
stigmatization detection relies on annotations indicating the
presence of stigmatizing content in text.

Extensive literature has documented the adverse effects of
stigmatizing language in EHRs on the quality of patient care
[7,8,16,20,22,24-26]. Despite this, the use of machine learning
techniques to detect such language has received relatively
limited attention. Sun et al [15] were among the first to apply
machinelearning in this context, developing alogistic regression
classifier in a supervised fashion that achieved an F;-score of
0.935 on a proprietary dataset. However, their study focused
primarily on the unequal use of stigmatizing language across
different demographic groups, placing less emphasis on the
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development and optimization of the machine learning model
itself. Harrigian et a [27] conducted a more technical analysis
using 2 EHR datasets, exploring the application of logistic
regression and BERT models for detecting stigmatizing
language. Barcelonaet a [28] devel oped and evaluated decision
trees, random forests, and support vector machinesfor detecting
stigmatizing language in labor and clinical notes.

In contrast, our research focused on evaluating and comparing
the effectiveness of various zero-shot and few-shot approaches,
which can operate without the need for extensive annotated
data. Our findings revealed that the ICL approach significantly
outperformed traditional zero-shot and few-shot text
classification approaches, such astextual entailment and SetFit,
while only dlightly underperforming compared to the fully
supervised fine-tuning approach, despite using over 100 times
fewer annotated data points for training. By leveraging ICL,
the reliance on large labeled datasets can be significantly
diminished, enabling the development of more efficient and
flexible solutions for detecting stigmatizing language across
diverse clinical settings. Furthermore, our study is the first to
rigorously assess the fairness dimension of machine learning
classifiers specifically for stigmatizing language detection. In
comparing the ICL approach to the supervised fine-tuning
approach, we found that the | atter is more prone to demonstrate
unequal performance across specific demographic groups.
However, our study did not explicitly examine methods that
can be used to improve the fairness of models developed with
asupervised fine-tuning approach, such asdiversifying training
datasets [104,105] and incorporating fairness constraints [86].

Limitations

This study is subject to severa limitations that should be
acknowledged. First, the analysis was conducted using asingle
dataset obtained from the emergency department of the Beth
Israel Deaconess Medical Center in Boston, Massachusetts.
Consequently, the findings are inherently constrained by the
specific characteristics of thisdataset, including its geographical
setting, imbalanced patient demographics, and institutional
practices. Therefore, the generalizability of the models
performance to other stigmatizing language datasets remains
uncertain. Future research should aim to assessthe | CL approach
using larger and more diverse datasets from multiple institutions.

Second, the dataset used in this study was curated by selecting
sentences that contained preidentified keywords. Stigmatizing
language can manifest both explicitly through overtly negative
termsand implicitly through subtle variationsin tone, phrasing,
or contextual framing. While our approach may excel in the
detection of explicit formsof stigmatizing language, it does not
fully capture more implicit forms of stigmatization. As such,
our evaluation may be limited in its ability to capture the full
spectrum of stigmatizing language. We hypothesize that the
I CL approach hasthe potential to detect subtler forms of stigma
by leveraging contextual information through carefully crafted
prompts, as partially demonstrated in this study. However, due
to the nature of the available dataset, we were unable to
empirically assessthe model’s generalizability to moreimplicit
expressions of stigma. Future work should focus on developing
datasets that capture a broader range of stigmatizing language.
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This would support more comprehensive evaluation and guide
theimprovement of models capable of identifying nuanced and
context-dependent stigma. Moreover, the stigma detection
guided prompt was intentionally designed to focus on a
predefined keyword. While this strategy leverages important
cuesfor detecting explicit forms of stigmatization, it may restrict
the ICL models' ability to capture broader contextual cues or
detect more implicit forms of stigma. Future studies should
develop models capable of identifying more subtle forms of
stigmatization without reliance on preidentified terms.

Third, our current binary labeling framework does not explicitly
address 2 important nuances. It does not explicitly consider
ambiguous cases where the interpretation of stigmatization is
context-dependent. The current dataset employs binary labels,
stigmatizing or nonstigmatizing, without accounting for
sentences that may require additional context for accurate
classification. Future research could address this issue by
introducing an additional classification category, such as
“uncertain/requires further context,” similar to the CheXpert
dataset [106]. This would enable models to flag ambiguous
cases for human review or request additiona contextual
information to support model predictions. In addition, while
collapsing distinct categories of stigmatizing language into a
binary label (stigmatizing vs nonstigmatizing) enabled broader
applicability and methodological comprehensiveness in this
study, it may have obscured important nuances related to the
impacts of different types of stigma. Previous literature has
highlighted the clinical consequences of stigmatizing language
[17,18], but the differential effects of specific stigmadimensions
remain underexplored. In future work, we intend to
systematically investigate whether specific types of stigmaare
differentially associated with key clinical outcomes.

Fourth, we did not examine the effectiveness of fine-tuning
decoder-based models, such as LLAMA, due to the limited
availability of annotated data, and as a result, their efficacy in
detecting stigmatizing language remains underexplored. Future
research should investigate whether fine-tuning decoder-based
models can enhance performance in settings where large-scale
annotated datasets are available.

Fifth, this study focused on fairness evaluation based on race,
sex, and age, but did not incorporate other sociodemographic
factors, such as socioeconomic status, education level, or
geographic location, due to data limitations. Future research
should consider a more comprehensive fairness analysis that
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encompasses these attributes to ensure equitable model
performance across diverse populations. Sixth, whilethis study
includes a fairness evaluation of different models for
stigmatizing language detection, it does not examine the
effectiveness of various bias mitigation techniques, as such an
analysiswould require a separate, dedicated investigation. Future
research isencouraged to explore bias reduction strategies, such
as diversifying training datasets [105] and implementing
fairness-aware machine learning techniques [107].

Finally, we hypothesize that machine learning solutions for
detecting stigmatizing language will be used as decision-support
systems within clinical workflows rather than as
decision-making systems due to the necessity of human
oversight and the importance of ensuring that narratives within
EHRSs are validated by clinicians. While this study discusses
severa potential ethical implicationsfor the clinical deployment
of the stigmatization detection model, it did not address several
critical factors essential for effective human-Al collaboration
in this context, such as varying levels of automation, system
usability, and the potential for automation bias. Future research
should explorethese factorsto ensure the successful integration
of such systems into clinical workflows, thereby optimizing
decision-making processes and enhancing the efficiency and
effectiveness of stigmatizing language detection.

Conclusions

We explored the potential of the ICL approach for detecting
stigmatizing languagein EHRS, particularly in scenarioswhere
annotated data is limited. Our findings demonstrate that 1CL
approaches perform significantly better than traditiona zero-shot
and few-shot methods, such as textual entailment and SetFit.
Moreover, our results underscore the critical importance of
prompt engineering within the ICL approach. The novel
prompting strategy, the stigma detection guided prompt,
developed in this study, significantly enhances the detection of
stigmatizing language by incorporating common linguistic
characteristics of such language and guiding the model’'s
attention to specific keywords. When compared with the
supervised fine-tuning approach, ICL has demonstrated
competitive performance as well as superior fairness metrics,
with lower performance disparities across different demographic
groups. In summary, ICL is emerging as a robust and flexible
solution for detecting stigmatizing language in EHRS, offering
a more efficient, effective, and equitable alternative than
conventional machine learning approaches.
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