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Abstract

Background: Machine learning (ML) and big data analytics are rapidly transforming health care, particularly disease prediction,
management, and personalized care. With the increasing availability of real-world data (RWD) from diverse sources, such as
electronic health records (EHRs), patient registries, and wearable devices, ML techniques present substantial potential to enhance
clinical outcomes. Despite this promise, challenges such as data quality, model transparency, generalizability, and integration
into clinical practice persist.

Objective: This systematic review aims to examine the use of ML for analyzing RWD in disease prediction and management,
identifying the most commonly used ML methods, prevalent disease types, study designs, and the sources of real-world evidence
(RWE). It also explores the strengths and limitations of current practices, offering insights for future improvements.

Methods: A comprehensive search was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines to identify studies using ML techniques for analyzing RWD in disease prediction and management.
The search focused on extracting data regarding the ML algorithms applied; disease categories studied; types of study designs
(eg, clinical trials and cohort studies); and the sources of RWE, including EHRs, patient registries, and wearable devices. Studies
published between 2014 and 2024 were included to ensure the analysis of the most recent advances in the field.

Results: This review identified 57 studies that met the inclusion criteria, with a total sample size of >150,000 patients. The most
frequently applied ML methods were random forest (n=24, 42%), logistic regression (n=21, 37%), and support vector machines
(n=18, 32%). These methods were predominantly used for predictive modeling across disease areas, including cardiovascular
diseases (n=19, 33%), cancer (n=9, 16%), and neurological disorders (n=6, 11%). RWE was primarily sourced from EHRs, patient
registries, and wearable devices. A substantial portion of studies (n=38, 67%) focused on improving clinical decision-making,
patient stratification, and treatment optimization. Among these studies, 14 (25%) focused on decision-making; 12 (21%) on health
care outcomes, such as quality of life, recovery rates, and adverse events; and 11 (19%) on survival prediction, particularly in
oncology and chronic diseases. For example, random forest models for cardiovascular disease prediction demonstrated an area
under the curve of 0.85 (95% CI 0.81-0.89), while support vector machine models for cancer prognosis achieved an accuracy of
83% (P=.04). Despite the promising outcomes, many (n=34, 60%) studies faced challenges related to data quality, model
interpretability, and ensuring generalizability across diverse patient populations.
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Conclusions: This systematic review highlights the significant potential of ML and big data analytics in health care, especially
for improving disease prediction and management. However, to fully realize the benefits of these technologies, future research
must focus on addressing the challenges of data quality, enhancing model transparency, and ensuring the broader applicability
of ML models across diverse populations and clinical settings.

(JMIR Med Inform 2025;13:e68898) doi: 10.2196/68898
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Introduction

Background
Advances in big data analytics and the growing availability of
real-world data (RWD) are transforming health care by enabling
new applications of machine learning (ML) to improve health
outcomes [1]. Real-world evidence (RWE) generated from
diverse data sources, such as electronic health records (EHRs),
patient registries, and wearable devices, has become central to
informed decision-making in clinical practice [2,3]. When
combined with ML, RWD present a promising avenue to
enhance disease prediction, personalize patient management,
and optimize therapeutic effectiveness. By providing a
comprehensive view of patient histories and real-world health
outcomes, ML applications in health care can drive actionable
insights across various domains, including disease diagnosis,
treatment planning, and chronic disease management [4,5].
RWD capture information about patients in naturalistic settings,
revealing how health care is delivered and its outcomes. Unlike
clinical trials that operate within controlled conditions, RWD
offer a more representative view of patient experiences,
treatment responses, and health outcomes [6]. The rise of big
data technology and data management systems has facilitated
the integration of vast, heterogeneous data types, allowing ML
algorithms to identify complex patterns within high-dimensional
datasets [7,8]. These capabilities allow health care providers to
predict health outcomes, identify at-risk populations, and tailor
interventions based on individual patient factors, thus making
strides toward precision medicine [9].

Despite their potential, ML applications in RWD and big data
contexts face several challenges. Data quality remains a primary
concern, as RWD often feature inconsistencies, missing values,
and a lack of standardization [10]. Unlike the structured data
from controlled clinical trials, RWD demand extensive
preprocessing, including advanced natural language processing
(NLP) methods and imputation techniques, to address data gaps.
Such efforts are critical to enhancing ML model reliability and
ensuring accurate, meaningful outcomes [11,12]. Biases present
another key issue. ML models trained on RWD may inherit
biases from the data, often stemming from demographic
imbalances or regional health care differences. If left
unaddressed, these biases can lead to health care disparities, as
ML-driven decisions might inaccurately represent racial and
ethnic minority populations or certain patient groups [13].
Incorporating fairness-aware ML algorithms and cross validating
models across multiple datasets can mitigate this challenge,
although developing equitable ML models remains a high

priority [14]. Another significant hurdle is the interpretability
of ML models, especially deep neural network (DNN) models,
which are known for their “black box” nature. While complex
models deliver high accuracy, their opaque decision-making
process limits the ability to verify or explain predictions. Model
transparency is crucial given the high stakes in health care,
where ML-based recommendations can impact lives. Advances
in interpretability tools, such as Shapley Additive Explanations
and Local Interpretable Model-Agnostic Explanations, have
helped enhance model transparency; however, balancing
interpretability with performance remains an area of active
investigation [15,16].

The integration of ML with RWD poses ethical and regulatory
challenges, especially regarding patient privacy, data security,
and informed consent. Regulations such as the Health Insurance
Portability and Accountability Act in the United States and the
General Data Protection Regulation in the European Union
impose strict standards for data protection. However, adapting
these laws to the context of ML in health care is complex due
to the scale and diversity of the data involved [17,18]. Solutions
such as deidentification, secure data-sharing protocols, and clear
data management strategies have become crucial to ensuring
patient confidentiality while maximizing data utility [19].
Ensuring equitable treatment outcomes is another ethical
imperative. ML models trained on data predominantly
representing certain demographics may perform poorly on
underrepresented groups; therefore, addressing these disparities
is critical. By incorporating fairness-aware ML models and
building representative datasets, health care practitioners can
ensure that ML applications benefit all patient groups, regardless
of demographics [20]. Regulatory bodies have started
developing specific guidelines for the use of ML and RWD in
health care. The Food and Drug Administration (FDA), for
example, has issued draft guidance on using RWE for regulatory
decisions, and the European Medicines Agency (EMA) has also
recognized the importance of RWE in evaluating drug safety
and efficacy [21]. As ML applications in health care continue
to grow, a solid regulatory framework will be necessary to
safeguard patient health while supporting technological
innovation.

Objectives
The objective of this systematic review is to explore and
critically analyze the applications, challenges, and future
directions of ML in processing real-world health data and big
data across various disease domains. Specifically, this review
aims to identify the disease areas where ML with RWD has
shown clinical utility; examine the ML algorithms and
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methodologies applied to big data in health care; and analyze
the challenges related to data quality, bias, and model
interpretability. In addition, this review addresses the ethical
and regulatory frameworks pertinent to the use of ML in health
care, with an emphasis on patient privacy and fairness. Finally,
it outlines future research needs and opportunities for innovation
in using ML, RWD, and big data for precision medicine and
public health.

Methods

Eligibility Criteria
For this systematic review, we focused exclusively on clinical
trials and cohort studies that used ML techniques to analyze
RWD for disease prediction and management. Studies were
included if they met the following criteria: (1) they were
randomized controlled trials, pragmatic clinical trials,
observational clinical trials, or cohort studies; (2) they involved
the application of ML methods (eg, supervised learning,
unsupervised learning, and deep learning) to RWD for clinical
decision-making, disease prediction, or management of common
diseases, such as cardiovascular diseases, diabetes, cancer, and
chronic conditions; and (3) they used real-world health data
sources, such as EHRs, patient registries, or wearable health
devices. Exclusion criteria included trials that did not apply ML
techniques or used only data from controlled clinical trials rather
than real-world settings.

Information Sources
The following information sources were used to capture the
most relevant clinical trials and cohort studies: PubMed, Scopus,
and the Cochrane Library. PubMed was specifically targeted
for clinical trials and biomedical research, particularly studies
published in leading clinical journals. Scopus and the Cochrane
Library were also searched to gather clinical trial reports within
the health care and ML domains. To ensure comprehensive
coverage, Google Scholar was included to identify gray
literature, such as theses and reports that were not indexed in
traditional databases. These sources were selected to provide a
broad overview of clinical trial data and their relevance to ML
applications in disease management. In addition, regulatory
bodies such as the US FDA and the EMA were consulted to
gain insights into clinical trial guidelines and regulatory
standards regarding the use of RWD in health care.

Search Strategy
A comprehensive search strategy was developed to identify
clinical trials and cohort studies focused on ML applications in

RWD. The search query incorporated key terms related to ML
(eg, “machine learning,” “deep learning,” and “artificial
intelligence”) and clinical trials (eg, “clinical trial,” “randomized
controlled trial,” and “pragmatic clinical trial”) along with terms
related to disease management (eg, “disease prediction,” and
“healthcare outcomes”). For example, the search used the
following key terms: (“machine learning” OR “deep learning”)
AND (“clinical trial” OR “randomized controlled trial” OR
“pragmatic trial” OR “cohort study”) AND (“real-world data”
OR “electronic health records” OR “patient registries”). Boolean
operators (AND and OR), truncation, and Medical Subject
Headings terms were used to refine the search and ensure
comprehensive coverage. The search was conducted across
multiple databases, including the Cochrane Library, PubMed,
and Web of Science, covering the period from January 1, 2014,
to December 31, 2024, ensuring that the full range of recent
literature was captured. In addition, relevant studies were
identified through manual searches of reference lists from key
articles and by reviewing clinical trial registries, such as
ClinicalTrials.gov, to ensure comprehensive coverage of the
clinical trials relevant to ML in disease management. Gray
literature was identified by conducting targeted searches in
Google Scholar and manually retrieving relevant documents
suggested by domain experts. Only English-language
publications were included. To enhance transparency and
reproducibility, the full search strategy, including specific
database queries and search filters, has been provided in
Multimedia Appendix 1.

Study Selection
The study selection process was conducted in 2 stages: an initial
screening of titles and abstracts by 2 independent reviewers,
followed by a full-text review by the same 2 reviewers to ensure
consistency and minimize bias. In the first stage, the titles and
abstracts of all identified articles were assessed for relevance
based on predefined inclusion criteria. Discrepancies between
reviewers were resolved through discussion, with a third
reviewer consulted when necessary. Studies that met the
inclusion criteria proceeded to the second stage, where the full
texts were retrieved for further evaluation (Textbox 1).

The evaluation of exclusion criteria was conducted
independently by both reviewers, with disagreements resolved
through discussion. To maintain transparency, the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flow diagram [22,23] was used to document
the number of studies at each review stage, including
identification, screening, eligibility, and final inclusion. The
PRISMA checklist is provided in Multimedia Appendix 2.
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Textbox 1. Inclusion and exclusion criteria for study selection.

Inclusion criteria

• Study type: clinical trials or cohort studies

• Data source: studies using real-world data, such as electronic health records, patient registries, claims data, or wearable device data

• Machine learning (ML) application: application of ML algorithms for disease prediction or management (eg, supervised, unsupervised, and deep
learning models)

• Clinical focus: studies addressing disease prediction, management, monitoring, or outcome prediction in health care

• Outcome reporting: studies reporting ML model performance metrics (eg, accuracy, area under the curve, sensitivity, and specificity) and
real-world data sources

• Language: studies published in English

• Publication type: peer-reviewed articles and indexed gray literature

Exclusion criteria

• Study type: case reports, cross-sectional studies, reviews, editorials, letters, and conference abstracts

• Data source: studies using simulated data, animal studies, or laboratory-based data

• ML application: studies using only conventional statistical models (eg, logistic regression and Cox models) or expert systems

• Clinical focus: studies unrelated to clinical decision-making, disease outcomes, or patient management

• Outcome reporting: studies lacking sufficient information on ML model performance or data sources

• Language: non–English-language publications

• Publication type: non–peer-reviewed sources (blogs and social media posts)

Data Extraction
Data extraction was performed independently by 2 reviewers
using a standardized form. Key data points extracted from each
clinical trial and cohort study included study characteristics (eg,
authors, year of publication, and trial design), the specific ML
methods used (eg, supervised learning, reinforcement learning,
deep learning), disease areas targeted (eg, cardiovascular
diseases, diabetes, and cancer), and the types of RWD sources
used (eg, EHRs, patient registries, and wearable devices). In
addition, we extracted the performance metrics of the ML
models used, such as accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve (AUROC), to
evaluate their effectiveness in disease prediction and
management. Information on the challenges and limitations of
applying ML to RWD in clinical trials, such as data quality
issues, biases, or model interpretability, was also collected. Any
disagreements in data extraction were resolved through
discussion. The extracted data were organized systematically
to synthesize findings across studies.

Results

Systematic Literature Search and Study Selection
Workflow
The systematic literature search was conducted to identify
studies applying ML techniques to RWD in clinical trials and
cohort studies, with a focus on disease prediction and
management. The search covered multiple databases, including
PubMed, Scopus, Web of Science, and the Cochrane Library,
to capture a broad range of studies from biomedical, clinical,
and health care research fields. This search yielded 11,252

records, as illustrated in the PRISMA flow diagram (Figure 1).
To ensure comprehensive coverage, an additional 7 records
were identified through external sources such as Google
searches, manual hand searching of nonindexed journals, gray
literature, and other nontraditional academic sources. After
removing duplicates, 7217 (64.13%) unique studies remained
for screening. The selection process followed a rigorous,
multistage workflow. Title screening was first performed to
assess relevance based on predefined inclusion criteria. Studies
with titles not indicating the application of ML to RWD in
clinical or disease management contexts were excluded,
resulting in the removal of 5930 (82.17%) records and leaving
1287 (17.83%) studies for abstract screening. During the abstract
screening, each abstract was carefully evaluated for inclusion
criteria, including the use of ML techniques, relevant RWD
sources (eg, EHRs, patient registries, or wearable device data),
and relevance to disease prediction or management. This led to
the exclusion of 967 (75.13%) studies that did not meet these
criteria, most commonly for the following reasons: (1) a lack
of ML implementation, with some studies using only
conventional statistical approaches such as logistic regression
(LR) or decision trees (DTs) without learning-based model
development; (2) irrelevance to clinical trials or cohort study
frameworks, instead focusing on simulations, animal studies,
or nonhuman data sources; (3) absence of disease prediction or
management applications, such as papers limited to health care
policy, infrastructure, or economic modeling without
patient-centered outcomes; and (4) insufficient use of RWD
sources, as studies often used synthetic or trial-generated data
rather than EHRs, registries, claims databases, or wearable
device data. A total of 320 (24.86%) studies proceeded to the
full-text review stage. At this stage, articles were assessed in
detail to confirm adherence to all inclusion criteria. A total of
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263 studies were excluded for specific reasons: 98 (37.3%)
lacked ML algorithms (using conventional statistics instead),
72 (27.4%) were unrelated to clinical trial methodologies, 23
(8.7%) did not involve study cohorts, 51 (19.4%) were unrelated
to health care outcomes, and 19 (7.2%) lacked sufficient
information on ML model performance or data sources.
Following this thorough, systematic, and transparent selection
process, 57 studies met all eligibility criteria and were included

in the final systematic review. These selected studies represented
a diverse range of clinical applications, disease areas, ML
methodologies, and RWD sources, offering a comprehensive
overview of the current role of ML in clinical trials and cohort
studies for disease prediction and management.

Table 1 summarizes these studies, while key findings and
methodological details are provided in Multimedia Appendix
3 [24-80].

Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram depicting the study selection process
from initial identification to final inclusion, detailing the number of records screened, excluded, and ultimately included in this systematic review.
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Table 1. A summary of the studies included in this systematic review, outlining the study characteristics, diseases or medical conditions, type of study,
source of real-world evidence (RWE), and machine learning (ML) methods used.

Model performance metricsML methodsType of
RWE

Type of studyDiseases or medical con-
ditions (category)

DatabaseStudy

NLPbEHRaEvaluation of
health care out-
comes

Epilepsy (neurological
diseases)

PubMedWissel et al [24],
2023

• AUCc=0.79 (95% CI 0.62-
0.96)

• Sensitivity=0.80 (95% CI
0.29-0.99)

• Specificity=0.77 (95% CI
0.64-0.88)

• Positive predictive value:
0.25 (95% CI 0.07-0.52)

• Negative predictive value:
0.98 (95% CI 0.87-1.00).

DNNe, RFf, and

AdaBoostg

Patient reg-
istries

Survival predic-
tion

Orthotopic heart trans-

plantation (CVDd)

PubMedAyers et al [25],
2021

• RF AUROCh=0.691 (95%
CI 0.671-0.711)

• DNN AUROC=0.691 (95%
CI 0.671-0.712)

• AdaBoost AUROC=0.653
(95% CI 0.632-0.674)

FIND-AFi ML
algorithm

EHRDisease predic-
tion

Atrial fibrillation (CVD)PubMedNadarajah et al
[26], 2023

• AUROC=0.824 (95% CI
0.814-0.834)

XGBoostjEHRDisease predic-
tion

Cognitive impairment
(neurological diseases)

PubMedYadgir et al [27],
2022

• AUROC=0.720

LRk, GBMl, RF,

DTm, XGBoost,

EHRSurvival predic-
tion

Peripheral artery disease
(CVD)

PubMedLiu et al [28], 2023 • C-index: 0.788 (compared
to 0.730 for GermanVasc
Score)

neural network,
Cox regression,

and RSFn

PULSE-AIoEHRDisease predic-
tion and cost-ef-
fectiveness

Atrial fibrillation (CVD)PubMedHill et al [29],
2022

• Sensitivity=50%
• Specificity=90%

CNNpEHRDisease predic-
tion

Acute ischemic stroke
(CVD)

PubMedSheth et al [30],
2019

• AUROC=0.88-0.90

XGBoostEHRDisease predic-
tion

Sepsis (infectious dis-
eases)

PubMedBarton et al [31],
2019

• AUROC of 0.88, 0.84, and
0.83 for sepsis onset and 24
and 48 h before onset, re-
spectively

DT, SVMq, LR,
and RF

EHRDisease predic-
tion

Atrial fibrillation (CVD)PubMedKao et al [32],
2023

• AUROC=0.74
• Specificity=98.7%

RF, SVM, LR,
and XGBoost

Wearable de-
vices

Disease predic-
tion

AHREsr (CVD)PubMedKim et al [33],
2022

• RF AUROC=0.742
• SVM AUROC=0.675
• XGBoost AUROC=0.745
• LR AUROC=0.669

BQRsPatient reg-
istries

Disease predic-
tion

Coronary artery disease
(CVD)

PubMedPark et al [34],
2023

• AUC of 0.67, 0.65, 0.78,
and 0.73 for per‐patient,

LADt, LCxu, and RCAv,
respectively

ResNetwWearable de-
vices

Health care out-
comes and deci-
sion-making

Acute ischemic stroke
(CVD)

PubMedHilbert et al [35],
2019

• Average AUC for function-
al outcome was 0.71

• Average AUC for reperfu-
sion across all folds was
0.65
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Model performance metricsML methodsType of
RWE

Type of studyDiseases or medical con-
ditions (category)

DatabaseStudy

• Sensitivity=77%-83%
• Specificity=91%-94%

Boosted DT,
SVM, nonpara-
metric RF, and
neural network

Patient reg-
istries

Survival predic-
tion

Ewing sarcoma (tumors)PubMedChen et al [36],
2021

• Test-fold BACx=75%Nonlinear SVMPatient reg-
istries

Health care out-
comes and deci-
sion-making

Schizophrenia (neurolog-
ical diseases)

PubMedKoutsouleris et al
[37], 2016

• —yGBM and LREHRHealth care out-
comes

Colorectal and gynecolog-
ic cancer (cancers)

PubMedStrömblad et al
[38], 2021

• —DTEHRDecision-mak-
ing

Atrial fibrillation (CVD)PubMedWang et al [39],
2019

• Accuracy of RF model for
hospitalization=0.840,
pneumonia=0.765, and sep-
sis or septic shock=0.857

• Accuracy of XGBoost for
intensive care unit admis-
sion=0.902

• Accuracy of LR for in-hos-
pital mortality=0.889

RF, XGBoost,
and LR

EHRHealth care out-
comes

Influenza (infectious dis-
eases and respiratory dis-
eases)

PubMedTan et al [40],
2021

• LR: accuracy=0.75, sensitiv-
ity=0.76, specificity=0.73,
and AUC=0.792

• SVM: accuracy=0.88, sensi-
tivity=0.85, specifici-
ty=0.91, and AUC=0.939

• RF: accuracy=0.89, sensitiv-
ity=0.88, specificity=0.91,
and AUC=0.957

• XGBoost: accuracy=0.88,
sensitivity=0.85, specifici-
ty=0.91, and AUC=0.954

LR, SVM, RF,
tree-based
stochastic gradi-
ent boosting, and
XGBoost

Patient reg-
istries

Decision-mak-
ing

Depression (neurological
diseases)

PubMedGoerigk et al [41],
2020

• AUROC of ML in early
sepsis identification was
significantly higher than

qSOFAz, SIRSaa, and

MEWSab

RF, XGBoost,
LR, and SVM

EHRDecision-mak-
ing

Sepsis (infectious dis-
ease)

PubMedKijpaisalratana, et
al [42], 2024

• —Cox regressionPatient reg-
istries

Survival predic-
tion

Acute coronary syn-
drome (CVD)

PubMedSharma et al [43],
2019

• AUROC=0.89 (95% CI
0.88-0.90)

• Sensitivity=0.77 (95% CI
0.75-0.78)

• Specificity=0.85 (95% CI
085-0.86)

ML algorithm
called

“eARDSad” (neu-
ral networks,
SVM, RF, LR,
and XGBoost)

EHRDisease predic-
tion

ARDSac (respiratory dis-
eases)

PubMedSinghal et al [44],
2021

• SVM AUROC=0.931
• RF AUROC=0.898

SVM and RFPatient reg-
istries

Disease predic-
tion

Schizophrenia (neurolog-
ical diseases)

PubMedKanchanatawan et
al [45], 2018

• NB AUROC=0.767
• XGBoost AUROC=0.989
• LR AUROC=0.627

NBae, XGBoost,
and LR

EHRSurvival predic-
tion

Ischemic stroke (CVD)PubMedHuang et al [46],
2022

• AUC=0.98SVM and RFPatient reg-
istries

Disease predic-
tion

Sepsis (infectious dis-
ease)

PubMedShe et al [47],
2023

• F-measure: 0.71
• AUC=0.75 (95% CI 0.50-

0.99)

RFPatient reg-
istries

Survival predic-
tion

Gastric cancer (cancers)PubMedSundar et al [48],
2022
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Model performance metricsML methodsType of
RWE

Type of studyDiseases or medical con-
ditions (category)

DatabaseStudy

Alaa et al [49],
2019

• AutoPrognosis model im-
proved risk prediction (AU-
ROC=0.774, 95% CI 0.768-
0.780)

• Framingham score (AU-
ROC=0.724, 95% CI 0.720-
0.728; P<.001)

• Cox PHaf model with con-
ventional risk factors (AU-
ROC=0.734, 95% CI 0.729-
0.739; P<.001)

• Cox PH model with all UK
Biobank variables (AU-
ROC=0.758, 95% CI 0.753-
0.763; P<.001)

Linear SVM, RF,
neural networks,
AdaBoost, and
XGBoost

Patient reg-
istries

Disease predic-
tion

Cardiovascular disease
risk (CVD)

PubMed

• AUC=0.89ANNah and LREHRDecision-mak-
ing

LSCSag (spinal diseases)PubMedAzimi et al [50],
2017

• AUC=0.67MLRai, RF, and
ANN

EHRDecision-mak-
ing

Glaucoma (ocular dis-
eases)

PubMedBaxter et al [51],
2019

• AUC=0.78RF and SVMEHRDisease predic-
tion

Type 2 diabetes
(metabolic diseases)

PubMedAnderson et al
[52], 2015

• C-index was 0.59, 0.69, and
0.64 and 0.66, 0.70, and

0.70 for the GPaj and Cox
regression models, respec-
tively.

Cox regressionPatient reg-
istries

Survival predic-
tion

Stroke and myocardial
infarction (CVD)

PubMedBannister et al
[53], 2018

• AUROC=0.89DT and ANNPatient reg-
istries

Decision-mak-
ing

Spinal deformity surgery
(spinal diseases)

Web of Sci-
ence

Scheer et al [54],
2017

• ANN sensitivity=0.757
• Specificity=0.755
• AUROC=0.873

ANN and LREHRDisease predic-
tion

Liver cancer (cancers)Web of Sci-
ence

Rau et al [55],
2016

• AUC=0.78
• Sensitivity=78%

DTPatient reg-
istries

Disease predic-
tion

Type 2 diabetes
(metabolic diseases)

Web of Sci-
ence

Ramezankhani et
al [56], 2016

• Accuracy=94.2%
• Precision=94.0%
• Recall=94.2%
• AUC=94.8%

DTEHRDisease predic-
tion

Type 2 diabetes
(metabolic diseases)

Web of Sci-
ence

Pei et al [57], 2019

• Specificity=79%
• Sensitivity=71%

SVMWearable de-
vices

Decision-mak-
ing

Postprandial hypo-
glycemia (metabolic dis-
eases)

Web of Sci-
ence

Oviedo et al [58],
2019

• AUC=0.87
• Accuracy=80.2%

RFEHRDisease predic-
tion

Alzheimer disease (neuro-
logical diseases)

Web of Sci-
ence

Mubeen et al [59],
2017

• AUROC for Elixhauser co-
morbidity model=91.7%
(95% CI 90.3-93.0)

• AUROC for Charlson co-
morbidity model=88.9%
(95% CI 87.5-90.2)

ANNPatient reg-
istries

Survival predic-
tion

Type 2 diabetes
(metabolic diseases)

Web of Sci-
ence

Lopez-de-Andres
et al [60], 2016

DNN, LR, SVM,
and RF

Patient reg-
istries

Survival predic-
tion

Cardiac arrest (CVDWeb of Sci-
ence

Kwon et al [61],
2019
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Model performance metricsML methodsType of
RWE

Type of studyDiseases or medical con-
ditions (category)

DatabaseStudy

• DNN AUROC=0.953 (95%
CI 0.952-0.954)

• LR AUROC=0.947 (95%
CI 0.943-0.948)

• RF AUROC=0.943 (95%
CI 0.942-0.945)

• SVM AUROC=0.930 (95%
CI 0.929-0.932)

• AUROC was 0.917 in the

high RSak group and 0.744
in the low RS group in the
test set

Two-class deci-
sion jungle and 2-
class neural net-
work

EHRDecision-mak-
ing

Breast cancer (cancers)Web of Sci-
ence

Kim et al [62],
2019

• cvAUCsal of 0.73 for hyper-
tension, 0.64 for dyslipi-
demia, and 0.79 for diabetes

LREHRHealth care out-
comes

Hypertension and dyslipi-
demia (CVD)

Web of Sci-
ence

Khanji et al [63],
2019

• AUC=0.81LR, RF, XG-
Boost, ANN, and
SVM

EHRDecision-mak-
ing

Lumbar disk herniation
(spinal diseases)

Web of Sci-
ence

Karhade et al [64],
2019

• AUROC=0.884 (95% CI
0.831-0.938); P<.001

ANNEHRDecision-mak-
ing

Choledocholithiasis (gas-
trointestinal diseases)

Web of Sci-
ence

Jovanovic et al
[65], 2014

• NB AUROC=0.778 (95%
CI 0.650-0.898)

• LR AUROC=0.756 (95%
CI 0.630-0.881)

• RF AUROC=0.842 (95%
CI 0.736-0.948)

• ANN AUROC=0.760 (95%
CI 0.640-0.880)

NB, LR, RF, and
ANN

EHRHealth care out-
comes

Postinduction hypoten-
sion (anesthesia-related
complications)

Web of Sci-
ence

Kang et al [66],
2020

• Sensitivity=91% (CI 81%-
97%)

• Specificity=65% (CI 60%-
79%)

ANNEHRHealth care out-
comes

Coronary artery disease
(CVD)

Web of Sci-
ence

Isma’eel et al [67],
2018

• RF AUROC=0.827
• SVM AUROC=0.725

RF, SVM, and
Cox regression

EHRDisease predic-
tion

Atrial fibrillation (CVD)Web of Sci-
ence

Hill et al [68],
2019

• RF AUROC=0.9864
• LR AUROC=0.9538
• SVM AUROC=0.9497
• DT AUROC=0.8809
• ANN AUROC=0.9059

RF, LR, SVM,
DT, and ANN

EHRDecision-mak-
ing

Chinese Crohn disease
(gastrointestinal diseases)

Web of Sci-
ence

Dong et al [69],
2019

• AUROC=0.7LR and ANNEHRHealth care out-
comes

Carpal tunnel syndrome
(musculoskeletal dis-
eases)

Web of Sci-
ence

Bowman et al [70],
2018

• AUROC=0.83-0.86DTEHRSurvival predic-
tion

Breast, lung, ovarian
cancers (cancers)

Web of Sci-
ence

Bertsimas et al
[71], 2018

• —RF and SVMEHRDecision-mak-
ing

Cancer-related serious
illness (cancers)

The
Cochrane Li-
brary

Manz et al [72],
2020

• AUROC=0.879 (95% CI
0.832-0.921)

RSFEHRSurvival predic-
tion

Lung transplantation
(respiratory diseases)

The
Cochrane Li-
brary

Tian et al [73],
2023

• —GBMEHRDecision-mak-
ing

Latent profile analysis
(cancers)

The
Cochrane Li-
brary

Li et al [74], 2022
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Model performance metricsML methodsType of
RWE

Type of studyDiseases or medical con-
ditions (category)

DatabaseStudy

Tedeschi et al [75],
2021

• AUC=0.86NLPEHRDisease predic-
tion

Pseudogout (rheumatic
diseases)

The
Cochrane Li-
brary

• Sensitivity=97.3%LREHRHealth care out-
comes

Cancer biomarkers (can-
cers)

The
Cochrane Li-
brary

Ambwani et al
[76], 2019

• Specificity=97%
• Sensitivity=64%

LREHRDisease predic-
tion

Lupus (autoimmune dis-
ease)

The
Cochrane Li-
brary

Jorge et al [77],
2019

• AUROC=0.952 (95% CI
0.946 to –0.958)

• Specificity=0.900 (95% CI
0.870 to 0.930)

• Sensitivity=0.900 (95% CI
0.878 to 0.922)

LREHRHealth care out-
comes

Sepsis (infectious dis-
eases)

The
Cochrane Li-
brary

Shimabukuro et al
[78], 2017

• XGBoost AUC of 0.70
(95% CI 0.68 to –0.71) in
the full CVD cohort and
AUC of 0.71 (95% CI 0.69
to –0.73) in patients with

ASCVDam, with compara-
ble performance by GBM,
RF, and Lasso.

RF, GBM, XG-
Boost, and LR

EHRHealth care out-
comes

Atherosclerosis

(CVD)

The
Cochrane Li-
brary

Sarraju et al [79],
2021

• AUC=0.99SVMWearable de-
vices

Health care out-
comes

Myopia (ocular diseases)The
Cochrane Li-
brary

Ye et al [80], 2019

aEHR: electronic health record.
bNLP: natural language processing.
cAUC: area under the curve.
dCVD: cardiovascular disease.
eDNN: deep neural network.
fRF: random forest.
gAdaBoost: adaptive boosting.
hAUROC: area under the receiver operating characteristic curve.
iFIND-AF: Future Innovations in Novel Detection for Atrial Fibrillation.
jXGBoost: Extreme Gradient Boosting.
kLR: logistic regression.
lGBM: gradient boosting machine.
mDT: decision tree.
nRSF: random survival forest.
oPULSE-AI: Prediction of Undiagnosed Atrial Fibrillation Using a Machine Learning Algorithm.
pCNN: convolutional neural network.
qSVM: support vector machine.
rAHRE: atrial high-rate episode.
sBQR: Bayesian quantile regression.
tLAD: left anterior descending artery.
uLCx: left circumflex artery.
vRCA: right coronary artery.
wResNet: residual neural network.
xBAC: balanced accuracy.
yNot applicable.
zqSOFA: quick sequential organ failure assessment.
aaSIRS: systemic inflammatory response syndrome.
abMEWS: modified early warning score.
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acARDS: acute respiratory distress syndrome.
adeARDS: early onset acute respiratory distress syndrome
aeNB: naive Bayes.
afCox PH: Cox proportional hazards.
agLSCS: lumbar spinal canal stenosis.
ahANN: artificial neural network.
aiMLR: multivariable logistic regression.
ajGP: genetic programming.
akRS: recurrence score.
alcvAUC: cross-validated area under the curve.
amASCVD: atherosclerotic cardiovascular disease.

Implementation of ML in RWD for Disease Prediction
and Management
ML methods have become integral tools for analyzing RWD
for disease prediction and management. These methods analyze
complex medical data, helping clinicians make informed
decisions for better patient care. Random forest (RF) is one of
the most widely used ML methods, appearing in 42% (24/57)
of the studies (Table 2). It is an ensemble learning technique
that builds multiple DTs and combines their outputs to improve
model stability and generalizability [81]. Several reviewed
studies reported that RF performed well in handling large

datasets with numerous variables, particularly EHRs, which are
common medical data sources. Its robustness against overfitting
and ability to handle missing data made it a frequently chosen
method in clinical applications, where data quality could vary
[82,83]. While RF has been widely applied in predictive
modeling for disease outcomes, treatment responses, and patient
risk assessments, further comparative studies are necessary to
directly evaluate its performance against other ML models in
real-world health care settings [84]. It is often applied to predict
disease outcomes, assess treatment responses, and identify
patient risk factors.

Table 2. The frequency of machine learning (ML) methods used in studies included in this review (N=57).

Studies, n (%)ML method

24 (42)Random forest

21 (37)Logistic regression

18 (32)Support vector machine

12 (21)Extreme Gradient Boosting

11 (19)Artificial neural network

9 (16)Decision tree

4 (7)Gradient boosting machine

3 (5)Cox regression

2 (4)Natural language processing

2 (4)Deep neural network

LR was a fundamental method used for binary classification
tasks and was used in 37% (21/57) of the studies. LR estimates
the probability of a particular class, which is essential for
predicting binary outcomes, such as the presence or absence of
disease. It is a simple yet powerful tool that works well with
smaller datasets and provides results that are easy to interpret,
making it particularly useful in clinical settings where
transparency is crucial [85,86]. LR is commonly used for disease
risk prediction, helping clinicians assess the likelihood of a
patient developing a condition based on their medical history
and other clinical factors. Its interpretability allows for clear
communication of results to health care providers, enhancing
decision-making [87,88]. Support vector machine (SVM), used
in 32% (18/57) of the studies, is known for its ability to handle
high-dimensional data, making it suitable for complex medical
datasets, including genomic and imaging data. SVM works by
finding the optimal hyperplane that separates different classes

in the feature space [89-91]. This method is beneficial in clinical
settings where the relationship between variables is nonlinear
and can be adapted for classification and regression tasks. SVM
is applied in disease prediction, particularly when the dataset
has many features relative to the number of observations. It is
also useful for classifying patients based on genetic or
demographic factors, making it a powerful tool for precision
medicine [92,93]. Extreme Gradient Boosting (XGBoost)
appeared in 21% (12/57) of the studies and is a highly effective
method for improving predictive accuracy through boosting.
XGBoost builds models sequentially to correct errors made by
previous models and uses regularization to prevent overfitting.
This method is effective in handling large datasets, common in
clinical studies, and where computational efficiency is essential
[94,95]. XGBoost is often used for survival analysis and disease
outcome prediction, where it can effectively manage the
complexity of large datasets and missing data. Its flexibility
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allows it to be applied across various disease areas, from cancer
prognosis to cardiovascular risk assessment [96,97].

Artificial neural network (ANN) models, used in 19% (11/57)
of the studies, are powerful tools for modeling complex,
nonlinear relationships in data. With multiple layers of
interconnected neurons, an ANN can learn intricate patterns
from large datasets. It is widely used in applications that involve
unstructured data, such as medical imaging and genetic data,
where traditional models might struggle [98,99]. ANN is
frequently applied to predict disease progression and response
to treatments and identify potential biomarkers. In RWD, an
ANN helps identify subtle patterns in complex datasets that
simpler models might not capture, such as predicting cancer
progression from radiological images [100,101]. DTs, featured
in 16% (9/57) of the studies, are straightforward and
interpretable models that split data into subsets based on feature
values. DT models are highly useful in real-world health care
settings, where interpretability is essential for clinical
decision-making. They are often applied in clinical decision
support systems to guide treatment decisions based on patient
data [102,103]. In health care, DTs predict disease outcomes,
stratify patients by risk, and recommend treatment plans. Their
transparency allows clinicians to understand the decision-making
process, which is critical for patient trust and informed consent
[104]. Gradient boosting machine (GBM) was used in 7% (4/57)
of the studies and is a powerful ensemble method that focuses
on correcting errors made by previous models. It is effective in
producing highly accurate predictions, particularly in the
presence of noisy or incomplete data. GBM is more
computationally intensive than other methods, but often
outperforms simpler models in accuracy. GBM is particularly
useful for predicting disease progression and evaluating
treatment efficacy in longitudinal studies, where multiple factors
influence outcomes over time [105,106].

NLP, used in 4% (2/57) of the studies, is a subfield of artificial
intelligence focused on analyzing unstructured textual data. In
health care, NLP extracts relevant information from clinical
notes, EHRs, and medical literature. It enables clinicians and
researchers to analyze vast amounts of text data to identify
trends, predict disease outcomes, and assess treatment

effectiveness [107,108]. NLP is crucial in extracting insights
from EHRs and other textual data sources. It can help in disease
prediction by identifying patterns from patient narratives,
diagnostic codes, and clinician notes that would otherwise
remain hidden in unstructured formats [109]. Cox Regression,
used in 5% (3/57) of the studies, is designed explicitly for
survival analysis. It is widely applied in clinical research to
model the time of an event, such as the onset of a disease or
patient survival. This method is precious for understanding how
various predictors affect the risk of an event occurring over
time. In RWD, Cox regression is often used in cancer studies
and other chronic diseases to predict survival times and assess
the impact of different treatment regimens, making it
indispensable in clinical trials and outcome-based research
[110,111]. DNN models, used in 4% (2/57) of the studies, are
a more complex version of ANN with multiple hidden layers.
DNN models identify intricate patterns and are increasingly
used in health care applications involving large and complex
data types, such as medical imaging, genomics, and sensor data.
DNN is particularly useful for analyzing high-dimensional data,
such as medical images (eg, x-rays and magnetic resonance
imaging) or genomic data, where the relationships between
variables are complex and nonlinear. It helps identify disease
markers and predict outcomes based on these complex datasets
[112-114]. The diverse range of ML methods used in RWD for
disease prediction and management demonstrates the
adaptability of these techniques in clinical practice. From
interpretable models such as LR and DTs to more complex
methods such as DNN and XGBoost, each ML technique
uniquely enhances predictive capabilities. These methods enable
health care providers to make more accurate, data-driven
decisions, ultimately improving patient outcomes and advancing
personalized medicine.

Distribution of Diseases, Study Types, and RWE
Sources in ML Applications
The distribution of disease types in studies using ML for disease
prediction and management revealed a strong emphasis on
cardiovascular diseases, with 19 (33%) of the 57 studies
focusing on various conditions within this category (Table 3).

Table 3. Disease categories and the studies included in this review (N=57).

Studies, n (%)Diseases

19 (33)Cardiovascular diseases

9 (16)Cancers and tumors

6 (11)Neurological diseases

5 (9)Infectious diseases

5 (9)Metabolic diseases

3 (5)Spinal diseases

2 (4)Gastrointestinal diseases

2 (4)Ocular diseases

2 (4)Respiratory diseases

4 (7)Other diseases
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This high representation could be attributed to the multifactorial
and complex nature of cardiovascular diseases, which often
involve a combination of genetic, environmental, and lifestyle
factors. Conditions such as atrial fibrillation, heart
transplantation, and peripheral artery disease were prominent
in these studies, where advanced ML models were used to
enhance predictive accuracy and improve patient management.
For instance, studies on heart transplantation and atrial
fibrillation highlighted the potential of ML algorithms in
survival prediction and early disease detection. A work
demonstrated that ensemble models, combining RF, DNN, and
adaptive boosting, significantly outperformed traditional LR
for predicting 1-year survival rates after orthotopic heart
transplantation, with an area under the receiver operating
characteristic curve of 0.764 [25]. Meanwhile, another study
explored the use of the Future Innovations in Novel Detection
for Atrial Fibrillation ML algorithm to identify undiagnosed
atrial fibrillation using data from EHRs, aiming to improve early
detection and intervention. In addition, studies on peripheral
artery disease and atrial fibrillation in older adults underscored
the utility of ML models in survival prediction and risk
assessment [26]. A study developed a predictive model for
amputation-free survival after the revascularization process,
with the random survival forest model achieving the highest
accuracy in predicting long-term outcomes [28]. Similarly,
another study used various ML methods, including DTs and
RFs, to predict new-onset atrial fibrillation in older adults,
achieving high specificity and performance, particularly with
the RF model [32]. Furthermore, the use of ML in acute
ischemic stroke, including studies by Sheth et al [30] and Hilbert
et al [35], illustrated the growing role of deep learning
techniques, such as convolutional neural networks and residual
neural networks, in improving diagnostic accuracy and
predicting patient outcomes [35]. These advancements in ML
could potentially revolutionize clinical decision-making and
treatment selection, especially for conditions such as stroke,
where rapid and accurate assessment is critical.

A significant (9/57, 16%) portion of studies also targeted cancers
and tumors, which were often characterized by their
heterogeneity and the need for personalized treatment plans.
ML algorithms, such as RF and SVM, enhanced early cancer
detection, predicted disease recurrence, and assessed the
effectiveness of different treatment protocols, demonstrating
great potential in oncology settings. One key area of focus was
the prediction of disease outcomes. For instance, a study
developed a series of ML models to predict the 5-year survival
rate for patients with Ewing sarcoma, a rare type of cancer.
Using data from 2332 patients, including various algorithms
such as boosted DTs, SVMs, RFs, and neural networks, the
study found that the RF method performed best, with impressive
sensitivity and specificity. This model is now accessible via a
web-based application, providing clinicians a valuable tool for
assessing survival probabilities for patients with Ewing sarcoma
[36]. Another study used a predictive ML model to improve
surgical scheduling in cancer surgeries, specifically for
colorectal and gynecologic cancers. The research used gradient
boosting and LR techniques to predict surgical durations,
reducing operational inefficiencies such as patient wait times
and optimizing the use of surgical resources, thereby

demonstrating how ML could streamline health care operations
while maintaining treatment quality [38]. Furthermore, in
survival prediction, a study used an RF model to develop a gene
signature that predicted the response of patients with gastric
cancer to paclitaxel treatment. Their model, which identified a
19-gene signature, enabled the classification of patients into
those who would benefit from the treatment, providing a novel
approach to personalized cancer therapy [48].

The studies focusing on neurological diseases, including
conditions such as epilepsy, cognitive impairment, and
schizophrenia, highlighted the significant impact of ML in
improving diagnosis, treatment prediction, and health care
outcomes. These studies underscored the potential of ML to
personalize patient care and optimize clinical decision-making.
For instance, a study investigated the application of NLP
embedded in EHR to automate alerts for pediatric patients with
epilepsy. This ML-driven clinical decision support system
successfully increased referrals for epilepsy surgery, with a
marked improvement in presurgical evaluation rates and even
higher rates of actual surgery, illustrating how NLP-based
interventions could influence health care outcomes by improving
referral efficiency and treatment access [24]. Similarly, another
study focused on the use of XGBoost, an ML algorithm, to
identify older patients in the emergency department at high risk
for cognitive impairment. This predictive model, using EHR
data, demonstrated high sensitivity and specificity, with the
potential to reduce the need for in-person screenings and
prioritize patients at high risk. By streamlining screening
processes, this approach could enhance the detection of cognitive
impairments in older adults, potentially leading to earlier
interventions and better management of conditions such as
dementia [27]. In schizophrenia, a study developed a nonlinear
SVM model to predict treatment outcomes for patients with
first-episode psychosis. The model was trained on pretreatment
patient-reported data and successfully predicted poor versus
good treatment outcomes, thus supporting clinical
decision-making in terms of which treatments might be more
effective for certain patients and identifying those at risk for
nonadherence or poor prognosis [37]. These studies collectively
demonstrated how ML methods, such as NLP, XGBoost, and
RF, were revolutionizing the management of neurological
diseases. By enabling early detection, better prediction of disease
outcomes, and more informed decision-making, these tools
offered substantial improvements in both clinical and health
care settings. Infectious diseases, metabolic diseases, spinal
diseases, gastrointestinal diseases, ocular diseases, and
respiratory diseases each had a smaller but notable presence in
the studies (n≤5). These applications generally focused on
disease prediction, early diagnosis, and treatment optimization.
ML models such as XGBoost and DNN were used to predict
disease onset, assess risks, and improve patient management in
these areas.

The data revealed that EHRs were the most frequently used
form of RWE, accounting for 68% (39/57) of the studies. EHRs
were a rich source of patient data, providing comprehensive
records of patient health status, diagnoses, treatments, and
outcomes over time. This made EHRs particularly valuable for
studies that required large-scale data to identify patterns, trends,
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and correlations in real-world clinical settings. The next most
commonly used type of RWE was patient registries, which were
used in 26% (15/57) of the studies. Patient registries typically
collect data on specific patient populations with particular
diseases or conditions, allowing for longitudinal tracking of
disease progression and treatment outcomes. Wearable devices
were the least used form of RWE, accounting for 7% (4/57) of
the studies. Wearables were increasingly being used to collect
real-time health data, including vital signs and activity levels,
which could provide valuable insights into patients’health status
outside of clinical environments. This distribution highlighted
the dominance of EHR as the primary data source in these
studies, reflecting its accessibility and broad applicability in
health care research.

Disease prediction emerged as the most widely studied area,
represented by 35% (20/57) of the studies. This suggested a
strong emphasis on using ML and data analytics to predict the
onset, progression, or outcomes of various diseases. The next
most studied area was decision-making, with 25% (14/57) of
the studies that underscored the growing interest in leveraging
data-driven insights to inform clinical decisions and treatment
strategies. Health care outcomes, such as quality of life, recovery
rates, and adverse events, were the focus of 23% (13/57) of the
studies, reflecting the importance of understanding how diseases
and treatments affect patients’ overall well-being. Survival
prediction, accounting for 19% (11/57) of the studies, was
another critical area of research, particularly in oncology and
chronic diseases, where predicting patient survival and the
effectiveness of interventions could guide clinical
decision-making. This distribution indicated that disease
prediction and decision-making were central to applying RWE
in health care, with a significant focus on improving patient
outcomes and guiding treatment strategies.

Discussion

Principal Findings
The findings of this study underscore the growing application
of ML techniques in RWD for disease prediction and
management. The results reveal that ML methods, particularly
ensemble models such as RF, play a crucial role in enhancing
prediction accuracy and addressing the complexities of large
and high-dimensional datasets common in health care. Among
the top ML methods used, RF was the most widely used,
featured in 42% (24/57) of the studies, showcasing its
adaptability to a variety of clinical datasets such as EHRs and
patient registries. RF’s ability to handle missing data, its
resistance to overfitting, and its effectiveness in managing
imbalanced datasets made it a powerful tool in predicting disease
outcomes [115,116], such as survival rates and complications
in cardiovascular diseases and cancer. Regarding disease types,
cardiovascular diseases dominated the studies, with 33% (19/57)
of the studies dedicated to predicting outcomes related to heart
transplantation, atrial fibrillation, and peripheral artery disease.
This concentration is likely attributed to the critical need for
predictive tools in the early diagnosis and management of these
conditions, which account for a significant burden on health
care systems globally [117]. ML applications, such as DNN

and random survival forests, have been shown to improve the
accuracy of survival predictions, assess treatment responses,
and enhance patient stratification. In addition, the study
highlights the increasing application of ML in predicting
conditions such as cancers, neurological disorders, and infectious
diseases. These findings align with the broader trend of using
RWD to bridge the gap between clinical trials and actual patient
care by making predictions based on RWD sources, such as
EHRs and wearable devices. As evidenced in the studies
reviewed, ML techniques can process vast amounts of medical
data from various sources, facilitating early detection, timely
intervention, and improved management of chronic conditions.
Furthermore, these advancements in ML applications are subject
to increasing regulatory oversight. Agencies such as the US
FDA and the EMA are actively exploring frameworks for the
approval and regulation of ML-driven tools in health care. These
regulations aim to ensure ML models’ safety, efficacy, and
transparency, especially in real-world applications where data
variability and model interpretability remain key concerns. As
regulatory bodies continue to define standards for using RWD
and ML in clinical settings, ensuring compliance with FDA and
EMA guidelines will be essential for the broader adoption and
integration of these technologies into clinical practice.

Comparison With Prior Work
This systematic review aligns with and extends several recent
literature reviews that have explored the application of ML to
RWD in health care. Previous studies have highlighted the
potential of ML models to transform health care by improving
disease prediction and patient management [118,119]. However,
our review emphasizes a broader scope by including a wide
variety of disease types, from cardiovascular diseases and cancer
to neurological and infectious diseases, reflecting the growing
versatility of ML tools in clinical settings. A notable comparison
can be made with a study that focused on EHRs as the primary
data source for ML models, conducted by Miotto et al [120].
While their review identified the challenges associated with
EHR-based studies, such as data sparsity and heterogeneity, our
study similarly acknowledges these limitations but also expands
the discussion to include wearable devices and patient registries
as additional data sources. These emerging data sources provide
a more complete picture of the patient’s health status,
significantly improving model performance and enabling better
patient monitoring in real-world settings. Another key
comparison is with a review that focused on ML’s role in health
care decision-making and its integration into clinical workflows
[121]. While the study by Beam and Kohane [121] explored
various ML algorithms in health care, our review places a
stronger emphasis on the role of ensemble models, such as RF,
and their applicability across diverse health care datasets. One
of the key contributions of our review, which sets it apart from
previous works, is the focus on regulatory challenges associated
with the deployment of ML models in clinical practice. While
other reviews have discussed technical aspects of ML, we
specifically address the urgent need for clearer regulatory
frameworks from authorities such as the FDA and EMA to
ensure the safe and effective approval of ML models in health
care. This is an area that has received limited attention in
previous reviews but is critical as health care systems begin to
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rely more heavily on automated systems for clinical
decision-making. Overall, this review builds upon the
foundations established by previous literature, offering an
updated and comprehensive analysis that incorporates new data
sources, encompasses a broader range of diseases, and addresses
the challenges of regulatory approval and model interpretability
in the context of ML in health care.

Limitations
This review has several limitations. First, while a comprehensive
search strategy was used, it is possible that some relevant studies
were missed, particularly those that did not explicitly use the
selected keywords or were indexed in databases not included
in this search. In addition, this review was limited to
English-language publications, which may have excluded
relevant studies published in other languages. Another potential
limitation is the application of strict inclusion and exclusion
criteria, which, while ensuring the relevance and quality of the
included studies, may have led to the omission of some studies
that could have provided valuable insights. For example, studies
with limited methodological details or those focusing primarily
on deep learning applications were often excluded due to
insufficient validation or performance comparisons. Future
research could consider broader inclusion criteria to capture a
wider range of studies. Furthermore, the variability in study
designs and data sources posed challenges in synthesizing
findings across different studies. The included studies used
different types of RWD, ranging from EHRs and patient
registries to imaging and wearable sensor data. This
heterogeneity complicates direct comparisons and
generalizability. Finally, while efforts were made to minimize
bias through independent study screening by 2 reviewers,
inherent biases in study selection and data extraction may still
exist. The reliance on published literature also introduces
publication bias, as studies with negative or inconclusive results
may be underrepresented. Future work could integrate
unpublished data sources or conduct meta-analyses to provide
a more comprehensive assessment of ML applications in RWD.

Future Work
While this systematic review aimed for comprehensive coverage
by using a broad search strategy across multiple databases and
gray literature sources, the large disparity between the number
of initially retrieved studies and those meeting the final inclusion
criteria highlights an important area for improvement in future
research. A more focused, topic-specific keyword strategy,
combined with the application of advanced database filters,
could increase the precision of future searches by limiting the
retrieval of irrelevant studies. In addition, integrating artificial
intelligence–assisted search tools and NLP algorithms might

further enhance the efficiency of systematic literature reviews
by streamlining the identification of eligible studies based on
more nuanced criteria. Future reviews may also benefit from
targeting more narrowly defined subtopics within the broader
field of ML applications in RWD, such as specific disease
domains, ML model types, or clinical trial phases. These
refinements would likely improve the overall relevance and
manageability of retrieved records, ensuring a more efficient
screening process and focused synthesis of findings.

Conclusions
In conclusion, this review highlights the transformative potential
of integrating ML techniques with RWD in health care,
specifically for disease prediction and management. The use of
advanced ML models, such as ensemble methods and deep
learning, has demonstrated the ability to enhance predictive
accuracy, improve patient stratification, and facilitate more
personalized and proactive health care. These advancements
are poised to significantly impact clinical decision-making,
enabling earlier diagnoses, optimized treatment strategies, and
efficient resource allocation. However, despite these promising
developments, several challenges remain. Issues related to data
quality, generalizability across diverse populations, and the
interpretability of complex ML models must be addressed to
ensure their effective and widespread application. The lack of
transparency in some ML algorithms, which often function as
“black boxes,” remains a significant barrier to their integration
into clinical workflows. Improving the explainability of these
models will be crucial in gaining the trust of health care
professionals and enhancing the clinical utility of ML
predictions. In addition, regulatory frameworks for ML in health
care are still evolving, with clear guidelines needed from
regulatory bodies such as the FDA and EMA. This will help
ensure that ML models meet safety standards and are deployed
in clinical settings in a manner that benefits both health care
providers and patients. Furthermore, as health care data becomes
increasingly heterogeneous, with sources ranging from EHRs
to wearable devices and patient registries, strategies for
addressing data inconsistencies and ensuring data quality will
be essential. Looking ahead, future research should focus on
improving the robustness, transparency, and generalizability of
ML models, particularly for underrepresented diseases and
diverse patient populations. Establishing ethical and regulatory
standards for the use of ML in clinical practice will be crucial
for fostering public trust and ensuring equitable access to these
innovations. Collaboration among clinicians, data scientists,
and policy makers will be key to overcoming these challenges,
with the ultimate goal of ensuring that ML-driven advancements
in health care lead to improved health outcomes, better care
delivery, and more equitable health care systems for all.
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