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Abstract
Background: By analyzing electronic health record snapshots of similar patients, physicians can proactively predict disease
onsets, customize treatment plans, and anticipate patient-specific trajectories. However, the modeling of electronic health
record data is inherently challenging due to its high dimensionality, mixed feature types, noise, bias, and sparsity. Patient
representation learning using autoencoders (AEs) presents promising opportunities to address these challenges. A critical
question remains: how do different AE designs and distance measures impact the quality of retrieved similar patient cohorts?
Objective: This study aims to evaluate the performance of 5 common AE variants—vanilla autoencoder, denoising autoen-
coder, contractive autoencoder, sparse autoencoder, and robust autoencoder—in retrieving similar patients. Additionally, it
investigates the impact of different distance measures and hyperparameter configurations on model performance.
Methods: We tested the 5 AE variants on 2 real-world datasets—the University of Kansas Medical Center (n=13,752) and
the Medical College of Wisconsin (n=9568)—across 168 different hyperparameter configurations. To retrieve similar patients
based on the AE-produced latent representations, we applied k-nearest neighbors (k-NN) using Euclidean and Mahalanobis
distances. Two prediction targets were evaluated: acute kidney injury onset and postdischarge 1-year mortality.
Results: Our findings demonstrate that (1) denoising autoencoders outperformed other AE variants when paired with
Euclidean distance (P<.001), followed by vanilla autoencoders and contractive autoencoders; (2) learning rates significantly
influenced the performance of AE variants; and (3) Mahalanobis distance-based k-NN frequently outperformed Euclidean
distance-based k-NN when applied to latent representations. However, whether AE models are superior in transforming raw
data into latent representations, compared with applying Mahalanobis distance-based k-NN directly to raw data, appears to be
data-dependent.
Conclusions: This study provides a comprehensive analysis of the performance of different AE variants in retrieving similar
patients and evaluates the impact of various hyperparameter configurations on model performance. The findings lay the
groundwork for future development of AE-based patient similarity estimation and personalized medicine.

JMIR Med Inform 2025;13:e68830; doi: 10.2196/68830
Keywords: machine learning; decision support for health professionals; methods and instruments in medical informatics;
electronic health records

JMIR MEDICAL INFORMATICS Li et al

https://medinform.jmir.org/2025/1/e68830 JMIR Med Inform 2025 | vol. 13 | e68830 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/68830
https://medinform.jmir.org/2025/1/e68830


Introduction
Diseases vary in complexity, posing substantial challenges
in diagnosis, treatment, and prognosis—even when cases
appear clinically similar [1]. This heterogeneity is particularly
prominent in complex disorders like autoimmune diseases
[2], Parkinson disease [3], and cardiovascular diseases [4],
where underlying causes often result from a confluence of
genetic, environmental, and lifestyle factors [5]. As these
complexities become more evident, the rapid adoption of
electronic health record (EHR) systems has bolstered the
potential for personalized medicine to enhance patient care.
Personalized medicine focuses on tailoring treatments and
predicting patient outcomes by analyzing data from patients
with similar characteristics [6]. By assessing EHR snapshots
of comparable patients—including prescriptions, procedures,
vital signs, lab results, and clinical outcomes—physicians can
proactively predict disease onsets, customize treatment plans,
and anticipate patient-specific trajectories [7,8]. Additionally,
predictive models that leverage data from similar patients
tend to be more accurate, as they capture localized data
patterns that might be obscured in aggregated data [9].

Retrieving a high-quality set of similar patients is central
to personalized medicine, directly impacting both evidence-
based decision-making and the accuracy of personalized
predictive models. However, EHR data are inherently
challenging to model due to high dimensionality, mixed
feature types, noise, bias, and sparsity, complicating the
effective retrieval of similar patients [10]. For instance,
applying traditional Euclidean distance-based k-nearest
neighbors (k-NN) directly to EHR data may be problem-
atic due to high dimensionality and mixed data types. To
address these challenges, various similar patient retrieval
algorithms have been proposed, incorporating advanced
feature engineering to handle mixed features and reduce
dimensionality [11-13].

Patient representation learning offers new avenues for
overcoming these obstacles, with autoencoders (AEs) being
one of the most important and widely used methods in this
area [14-17]. AEs compress input data into a lower-dimen-
sional latent space, known as a latent representation, and
reconstruct it back to its original form, facilitating effective
auto-feature engineering and patient representation [18,19].
AEs are particularly useful for encoding nonlinear relation-
ships within EHR, and capturing complex structures in
clinical data [20]. As AE applications to EHR increase, their
use is becoming increasingly diverse [14-16]. For instance,
Chowdhury et al [16] designed a mixed pooling multi-view
attention AE to learn representations that encapsulate a
holistic view of patient medical profiles. Beaulieu-Jones et
al [15] applied a vanilla AE with a modified binary cross-
entropy loss to impute missing data in EHR, and Lee et al
[14] used a dual adversarial AE to generate sequential EHR
data.

In personalized medicine, AEs are increasingly applied
to enhance similar patient retrieval [21-23]. Generally, these
studies use AEs to generate efficient patient representations

from EHR data, with similarity among patients assessed
using distance measures such as Euclidean and Mahalano-
bis distances. For example, Jo et al [21] used a supervised
AE to incorporate disease labels into latent representations
and calculated patient similarity in the latent space using
the Euclidean distance. Miotto et al [22] introduced the
“Deep Patient” framework with a 3-layer stack of denois-
ing autoencoders (DAEs) to generate latent patient represen-
tations from EHR data, which was then used to estimate
patient similarity. Landi et al [23] used a convolutional AE
to transform patient trajectories into low-dimensional latent
vectors and achieved patient risk stratification by patient
similarity. These studies underscore the potential of AEs to
drive advances in personalized medicine.

Despite the promising results of applying AEs to EHR
data, a critical question remains unanswered: how do different
AE designs impact performance in similar patient retrieval
tasks? Existing studies have not clearly justified their choices
of specific AE designs. Specifically, AE designs encompass
2 key aspects. The first aspect is the choice of the base AE
model, as different AE variants may perform differently due
to their distinct design focuses and the unique characteristics
of EHR data. When these base AE models are integrated into
more complex architectures (eg, “Deep Patient” [22]), their
behavior may also vary. Therefore, gaining deeper insight
into the performance of different base AE models on EHR
data is valuable. The second aspect is hyperparameter tuning,
as AEs are known to be highly sensitive to hyperparameters,
including learning rate, latent dimensionality, and optimiza-
tion techniques [24]. Therefore, understanding how different
hyperparameters impact AE performance on EHR data is also
important.

In this study, we used 2 real-world EHR datasets from
the University of Kansas Medical Center (KUMC) and the
Medical College of Wisconsin (MCW), covering the period
from January 1, 2016 to December 31, 2016, to evaluate
the performance of 5 widely used AE variants for retrieving
similar patients: vanilla AE (AE) [18], DAE [25], contrac-
tive autoencoder (CAE) [26], sparse autoencoder (SAE) [27],
and robust autoencoder (RAE) [28]. Vanilla AE is the most
basic form of autoencoder, making it efficient to train and
use. DAE and RAE can address the significant noise in
EHR data, while CAE and SAE use different mechanisms
to learn more robust latent representations for EHR data
with complex distributions [29]. Additionally, we investigated
the impact of 2 distance measures, Euclidean and Mahala-
nobis, on similar patient retrieval when paired with these
AE variants. To comprehensively evaluate model perform-
ance, we tested them within a standard k-NN classification
framework for 2 binary clinical outcomes in hospitalized
patients: acute kidney injury (AKI) onset and 1-year mortality
postdischarge, representing short-term disease and long-term
survival risk classification scenarios. AKI, a life-threatening
and heterogeneous condition prevalent among hospitalized
patients, is particularly suited to a personalized approach.
Finally, we explored how different hyperparameter configu-
rations affect AE performance in retrieving similar patients
for outcome prediction. This study provides key insights

JMIR MEDICAL INFORMATICS Li et al

https://medinform.jmir.org/2025/1/e68830 JMIR Med Inform 2025 | vol. 13 | e68830 | p. 2
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e68830


into AE optimization for personalized medicine applications,
informing future advancements in EHR-driven patient care.

Methods
Comparison Framework Overview
This study aims to evaluate the effects of various AE
variants, hyperparameter settings, and distance measures on
the performance of similar patient retrieval. The 5 AE
variants investigated were vanilla AE (AE), DAE, CAE, SAE,
and RAE. Each AE was trained in an unsupervised manner
on the training dataset, after which both the training and test
datasets were transformed into latent representations using the
trained AEs.

Performance was evaluated using a standard k-NN
classification framework with neighborhood sizes of 5, 10,
15, and 20. For similar patient retrieval, Euclidean and
Mahalanobis distances were applied to the latent represen-
tations to identify similar patients based on a specified
neighborhood size for each test patient. Labels were assigned
to each test patient through majority voting, and these
assigned labels were then compared with the ground truth
to assess model accuracy. Furthermore, we analyzed the
influence of different hyperparameter configurations on AE
model performance in retrieving similar patients, focusing on
Euclidean distance as the patient similarity measure.
Data Source and Processing
Our primary dataset consisted of inpatient data extracted
from KUMC, covering admissions from January 1, 2016,
to December 31, 2016. To assess the generalizability of our
findings, we extracted an external validation dataset from
MCW for the same period.

Both datasets were processed using the same protocol. The
inclusion criteria were as follows: (1) older than 18 years,
(2) baseline serum creatinine (SCr) <3.5 mg/dL, and (3)
AKI onset occurring at least 72 hours postadmission to focus
only on hospital-acquired AKI [30]. AKI was defined using
the SCr criteria described in the “Kidney Disease: Improv-
ing Global Outcomes” clinical practice guidelines [31]. For
patients with multiple admissions, only the first encounter

was retained. The study focused on 3 types of in-hospital
clinical features: medications, procedures, and lab test results.
The data observation window for these features extended
from 48 hours before the prediction point up to the prediction
point. For patients with AKI, the prediction point was set at
24 hours before AKI onset, while for patients without AKI, it
was set at 24 hours before the last SCr measurement [9].

Medications were represented by the maximum dosages
recorded within the data observation window, procedures
were encoded as binary values indicating whether a procedure
was performed during the observation window, and lab test
results were recorded as the most recent values within the
observation window. Medications and procedures present in
less than 1% of patients were excluded from the analysis. Lab
tests with a missing rate over 30% were also discarded, with
the remaining missing lab values imputed using the multiple
imputation by chained equations method [32]. Outliers were
replaced using the Winsorizing method with a 1% threshold
[33], and min-max normalization was applied to scale values
between 0 and 1.

In addition to AKI onset, 1-year mortality after dis-
charge was also included as a prediction target, providing
a comprehensive evaluation of the retrieved similar patient
cohorts in terms of both short-term (AKI onset) and long-term
(1-year mortality) clinical outcomes.
AE Variants
The vanilla AE (Figure 1A) is the most basic form in the
autoencoder family. Its architecture is a symmetric feed-
forward neural network structure, though this symmetry
does not necessarily apply to the weights, biases, or acti-
vation functions. It has 2 main components: an encoder
and a decoder. The encoder encodes the input into a latent
representation, while the decoder reconstructs the original
data from this hidden representation. For an AE with a single
hidden layer, the input data undergo the following transfor-
mations:

Z = f X = ϕ1 WX + b
X` = g Z = ϕ2 W`Z + b`
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Figure 1. Overview of the 5 autoencoder (AE) variant designs with different loss functions. (A) Vanilla AE; (B) Contractive AE; (C) Denoising AE;
(D) Sparse AE; and (E) Robust AE. MCC: maximum correntropy criterion; MSE: mean squared error.

Here, X  denotes the input data, and X` represents the
reconstructed data. Z is the output of the latent representation
produced by the encoder. W , W`, b, and b` are the weights
and biases of the encoder and decoder, while ϕ1 and ϕ2 are
activation functions. To quantify reconstruction accuracy, the
mean squared error (MSE) loss was used, which measures the
difference between the original input data and the reconstruc-
ted data, as follows:

LossAE = MSE X, X` = 1n∑i = 1n xi − x`i 2
Here, n denotes the number of input samples, while xi andx`i represent the i-th sample of X  and the i-th sample ofX`, respectively. This loss function allows AE to learn a
compressed representation of the data by minimizing the
reconstruction error.

The DAE (Figure 1C) enhances model robustness by
introducing noise into the input data. Specifically, data

with noise (Xnoise in Figure 1C) are used as input, and
the reconstruction error is calculated between the original
noise-free data (X  in Figure 1C) and the reconstructed data.
In this way, the model learns to reconstruct the input by
eliminating any noise present. In this study, we used swap
noise, where each value in the training data may be replaced
with a random value from the same column with a certain
probability. We selected swap noise for fairness purposes as it
has been shown to be the most effective noise type for tabular
data [34]. Other commonly used noise types include Gaussian
noise and masking noise [35].

The CAE (Figure 1B) enhances model robustness by
reducing the encoder’s sensitivity to minor perturbations
in the input, a typical vulnerability in AEs where small
variations can lead to significant differences in latent
representations. The CAE addresses this issue by introduc-
ing an additional penalty term, the Frobenius norm of the
encoder, to the loss function. This term, which is the L2-norm

JMIR MEDICAL INFORMATICS Li et al

https://medinform.jmir.org/2025/1/e68830 JMIR Med Inform 2025 | vol. 13 | e68830 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e68830


of the Jacobian matrix of the hidden layer, makes the
encoder output more stable against small input variations. The
Frobenius norm of the encoder and the CAE loss function are
shown as follows:

JZ X F2 = 1n∑i = 1n ∑j = 1m ∑k = 1l ∂zik xi∂xij
2

LossCAE = MSE X, X` + λ∙ JZ X F2
Here, m denotes the number of input features, and l represents
the length of the latent representations. λ controls the strength
of the additional penalty term, which aims to restrict the
rate of change in the encoder output relative to changes in
the input. When the input undergoes minor variations, the
CAE encoder output remains relatively stable, enhancing the
model’s robustness against noise and small perturbations.

The SAE (Figure 1D) encourages the model to
learn efficient representations by enforcing sparsity in
latent representations. By adding a Kullback-Leibler (KL)
divergence penalty between a Bernoulli distribution and the
distribution of latent layer outputs to the loss function, the
SAE limits the number of active neurons (whose outputs are
significantly nonzero) in the latent layer. This helps SAE
to capture key information from the input using a limited
number of active neurons in the latent layer, preventing it
from simply copying the input to the output and enhancing
the model’s ability to capture the inherent structure of the
input data. The additional penalty term and the loss function
of the SAE are as follows:

DKL ρ ∨ ρ = ρlogρρ + 1 − ρ log 1 − ρ1 − ρ
LossSAE = MSE X, X` + β∙DKL ρ ∨ ρ

Here, ρ denotes the mean of the Bernoulli distribution. ρ
denotes the mean of the distribution of latent representations
over the training data. β controls the strength of the additional
penalty term.

The RAE (Figure 1E) improves noise tolerance by using
the maximum correntropy criterion (MCC) instead of MSE
for reconstruction error, making it less sensitive to outliers
[36]. The intuition behind the MCC-based reconstruction
error is that as the distance between X  and X` increases, the
corresponding measure transitions from the L2 norm to the L1
norm, and eventually to the zero norm when X  and X` are far
apart. The RAE also includes a sparsity penalty term similar
to that of the SAE, along with an additional weight decay
term to prevent overfitting. The MCC-based reconstruction
error, the weight decay term, and the final loss function of the
RAE are shown as follows:

MCC X, X` = 1n∑i = 1n ∑j = 1m 12πσexp − xik − x`ij 2
2σ2

Jweigℎt θ = 12∑L = 12 ∑i = 1sL ∑j = 1sL + 1 wjiL 2
LossRAE = − MCC X, X` + β∙DKL ρ ∨ ρ + λ∙Jweigℎt θ
Here, σ denotes the variance of the Gaussian distribution. wjiL
denotes an element in the weight matrix of the L-th layer.SL denotes the number of neurons in the L-th layer. β and λ
control the strength of the 2 penalty terms, respectively.
Patient Similarity Measures
To identify similar patients, we applied 2 distance meas-
ures—Euclidean and Mahalanobis distances—to the latent
representations generated by each AE variant. For each
patient in the test dataset, we used these distance measures to
find a cohort of similar patients from the training dataset. The
Euclidean distance on the latent representations is calculated
as follows:

DEuclidean zi, zj = ∑k = 1l zik − zjk 2
Here, zi denotes the i-th patient in the training set and zj
denotes the j-th patient in the test set. l denotes the length of
the latent representations.

The Mahalanobis distance can be viewed as a Euclidean
distance after applying a linear transformation to the feature
space, defined by L:

DMaℎalanobis zi, zj = Lzi − Lzj T Lzi − Lzj
In this study, we used 3 different algorithms to estimate
the Mahalanobis distance on the latent representations:
large margin nearest neighbor (LMNN) [37], Neighborhood
Components Analysis (NCA) [38], and Metric Learning for
Kernel Regression (MLKR) [39].

• LMNN learns a Mahalanobis distance within the
standard k-NN classification framework, aiming to
bring the nearest k neighbors from the same class closer
while ensuring that examples from different classes are
separated by a large margin.

• NCA enhances the accuracy of nearest neighbor
classification compared with the traditional Euclidean
distance by directly maximizing a stochastic version of
the leave-one-out k-NN score on the training set.

• MLKR learns a Mahalanobis distance by directly
minimizing the leave-one-out regression error. This
algorithm can also be viewed as a supervised exten-
sion of principal component analysis (PCA), making it
suitable for dimensionality reduction and visualization
of high-dimensional data.

Experimental Design
The workflow of the study is presented in Figure 2. Each
AE variant in this study consisted of a 3-layer structure: an
input layer, a hidden layer, and an output layer. Previous
research suggests that additional hidden layers in AEs do not
necessarily lead to improved downstream task performance
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[40]. All AE variants were implemented in PyTorch (version
2.4.0; Meta AI), and trained on 2 NVIDIA GeForce RTX
2080 Ti GPUs, each with 10.7 GB of RAM. For each
of the 5 AE variants, we performed an exhaustive grid
search to explore all possible combinations of learning

rates, optimizers, latent dimensions, and activation functions,
resulting in 168 different hyperparameter configurations per
AE variant. Details of the hyperparameter space are listed in
Table 1. The Mahalanobis distance was estimated using the
metric-learn library [41].

Figure 2. Workflow of the study. After the electronic health record data were transformed into latent representations using 5-fold cross-validation,
the latent representations were used for 3 downstream evaluations: Euclidean-distance-based similar patient retrieval, Mahalanobis-distance-based
similar patient retrieval, and AE hyperparameter analysis. AE: autoencoder; CAE: contractive autoencoder; DAE: denoising autoencoder; KUMC:
University of Kansas Medical Center; LMNN: large margin nearest neighbor; MCW: Medical College of Wisconsin; MLKR: metric learning for
kernel regression; NCA: neighborhood components analysis; RAE: robust autoencoder; SAE: sparse autoencoder.

Table 1. Hyperparameter configuration space. The combinations of different values for the 4 studied hyperparameters resulted in 168 different
hyperparameter configurations.
Hyperparameter Range
Learning rate 1E-5, 1E-4, 1E-3, and 1E-2
Optimizer Adam, Adamax, and RMSprop
Latent dimension : input dimension 0.02, 0.05, 0.10, 0.15, 0.30, 0.50, and 0.75
Activation functions Sigmoid and rectified linear unit (ReLU)

To assess the generalizability of our findings, we applied the
following steps in parallel to both the KUMC and MCW
datasets. Before evaluating the performance of different AE
variants on the 4 hyperparameters of interest mentioned
above, we fixed each AE variant’s unique hyperparameters
(eg, the sparsity term penalty strength β in the SAE).
Otherwise, combining each model’s unique hyperparame-
ters with the selected 4 hyperparameters would make the
computation infeasible. To determine the optimal unique
hyperparameter settings, we fine-tuned each AE variant using
a standardized setup (learning rate=1E-3, optimizer=Adam,
latent dimension: input dimension=0.15, and activation=Sig-
moid) and fixed these optimal hyperparameter values in
the subsequent experiments. To account for variations
arising from the random initialization of neural network
weights and data splitting, each of the 168 studied hyper-
parameter configurations was trained and evaluated using
5-fold cross-validation, with the average performance of
the Euclidean distance-based k-NN on the AE-produced
latent representations reported for the 2 prediction targets—
AKI onset and 1-year mortality—across the 5 runs. The

performance of the Euclidean distance-based k-NN on both
the raw data and the data transformed by PCA, retaining 99%
of the variance, served as baseline performance. We used
F1-scores, area under the precision-recall curve (AUPRC),
and area under the receiver operating characteristic curve
(AUROC) as evaluation metrics. The k-NN model was
evaluated with neighborhood sizes of 5, 10, 15, and 20,
respectively, considering that the size of the retrieved similar
patient cohort often varies based on different clinical needs
(eg, the varying complexity of different diseases). We trained
the models on each of the 5 data splits for up to 2000 epochs
using an early stopping mechanism, meaning that training
was stopped if the validation loss did not improve for more
than 5 consecutive epochs.

We then evaluated the performance of using Mahalanobis
distance as the distance measure for k-NN on latent represen-
tations, focusing on two key questions: (1) Does k-NN with
Mahalanobis distance on latent representations outperform
k-NN with Euclidean distance? (assessing the effectiveness
of Mahalanobis distance), and (2) Is applying Mahalanobis
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distance-based k-NN on latent representations more effective
than applying it directly to raw data? (assessing the effective-
ness of using AEs for EHR data transformation).

We first selected the best-performing hyperparameter
configuration for each AE variant that achieved the high-
est F1-score using Euclidean distance-based k-NN with a
neighborhood size of 5 to transform the raw data into
latent representations. Given that we varied latent dimensions
during training and considering the potentially significant
impact of different latent dimensions on Mahalanobis
distance-based k-NN performance, which could obscure the
actual characteristics of each AE variant, we also selected
the best-performing hyperparameter configuration for each
AE variant with latent-to-input dimension ratio fixed at 0.5
to transform the raw data into latent representations. Due to
the significant computational cost of estimating the Mahala-
nobis distances, we randomly sampled 50% of the AE-trans-
formed training and test datasets from each of the 5-fold data
splits for evaluation on the KUMC dataset and only evalu-
ated the performance with a neighborhood size of 5. Fixed
random seeds were used to ensure the sampled data remained
consistent across all AE variant evaluations. For the MCW
dataset, we randomly sampled 70% of the data following the
same procedure to ensure a comparable sample size to the
sampled KUMC dataset.
Statistical Analysis
One-tailed paired t test was used to assess whether one AE
variant significantly outperformed the other with Eucli-
dean-based k-NN across the 168 different hyperparameter
configurations, with P<.01 considered statistically significant.
Considering that in actual practice, neural network models are
often fine-tuned to achieve optimal or near-optimal perform-
ance, we used an error bar plot to compare the average
performance of the top 5 hyperparameter configurations
for each AE variant, with Euclidean distance-based k-NN
evaluated at neighborhood sizes of 5, 10, 15 and 20. This
represents the upper performance bound of each AE variant in
retrieving similar patients. We used box plots to visualize the
impact of hyperparameter configurations on model perform-
ance. Each box plot shows the performance with Euclidean
distance, where one hyperparameter of interest was fixed at a
specific value while all other hyperparameters varied for each
AE model.

To assess the generalizability of our findings from the
KUMC dataset, we applied Spearman rank correlation to
evaluate the relationship between model performance on the
KUMC dataset and that on the MCW dataset. The Spearman
rho (ρ) value was used to measure the strength and direc-
tion of the monotonic relationship between performances on
the 2 datasets. A higher ρ indicates a stronger correlation,
suggesting good generalizability.

Ethical Considerations
All data were deidentified according to the “Safe Har-
bor” criteria outlined in the Health Insurance Portability
and Accountability Act. The study was determined to be
nonhuman participants research by the University of Florida
Institutional Review Board, as it involved only pre-existing,
deidentified patient records. The data access request was
approved by the Greater Plains Collaborative Data Request
Oversight Committee. This study was determined by the
institutional review boards of the University of Florida,
University of Pittsburgh Medical Center, and University of
Missouri as nonhuman participant research because it only
involved the collection of existing and deidentified patient
medical data. Data use agreements have been executed with
both the Greater Plains Collaborative and the University of
Pittsburgh.

Results
Study Population
The final KUMC dataset encompassed 13,752 unique
patients, while the MCW dataset encompassed 9568 patients.
The AKI onset rates for the 2 datasets were 11.90%
and 9.03%, respectively, and the 1-year mortality rates
were 12.65% and 15.51%, respectively. The KUMC dataset
contained 579 features, including 277 medications, 288
procedures, and 14 lab tests, while the MCW dataset
contained 654 features, including 328 medications, 312
procedures, and 14 lab tests. The details of the 2 datasets
are presented in Table 2.

Table 2. Statistics of the 2 datasets used in the study.
KUMCa MCWb

Cohort size 13,752 9568
Time window January 1, 2016 to December 31, 2016 January 1, 2016 to December 31, 2016
AKI rates, n (%) 1636 (11.90) 890 (9.30)
1-year mortality rates, n (%) 1736 (12.65) 1484 (15.51)
Age (years), median (IQR) 61 (48-71) 61 (48-71)
Female, n (%) 6902 (50.19) 4772 (49.87)
Black race, n (%) 1856 (13.50) 2018 (21.09)
Days from admission to AKIc onset (days), median (IQR) 7 (4-17) 5 (3-7)
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KUMCa MCWb

Number of medication features 277 328
Number of procedure features 288 312
Number of lab test features 14 14

aKUMC: University of Kansas Medical Center.
bMCW: Medical College of Wisconsin.
cAKI: acute kidney injury.

AE Performance With Euclidean Distance
The fine-tuned and fixed model-specific hyperparameters
are provided in Multimedia Appendix 1. On the KUMC
dataset, DAE consistently performed the best across both
prediction targets (ie, AKI onset and 1-year mortality) and
all k-NN neighborhood sizes (P<.001,Multimedia Appendix
2 and Multimedia Appendix 3), followed by vanilla AE and
CAE (Figure 3, Figures S1 and S2 in Multimedia Appendix
4). The average performance of the top 5 hyperparameter

configurations showed a similar trend, with DAE performing
the best, followed by vanilla AE and CAE. For AKI onset
prediction, CAE and SAE outperformed baseline models (ie,
k-NN applied to the raw data and the PCA-transformed data)
at k=15 and k=20 (Figure 3C) and performed comparably to
the baseline models for 1-year mortality prediction (Figure
3D). The average best performance of RAE did not surpass
that of the baseline models for 1-year mortality prediction
(Figure 3D).

Figure 3. F1-scores of Euclidean-distance-based k-nearest neighbor models on the latent representations on the KUMC dataset. (A) F1-scores of
predicting AKI onset. Each box represents the k-nearest neighbor F1-scores with AE models trained with different hyperparameter configurations.
(B) F1-scores of predicting 1-year mortality. (C) The mean F1-scores of the top 5 best AE hyperparameter configurations of predicting AKI onset.
(D) The mean F1-scores of the top 5 best AE hyperparameter configurations of predicting 1-year mortality. AE: autoencoder; AKI: acute kidney
injury; CAE: contractive autoencoder; DAE: denoising autoencoder; PCA: principal component analysis; RAE: robust autoencoder; SAE: sparse
autoencoder.

The performance of AE variants on the MCW dataset
exhibited a clear resemblance to the results obtained on
the KUMC dataset, with DAE consistently outperforming
the other models (P<.001, Figures 4A and B). Correla-
tion analysis showed that, across different hyperparameter
settings, the F1-scores of AE variants were significantly

correlated between both datasets, with P>.80 when predicting
AKI onset (Figure 4C-F) and P>.89 when predicting 1-year
mortality (Figure 4G-J). Similar results were also observed
when using AUPRC and AUROC as metrics (Figures S3 and
S4 in Multimedia Appendix 4).
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Figure 4. F1-scores of Euclidean-distance-based k-nearest neighbor models on the latent representations on the MCW dataset, and the linear
correlation between the F1-scores on the KUMC and that on the MCW datasets. (A) F1-scores of predicting AKI onset. (B) F1-scores of predicting
1-year mortality. (C-F) Concordance in predicting AKI onset with varying neighborhood sizes. (G-J) Concordance in predicting 1-year mortality
with varying neighborhood sizes. AE: autoencoder; AKI: acute kidney injury; CAE: contractive autoencoder; DAE: denoising autoencoder; KUMC:
University of Kansas Medical Center; MCW: Medical College of Wisconsin; RAE: robust autoencoder; SAE: sparse autoencoder.

Impact of Hyperparameters on AE
Performance
On the KUMC dataset, when the neighborhood size was 5
and AKI onset was the prediction target, we observed that
different hyperparameter settings had varying impacts on
model performance. For learning rates, smaller values led to
better performance for vanilla AE, DAE, and RAE. For CAE,
a moderate learning rate yielded better results. At a higher
learning rate (1E-2), the variance in model performance
increased, with the upper bound observed in CAE and SAE
outperforming those of other learning rates (Figure 5A). In
terms of the optimizer, Adamax resulted in a slightly higher
lower bound of model performance, while the upper bound

showed no significant differences across optimizers (Figure
5B). Similarly, for latent dimensionality, higher dimensions
(latent dimension: input dimension=0.75) led to a higher
lower bound of model performance, with no significant
differences observed in the upper bound (Figure 5C). No
significant differences were observed between sigmoid and
rectified linear unit activations (Figure 5D). Highly similar
hyperparameter trends were observed on the KUMC dataset
with neighborhood sizes of 10, 15, and 20 using F1-scores
as the metric (Figures S5-S7 in Multimedia Appendix 4), and
with a neighborhood size of 5 using AUPRC and AUROC as
metrics (Figures S8 and S9 in Multimedia Appendix 4), as
well as on the MCW dataset with a neighborhood size of 5
(Figures S10-S12 in Multimedia Appendix 4).
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Figure 5. Impact of different AE hyperparameters on k-nearest neighbor model performance for predicting acute kidney injury onset on the
University of Kansas Medical Center dataset. Each box plot shows the F1-scores with Euclidean distance and a neighborhood size of 5, when
one hyperparameter was fixed, while varying all other hyperparameters for each AE model. (A) Learning rates; (B) Optimizers; (C) The ratio of
latent representation dimension to input data dimension; (D) Activation functions. AE: autoencoder; CAE: contractive autoencoder; DAE: denoising
autoencoder; RAE: robust autoencoder; SAE: sparse autoencoder.

AE Performance With Mahalanobis
Distance
When comparing the performance of Euclidean distance-
based k-NN and Mahalanobis distance-based k-NN on the
KUMC dataset, we found that Mahalanobis distance-based
k-NN generally performed better than Euclidean distance,

except in a few cases (eg, DAE+NCA in Table 3). These
performance drops primarily occur in NCA and MLKR, while
LMNN consistently outperforms the Euclidean distance.
This conclusion can be well generalized to the performance
when controlling the latent dimension ratio (latent-to-input
dimension ratio=0.5, Table 4) and the results on the MCW
dataset (Multimedia Appendices 5 and 6).

Table 3. F1-scores of k-nearest neighbors (k-NNs) with Euclidean and Mahalanobis distances on the latent representations produced by the
best-performing hyperparameter configuration of each autoencoder (AE) variant on the University of Kansas Medical Center dataset. The values are
presented as mean (SD) of the 5-fold cross-validation.
Model Euclidean distance, mean (SD) Mahalanobis distance, mean (SD)

LMNNa NCAb MLKRc

Raw 0.284 (0.032) 0.314 (0.030) 0.325 (0.070) 0.381 (0.023)
AE 0.330 (0.030) 0.345 (0.046) 0.336 (0.052) 0.333 (0.029)
DAEd 0.364 (0.027) 0.385 (0.025) 0.354 (0.033) 0.374 (0.031)
CAEe 0.338 (0.028) 0.356 (0.035) 0.340 (0.037) 0.371 (0.038)
SAEf 0.332 (0.032) 0.354 (0.028) 0.323 (0.021) 0.325 (0.034)
RAEg 0.344 (0.025) 0.412 (0.037) 0.375 (0.029) 0.401 (0.012)

aLMNN: large margin nearest neighbor.
bNCA: neighborhood components analysis.
cMLKR: Metric Learning for Kernel Regression.
dDAE: denoising autoencoder.
eCAE: contractive autoencoder.
fSAE: sparse autoencoder.
gRAE: robust autoencoder.

When comparing the performance of Mahalanobis distance-
based k-NN on latent representations versus directly on raw
data, no consistent pattern was observed. On the KUMC
dataset, in most cases, Mahalanobis distance-based k-NN

on latent representations outperformed its performance on
the raw data. However, there was no fixed pattern for
the optimal combination of AE variants and Mahalanobis
distance estimation algorithms. When latent dimensions were
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not controlled, the combination of RAE and all 3 investigated
Mahalanobis distance algorithms achieved the best perform-
ance (Table 3). In contrast, when latent dimensions were
controlled, the combination of DAE with LMNN and NCA
and the combination of RAE with MLKR performed the best

(Table 4). On the MCW dataset, limited cases showed that
Mahalanobis distance-based k-NN on latent representations
outperformed its application on the raw data, indicating that
this pattern is data-dependent (Multimedia Appendices 5 and
6).

Table 4. F1-scores of k-nearest neighbors (k-NNs) with Euclidean and Mahalanobis distances on the latent representations produced by the
best-performing hyperparameter configuration, constrained by a latent-to-input dimension ratio of 0.5 for each autoencoder (AE) variant, on the
University of Kansas Medical Center (KUMC) dataset.
Model Euclidean distance, mean (SD) Mahalanobis distance, mean (SD)

LMNNa NCAb MLKRc

Raw 0.284 (0.032) 0.314 (0.030) 0.325 (0.070) 0.381 (0.023)
AE 0.320 (0.027) 0.368 (0.039) 0.330 (0.009) 0.337 (0.025)
DAEd 0.353 (0.025) 0.378 (0.032) 0.360 (0.016) 0.348 (0.021)
CAEe 0.337 (0.016) 0.345 (0.023) 0.342 (0.029) 0.363 (0.028)
SAEf 0.323 (0.040) 0.357 (0.051) 0.332 (0.039) 0.317 (0.035)
RAEg 0.291 (0.030) 0.327 (0.048) 0.359 (0.029) 0.396 (0.032)

aLMNN: large margin nearest neighbor.
bNCA: neighborhood components analysis.
cMLKR: Metric Learning for Kernel Regression.
dDAE: denoising autoencoder.
eCAE: contractive autoencoder.
fSAE: sparse autoencoder.
gRAE: robust autoencoder.

Discussion
Main Findings
This study makes significant contributions in three main
areas: (1) it is the first to comprehensively evaluate the
performance of different AEs specifically for EHR-based
similar patient retrieval, providing critical insights to inform
the design of AE-based patient representation learning
models; (2) it is the first study to apply Mahalanobis
distance to patient representations learned by AEs for similar
patient retrieval, whereas previous studies have primarily
relied on Euclidean distance; and (3) by establishing a fair
and comprehensive evaluation framework, this study offers
valuable guidance for AE model selection and hyperpara-
meter tuning, contributing to the advancement of patient
representation learning in EHR research.

Our findings indicate that DAE consistently outperformed
other AEs, followed by vanilla AE and CAE, with RAE
performing the worst. The superior performance of DAE
likely stems from its mechanism of introducing noise into
the original data during training, which encourages the model
to prioritize encoding meaningful latent nonlinear relation-
ships that are important for disease and outcome prediction,
rather than focusing on noise. This process helps the model
remain robust to noise, enabling more refined and abstracted
patient representations, which improve the performance of the
downstream k-NN model.

Other AE mechanisms, such as those in CAE and
SAE, are also designed to produce effective representations
and have performed well in regression and classification
tasks in previous studies [17,29]. However, they were less

effective than DAE in retrieving similar patients. For SAE,
the assumed Bernoulli distribution over the latent represen-
tations may mismatch the continuous outputs of the hid-
den layer, conflicting with the need for sufficient active
neurons to preserve key data information. This trade-off
between enforcing sparsity and preserving key data infor-
mation can significantly degrade downstream k-NN perform-
ance, especially on complex data. The RAE was originally
designed for image classification tasks [28] and used an MCC
loss rather than MSE to make the model more robust to
outliers. However, this approach may not be well-suited to
EHR data, which are often high-dimensional, sparse, noisy,
and biased, resulting in its underperformance compared with
other AE variants. Moreover, one of the prediction targets
was AKI onset. Patients at high risk for developing AKI
may show significant differences in lab results and medica-
tions compared with the general population. However, the
MCC loss may weaken the encoding of this information in
the latent representation, making the latent representations of
high-risk patients with AKI less distinguishable from those in
the normal population, which in turn leads to inaccuracies in
similar patient retrieval (ie, higher false negative rates).

While both DAE and RAE are designed to enhance
model robustness to noise, their underlying mechanisms differ
significantly. DAE achieves this by explicitly injecting noise
into the input data and training the model to “denoise” it,
thereby encouraging the model to focus on capturing the
intrinsic structure of the data. In contrast, RAE aims to
improve robustness by making the model less sensitive to
the input’s tail distribution, which reduces the influence of
outliers. However, this approach may prevent the model from
fully capturing the true data distribution. This fundamental
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difference could be a key factor contributing to the perform-
ance gap observed between DAE and RAE in the specific
scenarios examined in this study.

Interestingly, while previous research suggests AE models
are highly sensitive to hyperparameter configurations [24],
our findings indicate that for the task of retrieving similar
patients, only the learning rate significantly affected model
performance. Specifically, smaller learning rates resulted in
stronger lower-bound performance, as shown in Figure 5.
However, larger learning rates (eg, 1E-2) could help the
model escape local minima in certain situations, although not
always guaranteed. Given the longer training times associated
with smaller learning rates, we recommend using a moderate
learning rate (eg, 1E-3 or 1E-4).

The impact of latent dimensions on model perform-
ance was minimal. Even with smaller latent dimensions
(latent dimension to input dimension ratio=0.02), the
latent representations remained expressive enough to ensure
accurate patient similarity estimation. As shown in Figure 5,
increasing the latent dimensions to accommodate additional
information only slightly improved the model’s lower-bound
performance. However, this conclusion is highly dataset-
dependent, and other datasets may require larger latent
dimensions to capture more information.

Regarding the application of Mahalanobis distance to
latent representations, it outperformed Euclidean distance in
most cases. Mahalanobis distance applies a low-dimensional
linear transformation to map the representations into a space
where the margin between different classes is maximized
while representations of the same class are pulled closer
together, thereby enhancing the discriminative power of the
downstream k-NN model [41]. This result was expected,
as Mahalanobis distance estimation treats latent representa-
tions as a separate dataset for learning appropriate linear
feature transformations and distance measures. Compared
with Euclidean distance, Mahalanobis distance is more likely
to provide a more accurate estimation of vector similarity
both within and between classes.

However, comparisons between Mahalanobis distance
estimation algorithms on raw data and latent representations
revealed that AE transformations of raw data did not always
guarantee better performance. For example, AEs significantly
improved the performance of Mahalanobis distance-based
k-NN on the KUMC dataset (Tables 3 and 4), but this
improvement was limited on the MCW dataset (Multimedia
Appendices 5 and 6). There can be several reasons behind
this. First, differences in the characteristics of the datasets
could play a major role. Variations in feature distributions,
data sparsity, or sample size between the KUMC and MCW
datasets may affect the effectiveness of AEs in learning
meaningful latent representations. If the KUMC dataset
contains clearer structure or more consistent patterns, AEs
may be able to capture more relevant patient representations
compared with the MCW dataset.

Additionally, the alignment between the AE-learned latent
representations and the assumptions underlying Mahalanobis
distance could also contribute to the observed differences.

AEs are typically optimized for reconstruction rather than
directly preserving class separability or the local neighbor-
hood structure needed for effective distance-based retrieval.
As a result, the learned representations may not always be
well-suited for Mahalanobis distance algorithms, particularly
if the AE fails to retain key relationships present in the raw
data (eg mapping all data points into an indistinguishable
cluster in the latent space). This suggests that whether this
complex transformation process enhances model performance
is highly data-dependent.

It is also important to note that Mahalanobis distance
estimation algorithms tend to have higher computational
complexity compared with Euclidean distance. For example,
the loss function of LMNN is non-convex, requiring the
use of semidefinite programming techniques to address this
challenge [37]. Therefore, while the combination of “AE
+ Mahalanobis distance” can achieve optimal performance
in certain cases, it is data-dependent and comes at the
cost of increased computational complexity. To mitigate this
burden, the dimensionality of the latent representation can
be intentionally constrained, provided it maintains sufficient
discriminative power for the downstream task.
Limitations
This study only investigated swap noise for DAE; other
types of noise, such as Gaussian noise, may lead to different
behaviors. Additionally, we only examined AKI onset and
1-year mortality, so the models’ performance may differ for
other prediction tasks. For example, other studies have shown
that DAE outperforms vanilla AE and RAE on multiple
datasets and tasks, though not in all cases [29]. Next, this
study only compared AE variants trained in an unsupervised
manner. Incorporating labels during training may help learn
more effective latent representations compared with purely
unsupervised approaches. Finally, while AEs can effectively
capture complex patterns in high-dimensional clinical data,
their latent representations are often difficult to interpret
clinically, which may limit their utility in real-world decision-
support settings. A disentangling framework should be further
investigated and incorporated into the current AE model to
enhance interpretability by isolating clinically meaningful
latent factors, thereby facilitating more transparent integration
into clinical decision support systems[42].
Conclusions
In this study, we assessed the performance of 5 AE
variants—vanilla AE, DAE, CAE, SAE, and RAE—on
2 real-world EHR datasets, focusing on retrieving simi-
lar patients for personalized clinical decision-making. The
study also explored the impact of different hyperparameter
configurations on AE variants. Our results presented three
key findings: (1) DAE generally performed best in retriev-
ing similar patients when paired with Euclidean distance
(P<.001); (2) learning rates had the greatest impact on the
performance of AE variants; and (3) applying Mahalanobis
distance-based k-NN on latent representations can outperform
Euclidean distance-based k-NN, although transforming raw
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data with AE variants did not always guarantee improved
performance of Mahalanobis distance-based k-NN.
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