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Abstract

Background: Valuable insights gathered by clinicians during their inquiries and documented in textual reports are often
unavailable in the structured data recorded in electronic health records (EHRs).

Objective: This study aimed to highlight that mining unstructured textual data with natural language processing techniques
complements the available structured data and enables more comprehensive patient phenotyping. A proof-of-concept for patients
diagnosed with specific autoimmune diseases is presented, in which the extraction of information on laboratory tests and drug
treatments is performed.

Methods: We collected EHRs available in the clinical data warehouse of the Greater Paris University Hospitals from 2012 to
2021 for patients hospitalized and diagnosed with 1 of 4 immune-mediated inflammatory diseases: systemic lupus erythematosus,
systemic sclerosis, antiphospholipid syndrome, and Takayasu arteritis. Then, we built, trained, and validated natural language
processing algorithms on 103 discharge summaries selected from the cohort and annotated by a clinician. Finally, all discharge
summaries in the cohort were processed with the algorithms, and the extracted data on laboratory tests and drug treatments were
compared with the structured data.

Results: Named entity recognition followed by normalization yielded F1-scores of 71.1 (95% CI 63.6-77.8) for the laboratory
tests and 89.3 (95% CI 85.9-91.6) for the drugs. Application of the algorithms to 18,604 EHRs increased the detection of antibody
results and drug treatments. For instance, among patients in the systemic lupus erythematosus cohort with positive antinuclear
antibodies, the rate increased from 18.34% (752/4102) to 71.87% (2949/4102), making the results more consistent with the
literature.

Conclusions: While challenges remain in standardizing laboratory tests, particularly with abbreviations, this work, based on
secondary use of clinical data, demonstrates that automated processing of discharge summaries enriched the information available
in structured data and facilitated more comprehensive patient profiling.

(JMIR Med Inform 2025;13:e68704) doi: 10.2196/68704
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Introduction

Background
Since the 2010s, the widespread adoption of electronic health
records (EHRs) and health data warehouses has enabled the
development and application of new algorithms for patient
phenotyping, which corresponds to the extraction of a set of
observable patient characteristics, including laboratory test
results, symptoms, diseases, and past or current treatments [1].
The automated extraction of these characteristics from
large-scale databases supports predictive risk assessments,
preselection for therapeutic trials, and pharmacovigilance
analyses [2-4].

EHR data is typically categorized into 2 types: structured data
and unstructured data. Structured data refers to directly
queryable numerical values, such as laboratory test results or
International Classification of Diseases, Tenth Revision
(ICD-10) codes, while unstructured data encompasses raw
clinical texts and medical imaging. Structured data from clinical
warehouses is often incomplete, capturing only intrahospital
records and excluding extrahospital information. For instance,
a patient’s blood test conducted at an external laboratory before
hospitalization might not be included. In addition, historical
biological results in clinical databases are often limited to a few
years. This is particularly problematic for conditions like
autoimmune diseases, where historical immunologic results
critical to the initial diagnosis are often documented only in
clinical text rather than in structured data. Similarly, details
about prior treatments are usually found only in textual records.
Valuable information that is not present in structured data is
often found in observations recorded in the discharge summaries
[5]. The application of automated text analysis to this
unstructured text, in conjunction with structured data, has
already demonstrated increased effectiveness in predicting
patients’ clinical courses [6-11].

Transforming unstructured data into structured formats involves
multiple natural language processing (NLP) tasks. In this
research, we primarily concentrate on named entity recognition
(NER) and normalization, which are fundamental for extracting
meaningful information from large volumes of unstructured
clinical text.

NER refers to locating and classifying terms into predefined
categories, such as drug name, laboratory test, or medical
disorder. Traditional NER methods often depend on
dictionary-based term-matching techniques, which require
meticulously maintained lexical resources [12]. However,
maintaining these resources can be both labor-intensive and
error-prone. A more effective method treats NER as a
sequence-labeling task using tagging systems like the beginning,
inside, outside, unit, and last scheme, which is widely recognized
in biomedical NER for its ease of implementation and efficiency
[13,14]. Sequence labeling models, particularly conditional

random fields [15], have been extensively used for NER. When
combined with transformer-based architectures like bidirectional
encoder representations from transformer (BERT), these models
have set state-of-the-art performance benchmarks for NER in
clinical and biomedical text analyses [16-19].

Following NER, the normalization process assigns standard
codes (unique identifiers that correspond to concepts within
established medical terminologies) to the detected terms. For
example, standard codes, such as concept unique identifiers
(CUIs) from the Unified Medical Language System (UMLS)
[20], can be used to map detected entities like drug or laboratory
tests to their corresponding concepts. Common normalization
strategies often rely on exact or approximate string matching
against predefined dictionaries. Tools, such as KnowledgeMap
Concept Identifier [21], MetaMap [22], MedLEE [23], MedEx
[24], HITEx [25], and cTAKES [26] have been widely adopted
in phenotyping models [27-29]. The emergence of deep
contextual embeddings, notably BERT [30], has revolutionized
NLP methodologies, including normalization tasks. Current
state-of-the-art approaches heavily use transformer-based
encoders pretrained on domain-specific corpora, demonstrating
substantial improvements in normalization [31-33].

Although large language models like GPT-4 [34] hold promise
for biomedical applications, their current performance in tasks
like NER and normalization remains limited [35]. Moreover,
implementing these models at scale to extract phenotypes from
large volumes of clinical documents poses considerable cost
challenges.

Goal of the Study
The aim of the study was to provide a proof-of-concept for
end-to-end patient phenotyping from their EHRs. Patient
phenotyping refers to the process of characterizing patients
based on their clinical features, such as clinical diagnoses,
laboratory results, or drug treatments. Secondary uses of EHRs
require the application of various processes to transform the
data into meaningful variables. In this research, we focused
specifically on leveraging discharge summaries (written in
French) through NLP techniques to enrich the information
contained in the structured data. We restricted our study to
patients hospitalized for one of the following immune-mediated
inflammatory diseases: systemic lupus erythematosus (SLE),
systemic sclerosis, antiphospholipid syndrome (APS), and
Takayasu arteritis (TA). As we analyzed autoimmune diseases,
we also restricted phenotyping to the analysis of autoantibodies
(laboratory tests) and immunosuppressive therapies (drugs),
which are central to the management of these diseases. As shown
in Figure 1, laboratory tests and drug therapies were extracted
from both structured and unstructured data. Then, to analyze
the data jointly, a standard concept code was assigned to each
laboratory test using the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT; US edition) [36] and
drug using the Anatomical Therapeutic Chemical (ATC)

JMIR Med Inform 2025 | vol. 13 | e68704 | p. 2https://medinform.jmir.org/2025/1/e68704
(page number not for citation purposes)

Remaki et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


classification [37]. Our hypothesis was that incorporating the
results of laboratory tests and drug treatments recorded in
patients’ discharge summaries would complement the

information available in structured data and enable more
in-depth, interoperable phenotyping of patients, while remaining
reliable.

Figure 1. Overview of the end-to-end patient phenotyping pipeline. Structured and unstructured data are extracted from electronic health records,
enabling large information retrieval, refining cohort selection, and facilitating more robust patient comparisons. ATC: Anatomical Therapeutic Chemical;
SNOMED: Systematized Nomenclature of Medicine Clinical Terms.

Methods

Selected Diseases
As a proof of concept, we focused on 4 immune-mediated
inflammatory diseases: SLE, systemic sclerosis, APS, and TA.

SLE is an autoimmune disease that mainly affects the skin,
joints, and kidneys [38,39]. According to the revised 2019
EULAR/ACR classification criteria for SLE, patients are eligible
for SLE criteria only if they have a positive antinuclear antibody
≥1/80 at least once. Anti-dsDNA and anti-Smith autoantibodies
with high specificity for SLE are also included in the
classification criteria for SLE. Therefore, we have chosen these
3 antibodies to identify SLE patients. Hydroxychloroquine,
glucocorticoids, mycophenolate mofetil, cyclophosphamide,
and belimumab are key treatments of SLE [40] and have been
chosen to identify patients with SLE.

Systemic sclerosis is a rare autoimmune disease, inducing skin
fibrosis, digestive disorders, such as gastroesophageal reflux
disease and chronic pseudoocclusive syndrome, interstitial lung
involvement, and sometimes inaugural renal crisis. Classification
criteria are also based on specific autoantibodies, including
anti-Scl-70, anticentromere, and anti-RNA polymerase III, which
we have chosen to analyze here [41]. Therapeutic management
is also based on glucocorticoids and immunosuppressive drugs,
such as mycophenolate mofetil.

APS is a systemic autoimmune disease defined by the
thrombosis or pregnancy morbidity in the presence of persistent
antiphospholipid autoantibodies, lupus anticoagulant, IgG or
IgM anticardiolipin, IgG or IgM anti-β2glycoprotein-1
antibodies. Treatment is based on curative anticoagulation with
heparin, low-molecular-weight heparin, and antivitamin K [42].

TA is an inflammatory disease of the large arteries, leading to
arterial stenosis in young people. C-reactive protein is used as
an indicator of inflammation and disease activity in TA.
Treatment is based on immunosuppressive therapies, such as
glucocorticoids, and biologic, such as methotrexate or

tocilizumab. Therefore, we have chosen to focus our analysis
on these treatments.

Finally, in the context of the immunosuppressive treatments
proposed, patients are at greater risk of infection; therefore,
vaccination, particularly against pneumococcal and influenza
infections, is recommended. Hence, we also looked for this
information in the texts.

Dataset Selection
The dataset used in this study comes from the clinical data
warehouse (CDW) of the University Hospitals of Greater Paris
(Assistance publique-hôpitaux de Paris; AP-HP). The CDW
brings together information on all patients followed in the 39
teaching hospitals in the Paris region (>22,000 beds and 1.5
million hospitalizations per year) that use a common EHR
software, ORBIS Dedalus Health care. This software has been
gradually implemented in the 39 hospitals since 2012.

The dataset was extracted from the CDW research database, in
the integrating biology and the bedside format [43]. The
inclusion criteria for the study were as follows: all patients aged
>15 years with SLE, systemic sclerosis, APS, or TA who had
at least one stay at AP-HP hospitals initially from July 1, 2017,
to December, 31, 2020. Patients in the database were selected
in 2 ways: by the ICD-10 codes of these 4 pathologies and by
keywords present in the medical reports (using regular
expression matching), as summarized in Table S1 in Multimedia
Appendix 1 [20,32,33,36,37,44-51]. For these patients, the data
available were demographic data; textual data, including all
full-text medical reports, laboratory tests performed during
patients’ stay, drug prescription, and administration when
available; and medico-administrative coding data (ICD-10).
The extraction covered all medical departments that could
potentially manage patients with the 4 pathologies of interest:
internal medicine and clinical immunology, nephrology,
rheumatology, dermatology, pneumology, neurology,
gastroenterology, oncology, hematology, infectious diseases,
and emergency and intensive care.
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As this study involves the secondary use of real-life health data,
from this large integrating biology and bedside extraction, we
limited the study to EHRs with at least one ICD-10 code
corresponding to the diseases studied (SLE, systemic sclerosis,
APS, or TA) and at least one recorded hospital discharge
summary, as these are validated by a senior clinician.
Subsequently, a subset of this study cohort of 103 hospital
discharge summaries, each corresponding to a different patient,

was randomly selected and annotated by a clinician (CG),
following the same annotation rules as proposed by the national
NLP clinical challenges 2022 [44]. Details regarding this
annotation process are provided in the Annotation Guidelines
section of Multimedia Appendix 1. The global approach of this
work was to build, train, and validate NLP algorithms on the
annotated subset before applying it to the full study cohort.
Figure 2 presents the cohort selection process.

Figure 2. Cohort selection flowchart. Starting with integrating biology and bedside extraction of 1,947,870 stays (38,384 patients), the cohort was
filtered to include stays with at least 1 International Classification of Diseases, 10th Revision (ICD-10) code corresponding to the studied diseases and
at least 1 recorded hospital discharge summary. A final study cohort of 18,604 stays (6891 patients) was created, with 103 randomly selected discharge
summaries annotated for training and validation purposes. NLP: natural language processing.

End-to-End Pipeline

Overview
The system presented in this work required 4 NLP tasks: (1)
NER: this task identified and classified entities of interest
mentioned in the text into predefined categories. The possible

categories included drug name, drug strength, drug dosage, drug
form, laboratory test name, and complete laboratory test. (2)
Qualification: this task involved assigning predefined qualifiers
to the recognized named entities. Only entities classified as
“drug name” by the NER algorithm were qualified There were
4 qualifiers [52]: action (start, stop, increase, decrease, unique
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dose, and unknown), temporality (present, past, and future),
certainty (certain, hypothetical, and conditional), as well as
negation (true and false). (3) Measurement extraction: this task
extracted and standardized the value and unit contained in the
“complete laboratory test” entities detected by the NER
algorithm. (4) Normalization: this task assigned predefined
standard concepts to the recognized named entities. Each entity
classified as “drug name” by the NER algorithm was assigned
a code from the ATC classification system [37]. Each entity
classified as “laboratory test name” by the NER algorithm was
assigned a CUI of the UMLS [20] restricted to the laboratory
procedure semantic type and the SNOMED CT US edition
vocabulary [36]. As described in Figures 3 and Figure 4, the
laboratory test pipeline and the drug pipeline involved both
NER and normalization, while measurement extraction only

concerned the laboratory test pipeline and qualification only
concerned the drug pipeline.

All the work presented in this paper was programmed in Python.
Tabular data were processed with Spark (version 2.4.8) and
distributed over 160 central processing units in parallel. This
computing process is scalable over a large amount of data. Then,
the cohorts were analyzed using Pandas (version 1.3.5).
Inference and training of the NLP algorithms have been achieved
on a V100 graphics processing unit. The code developed to run
the experiments is freely available in a GitHub repository:
Aremaki/BioMedics [53]. The code makes extensive use of
EDS-NLP (version 0.13.0) [54], a collaborative NLP framework
that aims primarily at building hybrid multitask NLP pipelines
and extracting information from French clinical notes. It has
also been made publicly available under an open-source license
(BSD 3-clause): aphp/edsnlp.

Figure 3. Diagram of the laboratory test pipeline. It takes raw text as input, which is processed by 3 algorithms in total. It starts with the extraction and
classification of relevant terms into 2 categories: laboratory test name and complete laboratory test. Then, the measurements associated with the complete
laboratory tests are extracted and standardized into 2 components: value and unit. Finally, the extracted laboratory test names are normalized to the
concept unique identifiers (CUIs) of the Unified Medical Language System (UMLS). HBV: hepatitis B virus; HCV: hepatitis C virus.
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Figure 4. Diagram of the drug pipeline. It takes raw text as input, which is processed by 3 algorithms in total. It starts with the extraction and classification
of relevant terms into 4 categories: name, strength, dosage, and form. At the same time, drugs are also qualified with several possible values: action
(start, stop, increase, decrease, unique dose, and unknown), temporality (present, past, and future), certainty (certain, hypothetical, and conditional),
and negation (true and false). Then, the extracted drugs are normalized according to the Anatomical Therapeutic Chemical (ATC) classification system.
Cp: capsule.

NER and Qualification Tasks
In the NER and qualification step, we experimented with
different methods: a rule-based method as a preliminary
approach, using the terms provided by the standard
terminologies directly for exact matching. The ATC
classification system [37] was used for drugs, and the SNOMED
CT US edition vocabulary [36] was used for laboratory tests.
A detailed description of the dictionaries is provided in Table
S2 in Multimedia Appendix 1.

As a second approach, we experimented with a deep neural
network architecture, described in Figure 5. The model consists
of 2 BERTs encoders [30,55] followed by 2 convolution neural
networks [56]. The first one is followed by a conditional random
fields decoder [15] and a softmax block, which outputs
probability vectors based on the beginning, inside, outside, unit,
and last tagging scheme [14] to perform NER. The second is
followed by a mean pooling layer and a softmax block to
perform entity qualification. Several pretrained language models
such as CamemBERT-EDS [45], CamemBERT-base [46],
CamemBERT-bio [47], and DrBERT [48] have been compared.
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Figure 5. Diagram of the named entity recognition and qualification architecture for laboratory tests and drugs entities. BERT: bidirectional encoder
representations from transformer; CNN: convolution neural network; CRF: conditional random field.

To select the best approach, precision, recall, and F1-score were
evaluated on 20 AP-HP discharge summaries. The performance
of the rule-based method is presented in Table S3 in Multimedia
Appendix 1, and the performance of the neural network method
of each pretrained language model is presented in Tables S4
and S5 in Multimedia Appendix 1. The neural network approach
using CamemBERT-EDS [45] was selected as the final model
because it demonstrated superior performance compared to the
other methods. Parameters of the architecture and fine-tuning
are outlined in Table S6 in Multimedia Appendix 1.

Measurement Extraction Task
Extraction and standardization of the numerical value and unit
were carried on the outputs of the NER step, which extracts the
complete laboratory test entity from the text in a single block
(laboratory test name, numerical value, and unit). The extraction
and standardization were achieved with a rule-based algorithm
using regular expressions. The algorithm steps are described in
Figure 6: (1) the laboratory test names were removed from the
complete laboratory test entity, (2) regular expressions were
designed to extract the numerical or qualitative value and the
unit, and (3) qualitative values (eg, “positive,” “negative,” or
“normal”) were standardized into graded numbers (1.0, 0.0, or
0.5), while units were converted to conventional standards.
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Figure 6. Diagram of the laboratory test measurement extraction process. HBV: hepatitis B virus; HCV: hepatitis C virus.

Normalization Task
The aim of the normalization step was to determine the standard
code for each detected entity classified as “laboratory test name”
and “drug name.” As described in Figure 7, for a given detected
term, similarity scores were computed for all terms of a
knowledge dictionary. The resulting standard code corresponded
to the term with the highest similarity score. For drugs, the
knowledge dictionary is an aggregation of 2 open-source
dictionaries of drug names with their corresponding ATC codes:
the UMLS [20], restricted to the French ATC vocabulary [37],
and the Unique Drug Interoperability Repository created by the
French National Agency for Medicines and Health Products
Safety [57]. For laboratory tests, the knowledge dictionary

consists of all the French and English synonyms of the UMLS
[20] restricted to the laboratory procedure semantic type and
the SNOMED CT US edition vocabulary [36]. We experimented
with 2 types of score computation: (1) fuzzy matching methods
that directly compared word characters: Jaro-Winkler Distance
[49] and Levenshtein distance [50], as well as (2) neural
network–based methods that compute cosine similarity scores
between the embeddings of the words: CODER-all [33] and
SapBERT-all [32]. Table S7 in Multimedia Appendix 1 presents
the performance of each method. The neural-based method with
CODER-all seems to be significantly better for laboratory tests.
However, for drugs, there is no significantly better solution, so
we used the Jaro-Winkler Distance [49] method because it is
less computationally expensive.
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Figure 7. Diagram of the normalization process. In this example, the best match of “paracetomol,” written with a typo, is “paracetamol,” which provides
the correct Anatomical Therapeutic Chemical (ATC) code.

Ethical Considerations
The research protocol for this project was approved in 2020 by
the institutional review board of Assistance Publique – Hôpitaux
de Paris (AP-HP) (20-93). All data used in this study were
collected as part of routine medical care, and their use for
research purposes falls under the ethical guidelines of the
institutional review board. All patient data were pseudonymized
to ensure privacy and comply with data protection regulations.
No financial compensation was provided, as the study relied
solely on retrospective data from electronic health records.

Results

Dataset Description
The number of patients, hospitalizations, and discharge
summaries for each disease of the study cohort are given in
Table 1. The age distribution and the distribution of admission
start dates for each disease are presented in Figure S1 in
Multimedia Appendix 1.

Table 1. Data description of the study cohort. Number of patients, hospitalizations, and discharge summaries for each studied disease. The number of
discharge summaries is higher than the number of hospitalizations, as patients may change departments several times during the same stay (eg, be
transferred to an intensive care unit, etc).

Number of discharge summariesNumber of hospitalizationsNumber of patientsDisease

238018181059Antiphospholipid syndrome

12,50010,4454102Lupus

758564552031Systemic sclerosis

965833252Takayasu arteritis

We performed various analyses on the extracted data combined
with the structured data from the cohort. The results are reported
in 2 sections. The first section presents the performance of the
NLP algorithms on the annotated subset of 103 discharge
summaries. The second section is about the application of these
algorithms to the 22,194 discharge summaries included in the
study cohort. It described the contribution of unstructured data
to structured data.

NLP Performance

Overview
The performance of the model was evaluated on 4 main tasks:
NER, qualification, measurement extraction, and normalization.
This evaluation was conducted using 2 datasets: 103 manually
annotated discharge summaries from the study cohort and the
publicly available Quaero FrenchMed corpus [51]. Performance
metrics, including precision, recall, and F1-score, were calculated
and reported along with 95% CIs derived using the empirical
bootstrap method at the discharge summary level [58]. It is
important to note that while NER and qualification required
annotated data for both training and testing, measurement

extraction and normalization only required annotated data for
testing. Therefore, all 103 discharge summaries were annotated
for NER and qualification, with 83 (80.6%) randomly selected
for training and the remaining 20 (19.4%) used for testing. These
20 (19.4%) test documents were further annotated for
measurement extraction. Of these 20 documents, 11 (10.7%)
were additionally annotated for normalization, resulting in 668
annotated entities, which was a more time-consuming process.

NER Task
Our model was evaluated for the NER task on both the AP-HP
annotated discharge summaries and the Quaero FrenchMed
corpus [51]. The results of our annotated dataset containing 103
discharge summaries from AP-HP are presented in Table 2.
Precision, recall, and F1-score were measured in a “strict” way,
that is, a true positive result was obtained when a predicted
entity and a gold entity had the exact same boundaries and label.
The model achieved an overall F1-score of 88.8. The results on
the Quaero FrenchMed corpus [51] are presented in Tables S8
and S9 in Multimedia Appendix 1. The model achieved an
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overall F1-score of 66.2 for MEDLINE corpus and 71.71 for the European medicines agency corpus.

Table 2. Performance of the model for named entity recognition on University Hospitals of Greater Paris (Assistance Publique-Hôpitaux de Paris)
discharge summaries. The model was trained on 83 annotated discharge summaries and tested on 20 discharge summaries. Each result was bootstrapped
by discharge summary to provide a 95% CI given inside the brackets.

F1-score (95% CI)Recall (95% CI)Precision (95% CI)Number of entities (95% CI)Label

90.3 (88.2-92.3)89.9 (87.5-92.2)90.6 (88.5-92.7)1292 (1603-1010)Laboratory test name

84.9 (82.1-87.5)83.6 (79.1-87.5)86.2 (84.3-88.3)1041 (1323-793)Complete laboratory test

91.6 (87.5-95.1)92.5 (88.4-95.7)90.8 (85.8-95.4)585 (731-454)Drug name

87.7 (84.0-92.1)86.2 (81.7-90.8)89.1 (85.4-94.1)276 (368-194)Drug dosage

90.1 (85.6-94.0)94.1 (91.5-97.6)86.5 (78.8-93.4)170 (247-106)Drug form

93.5 (89.3-96.6)93.8 (89.2-97.6)93.1 (87.7-97.0)130 (196-77)Drug strength

88.8 (87.1-90.5)88.5 (86.4-90.5)89.1 (87.5-90.8)3494 (4194-2885)Overall

Qualification Task
The model was evaluated for the qualification task and achieved
an F1-score of 78.8 on our annotated dataset containing 103
discharge summaries from AP-HP. The results are presented in
Table S10 in Multimedia Appendix 1. On the test set, the model
achieved an overall F1-score of 78.8.

Measurement Extraction Task
The model was evaluated for the measurement extraction task
on 20 annotated discharge summaries from AP-HP. Precision,
recall, and F1-score are presented in Table S11 in Multimedia
Appendix 1 and were measured in a “strict” way: a true positive
result was obtained when a predicted measurement and a gold
measurement had the same value and unit. The algorithm
obtained an F1-score of 96.7.

Normalization Task
The rule-based algorithm for drug name normalization and the
deep learning algorithm for the laboratory test name
normalization were both evaluated on 11 annotated discharge

summaries from AP-HP, 3 documents from European medicines
agency, and 833 titles from MEDLINE [51]. For the evaluation,
a true positive result was obtained when the predicted code of
an entity was part of the list of annotated gold standard codes.
Precision, recall, and F1-score are presented in Table S12 in
Multimedia Appendix 1. On our dataset of discharge summaries,
the rule-based method for drug names achieved an F1-score of
92.9 and the neural network–based method used for laboratory
tests achieved an F1-score of 82.2.

End-to-End Pipeline
The model was evaluated on the NER and normalization task
using 11 annotated discharge summaries from AP-HP. Precision,
recall, and F1-score were measured in a “strict” way: a true
positive result was obtained when a predicted entity and a gold
entity had exactly the same boundaries and label and the
predicted standard code of the entity was part of the list of
annotated gold standard codes. Precision, recall, and F1-score
are presented in Table 3. We obtained an F1-score of 71.1 for
laboratory tests and 89.3 for drug names.

Table 3. Performance of the models for named entity recognition and normalization tasks on University Hospitals of Greater Paris (Assistance
Publique-Hôpitaux de Paris) discharge summaries. The model was tested on 11 discharge summaries. Each result was bootstrapped by discharge
summary to provide a 95% CI given inside the brackets.

F1-score (95% CI)Recall (95% CI)Precision (95% CI)Number of entities (95% CI)Label

71.1 (63.6-77.8)70.2 (59.7-77.9)72.0 (65.3-79.1)356 (204-548)Laboratory test name

89.3 (85.9-91.6)86.9 (82.9-90.0)91.9 (88.9-93.5)312 (206-424)Drug name

Clinical Application
For each studied disease (SLE, systemic sclerosis, APS, and
TA), each studied antibody, and each studied drug treatment,
we reported the number of patients for whom we extracted a
positive antibody or a prescribed drug treatment from both the
structured and unstructured data of the study cohort. Lists of
CUI codes for the studied antibodies and ATC codes for drug
treatments are available in Tables S9 and S10 in Multimedia
Appendix 1. We were particularly interested in the number of
patients for whom we extracted positive antibodies or drug
treatments from the unstructured data of their EHRs that were
not available in the structured data. In the analysis of the

unstructured data, only entities explicitly qualified as “certain”
and not negated were retained.

Laboratory Test Results
Table 4 describes the number of antibody-positive patients for
each disease, where positivity was determined either by test
values exceeding reference ranges or by explicit interpretation
of the test as positive. The first column shows the number of
patients for whom we extracted at least 1 positive test from the
structured data of their EHR. The second column shows the
number of patients for whom we extracted at least 1 positive
test from both the structured and unstructured data. The third
column shows the number of patients for whom we extracted
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at least 1 positive test from the unstructured data, but only
among patients without positive tests extracted from the
structured data.

To ensure the reliability of the detected autoantibodies across
the entire study cohort, we conducted a second evaluation
focused specifically on the studied autoantibodies. While the
precision was reported in Table 3 as 72% in the general case
for all laboratory tests, this additional analysis aimed to ensure
comparable performance for the autoantibodies studied. For
this evaluation, we randomly selected 10 positively detected
entities for each studied autoantibody, yielding a total of 110
entities. These entities, identified through NER, measurement
extraction, and normalization, were reviewed by a clinician.
The review identified 3 errors, resulting in a precision of 97.3%.

Finally, to identify potential errors made by the algorithm, we
examined EHR cases in which a positive autoantibody appeared
in the structured data but was not detected in the unstructured
data. For each antibody, we randomly selected 10 EHRs (for
some antibodies, fewer than 10 documents met this criterion,
so we included all available cases). A clinician reviewed 63
discharge summaries from the EHRs and identified 2 types of
algorithmic errors: (1) in 23 (26.5%) summaries, the algorithm
either failed to detect the relevant antibody or did not normalize
it correctly; and (2) in the remaining 40 (63.5%) summaries,
either the antibody was not mentioned in the text, or the mention
was interpreted as a negative result by the clinician.

Table 4. Number of patients with positive antibodies mentioned in the text and in structured data.

Number of patients with positive tests (ratio)Disease and laboratory test

Benefits of the unstructured
data, n (%)

Structured and unstructured
data, n (%)

Structured data only, n (%)

Antiphospholipid syndrome (1059 patients)

294 (27.76)478 (45.14)184 (17.37)Anticardiolipin antibody

231 (21.81)334 (31.54)103 (9.73)Anti-B2GP1 antibody

146 (13.79)423 (39.94)277 (26.16)Lupus anticoagulant

Systemic lupus erythematosus (4102 patients)

2197 (53.56)2949 (71.89)752 (18.33)Antinuclear antibody

1633 (39.81)2174 (53)541 (13.19)Anti-DNA antibodies

603 (14.7)858 (20.92)255 (6.22)Anti-Smith antibodies

Systemic sclerosis (2031 patients)

117 (5.76)156 (7.68)39 (1.92)Anti-RNA polymerase III antibody

471 (23.19)568 (27.97)97 (4.78)Anti-Scl-70 antibodies

465 (22.9)609 (29.99)144 (7.09)Anticentromere antibody

Drug Treatments
Table 5 describes the number of patients with drug treatments
for each of the studied drugs related to the respective disease.
The first column presents the number of patients for whom we
extracted at least 1 drug treatment from the structured data of

their EHR. The second column presents the number of patients
for whom we extracted at least 1 drug treatment from both the
structured and the unstructured data. The third column provides
the number of patients for whom we extracted at least 1 drug
treatment from the unstructured data but only among the patients
without drug treatment extracted from the structured data.
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Table 5. Number of patients with drug treatments. It describes the number of patients with drug treatments for each of the studied drugs related to the
respective disease, extracted from structured and unstructured data. The proportions in percentage of the total number of patients diagnosed with the
respective disease are given inside parenthesis.

Number of patients with drug treatments (ratio)Diseases and drugs

Benefits of the unstructured
data, n (%)

Structured and unstructured
data, n (%)

Structured data only, n (%)

Antiphospholipid syndrome (1059 patients)

442 (41.74)628 (59.3)186 (17.56)VKA

439 (41.46)677 (63.94)238 (22.47)Heparin

130 (12.28)177 (16.72)47 (4.44)Oral anticoagulant

Systemic lupus erythematosus (4102 patients)

2358 (57.49)3308 (80.64)950 (23.16)Systemic glucocorticoids

830 (20.23)894 (21.79)64 (1.56)Cyclophosphamide

962 (23.46)1263 (30.78)301 (7.34)Mycophenolate mofetil

634 (15.46)709 (17.28)75 (1.83)Rituximab

204 (4.97)247 (6.02)43 (1.05)Belimumab

851 (20.75)963 (23.48)112 (2.73)Methotrexate

2600 (63.4)3520 (85.83)920 (22.43)Hydroxychloroquine

862 (21.02)984 (23.99)122 (2.97)Prevenar 13 vaccine

393 (9.58)436 (10.63)43 (1.05)Pneumovax vaccine

481 (11.73)577 (14.07)96 (2.34)Influenza vaccine

Systemic sclerosis (2031 patients)

1002 (49.33)1260 (62.06)258 (12.71)Systemic glucocorticoids

384 (18.91)390 (19.2)6 (0.3)Cyclophosphamide

375 (18.47)463 (22.81)88 (4.33)Mycophenolate mofetil

245 (12.07)258 (12.71)13 (0.64)Rituximab

475 (23.39)541 (26.63)66 (3.25)Methotrexate

486 (23.93)545 (26.84)59 (2.9)Prevenar 13 vaccine

272 (13.4)285 (14.03)13 (0.64)Pneumovax vaccine

383 (18.87)425 (20.93)42 (2.07)Influenza vaccine

Takayasu arteritis (252 patients)

155 (61.51)223 (88.49)68 (27)Systemic glucocorticoids

18 (7.14)18 (7.14)0 (0)Cyclophosphamide

32 (12.7)47 (18.65)15 (5.95)Tocilizumab

12 (4.76)21 (8.33)9 (3.57)Mycophenolate mofetil

6 (2.38)6 (2.38)0 (0)Rituximab

115 (45.63)135 (53.57)20 (7.94)Methotrexate

74 (29.37)83 (32.94)9 (3.57)Prevenar 13 vaccine

45 (17.86)48 (19.05)3 (1.19)Pneumovax vaccine

35 (13.89)41 (16.27)6 (2.38)Influenza vaccine

To ensure the precision of the drug treatments identified by the
algorithm, we conducted a second evaluation specifically
focused on the studied drugs. Although the general precision
for all drugs had previously been reported as 91.9% in Table 3,
this additional analysis aimed to confirm comparable
performance for the specific drug treatments studied. For this

evaluation, we randomly selected 10 positively detected entities
per studied drug (spanning NER and normalization), resulting
in a total of 130 entities. A clinician reviewed these entities
individually and found no errors, corresponding to a precision
of 100%.
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Inference Time and Carbon Footprint
When considering scaling these methods to a CDW that may
process hundreds of thousands of documents daily, it is critical
to evaluate both processing speed and environmental impact.
The entire NLP process on the 22,194 documents took 145
minutes on a graphics processing unit (Tesla
V100-SXM2-32GB) and resulted in a total emission of 0.39 kg
equivalent of CO2.

Discussion

Principal Findings
In this paper, we proposed a novel block-based algorithm for
extracting and normalizing medical data from text, enabling
fine-grained phenotyping of patients with autoimmune or
autoinflammatory diseases. We demonstrated that these
cascading algorithms significantly improve patient
characterization compared to relying only on structured data.
In addition, we provided detailed results for every step of the
algorithm (NER, qualification, measurement extraction, and
normalization), evaluated our method using a publicly available
dataset, Quaero [51], and provided a comprehensive
performance comparison between models.

Our work offers several strengths. Notably, we leveraged
state-of-the-art language models, particularly the BERT model,
for named entity extraction. Indeed, when compared with recent
large language models, such as GPT, BERT models remain the
most effective for the NER task [58]. We evaluated and
compared several language models and various methods for
each step, demonstrating strong performance outcomes. The
model evaluated for the NER task on 20 annotated discharge
summaries achieved high F1-scores: 90.3 for laboratory test
names and 91.6 for drug names. Similarly, the model achieved
high F1-scores for the qualification task, the measurement
extraction task, and the overall end-to-end task. A posteriori
precision analysis also showed very good results (97.3% for
laboratory tests and 100% for drugs). Finally, as shown in Tables
4 and Table 5, our study highlights significant improvements
in information availability by enriching structured data with
information extracted from unstructured data.

Beyond these results, our findings are consistent with those of
previous studies. For instance, 71.87% (2949/4102) of patients
in the lupus cohort exhibited positive antinuclear antibodies
(≥1/80), a finding that aligns with the clinical criteria for the
disease [40]. Similarly, when compared with previous data
[38,40], 85.81% (3520/4102) of patients with SLE were treated
with hydroxychloroquine, and 80.64% (3308/4102) received
corticosteroids during hospitalization. For comparison, a recent
conference abstract by Eviatar et al [59] reported that 81% of
patients were treated with hydroxychloroquine, 65% with
systemic corticosteroids, and 55% with immunosuppressants
(2259/4102, 55.07% in our study). In addition, 64.4%
(682/1059) of patients with APS had at least one positive
antibody assay. For patients with TA, the treatments were
consistent with national recommendations [60], with 88.5%
(223/252) of patients receiving systemic corticosteroids and
18.7% (47/252) treated with tocilizumab.

The clinical implications of algorithms that enable accurate
patient phenotyping are substantial. They facilitate more precise
recruitment of patients for studies, particularly therapeutic trials,
and support clinical practice by addressing key questions, such
as, “What happened to a patient like mine?” Prototypes are
currently under development to construct cohorts of patients
with similar characteristics to a specific individual under care,
using information extracted from hospital reports. The algorithm
we present can identify patients with comparable immune
profiles (eg, matching positive antibodies) and analyze the
treatments they received, offering valuable insights for
personalized care.

Limitations
However, there are several limitations to our study. A significant
limitation lies in the complexity of standardizing laboratory
tests, especially for tests with abbreviated terms. For instance,
the glomerular filtration rate (or “DFG” in French) is not directly
classified as a biological test in the SNOMED CT US edition
[36], making it challenging to standardize. Similarly, the
abbreviation “ACC” for lupus circulating anticoagulant is
missing in the UMLS [20], which makes normalization difficult
and partially explains the lower contribution of text-based
analysis for this assay. In general, drug names are often written
in a relatively standardized format in texts (using either trade
names or generics), whereas the terminology for describing
biological data tends to be more varied. For example, a clinician
might describe “hemoglobin” using variations, such as “anemia
at 9g/dL,” “Hb=9g/dL,” or “hemoglobin at 9,” among others.
This variability complicates the normalization process for
laboratory tests, leading to poorer performance compared with
that of drug treatments. Another limitation is the relatively small
evaluation sample size. Our NLP end-to-end system was
evaluated on only 11 annotated clinical documents, comprising
668 annotated entities. This limited dataset is a consequence of
the labor-intensive process involved in manually annotating
CUIs and ATC codes, which constrained the number of
documents we could feasibly annotate. Also, interannotator
agreement could not be computed due to having a single
annotator involved in the annotation process. To minimize
potential biases, several precautions were taken. First, an expert
clinician performed the annotations following strict guidelines,
while the model was independently designed by a separate
researcher. Second, the training and test datasets were created
using distinct discharge summaries from different patients.
These precautions reduce the risk of information leakage during
model evaluation.

Finally, it is important to note that this study relies on the
secondary use of “real-life” health care data. While clinical texts
are central to characterizing patients, as demonstrated, they do
not comprehensively capture all patient characteristics. Our
error analysis revealed that for patients with both textual
information and biological test results from the same
hospitalization, 63% (40/63) of the biological tests were either
not mentioned in the text or were interpreted by the clinician
as negative results. To enhance the accuracy of patient
phenotyping, we believe it is essential to incorporate both
structured and textual data.
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Future Works
Moreover, we acknowledge that the analyses presented here are
preliminary for each pathology, and we anticipate more detailed
future work in this area. Particularly, it will be necessary to
establish a precise relationship between target organ damage
and antibody positivity, some of which are known to be more
specific for certain types of damage. For example, anti-RNA
polymerase III antibodies are more often associated with
sclerodermic renal crisis [61], and triple positivity of APS
antibodies is also a poor prognostic marker. The type and
severity of organ damage should also be considered in
conjunction with treatment options. These analyses will also be
based on our current patient phenotyping work [62]. Analysis
of the dosages associated with each treatment is not currently
explored either, but work is in progress for this future step.
Another direction is adapting our methodology to other
languages. While the current implementation is tailored for
French, the approach can be generalized by substituting the

pretrained clinical BERT model with other language-specific
alternatives, such as models pretrained for Spanish [63] or
English [64]. However, successful adaptation would require
annotated datasets specific to the new language, as well as
adjustments to the terminology and clinical standards used in
the target CDW. Beyond linguistic adaptability, the methods
described could also be extended to unstructured data in different
formats, such as imaging. Addressing these directions could
advance this research toward a more comprehensive,
multilingual, and multiformat phenotyping framework.

Conclusions
To the best of our knowledge, this is the first study to
automatically analyze such a large volume of patients with
autoimmune diseases using data derived directly from text. It
seems to us that this finer, text-based characterization of patients
in the context of rare diseases could enable researchers to target
them more effectively, and clinicians to bring synthesis to their
management.

Acknowledgments
The authors thank the clinical data warehouse of the Greater Paris University Hospitals for its support and the realization of data
management and data curation tasks. The authors express sincere thanks to Dr Arthur Mageau, Prof Karim Sacré, and Prof Olivier
Steichen for their careful review of this manuscript.

Data Availability
The datasets generated or analyzed during this study are not publicly available due to their classification as sensitive data under
the General Data Protection Regulation and the National Data Protection Commission. Access to the data requires prior approval
from the local institutional review board and must follow the process outlined on its website [65]. In the case of non-University
Hospitals of Greater Paris (Assistance Publique-Hôpitaux de Paris) researchers, the signature of a collaboration contract is
mandatory.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Annotation guidelines, supplementary tables, and figure.
[DOCX File , 571 KB-Multimedia Appendix 1]

References

1. Richesson RL, Hammond WE, Nahm M, Wixted D, Simon GE, Robinson JG, et al. Electronic health records based
phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med
Inform Assoc. Dec 01, 2013;20(e2):e226-e231. [FREE Full text] [doi: 10.1136/amiajnl-2013-001926] [Medline: 23956018]

2. Gombar S, Callahan A, Califf R, Harrington R, Shah NH. It is time to learn from patients like mine. NPJ Digit Med. Mar
19, 2019;2(1):16. [FREE Full text] [doi: 10.1038/s41746-019-0091-3] [Medline: 31304364]

3. Callahan A, Polony V, Posada JD, Banda JM, Gombar S, Shah NH. ACE: the Advanced Cohort Engine for searching
longitudinal patient records. J Am Med Inform Assoc. Jul 14, 2021;28(7):1468-1479. [FREE Full text] [doi:
10.1093/jamia/ocab027] [Medline: 33712854]

4. Frankovich J, Longhurst CA, Sutherland SM. Evidence-based medicine in the EMR era. N Engl J Med. Nov 10,
2011;365(19):1758-1759. [doi: 10.1056/nejmp1108726]

5. Zheng C, Ackerson B, Qiu S, Sy LS, Daily LI, Song J, et al. Natural language processing versus diagnosis code-based
methods for postherpetic neuralgia identification: algorithm development and validation. JMIR Med Inform. Sep 10,
2024;12:e57949. [FREE Full text] [doi: 10.2196/57949] [Medline: 39254589]

6. Elkin PL, Mullin S, Mardekian J, Crowner C, Sakilay S, Sinha S, et al. Using artificial intelligence with natural language
processing to combine electronic health record's structured and free text data to identify nonvalvular atrial fibrillation to
decrease strokes and death: evaluation and case-control study. J Med Internet Res. Nov 09, 2021;23(11):e28946. [FREE
Full text] [doi: 10.2196/28946] [Medline: 34751659]

JMIR Med Inform 2025 | vol. 13 | e68704 | p. 14https://medinform.jmir.org/2025/1/e68704
(page number not for citation purposes)

Remaki et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v13i1e68704_app1.docx&filename=1b35a98c449e185c5826f300aee91d88.docx
https://jmir.org/api/download?alt_name=medinform_v13i1e68704_app1.docx&filename=1b35a98c449e185c5826f300aee91d88.docx
https://europepmc.org/abstract/MED/23956018
http://dx.doi.org/10.1136/amiajnl-2013-001926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23956018&dopt=Abstract
https://doi.org/10.1038/s41746-019-0091-3
http://dx.doi.org/10.1038/s41746-019-0091-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304364&dopt=Abstract
https://europepmc.org/abstract/MED/33712854
http://dx.doi.org/10.1093/jamia/ocab027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33712854&dopt=Abstract
http://dx.doi.org/10.1056/nejmp1108726
https://medinform.jmir.org/2024//e57949/
http://dx.doi.org/10.2196/57949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39254589&dopt=Abstract
https://www.jmir.org/2021/11/e28946/
https://www.jmir.org/2021/11/e28946/
http://dx.doi.org/10.2196/28946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34751659&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Seinen TM, Fridgeirsson EA, Ioannou S, Jeannetot D, John LH, Kors JA, et al. Use of unstructured text in prognostic
clinical prediction models: a systematic review. J Am Med Inform Assoc. Jun 14, 2022;29(7):1292-1302. [FREE Full text]
[doi: 10.1093/jamia/ocac058] [Medline: 35475536]

8. Khurshid S, Reeder C, Harrington LX, Singh P, Sarma G, Friedman SF, et al. Cohort design and natural language processing
to reduce bias in electronic health records research. NPJ Digit Med. Apr 08, 2022;5(1):47. [FREE Full text] [doi:
10.1038/s41746-022-00590-0] [Medline: 35396454]

9. Idnay B, Zhang G, Chen F, Ta CN, Schelke MW, Marder K, et al. Mini-mental status examination phenotyping for
Alzheimer's disease patients using both structured and narrative electronic health record features. J Am Med Inform Assoc.
Jan 01, 2025;32(1):119-128. [doi: 10.1093/jamia/ocae274] [Medline: 39520712]

10. Fraile Navarro D, Ijaz K, Rezazadegan D, Rahimi-Ardabili H, Dras M, Coiera E, et al. Clinical named entity recognition
and relation extraction using natural language processing of medical free text: a systematic review. Int J Med Inform. Sep
2023;177:105122. [FREE Full text] [doi: 10.1016/j.ijmedinf.2023.105122] [Medline: 37295138]

11. Moqurrab SA, Ayub U, Anjum A, Asghar S, Srivastava G. An accurate deep learning model for clinical entity recognition
from clinical notes. IEEE J Biomed Health Inform. Oct 2021;25(10):3804-3811. [doi: 10.1109/jbhi.2021.3099755]

12. Mikheev A, Moens M, Grover C. Named Entity recognition without gazetteers. In: Proceedings of the 9th conference on
European chapter of the Association for Computational Linguistics. 1999. Presented at: EACL '99; June 8-12, 1999:1-8;
Bergen, Norway. URL: https://dl.acm.org/doi/10.3115/977035.977037 [doi: 10.3115/977035.977037]

13. Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In: Armstrong S, Church K, Isabelle P,
Manzi S, Tzoukermann E, Yarowsky D, editors. Natural Language Processing Using Very Large Corpora. Cham, Switzerland.
Springer; 1995:157-176.

14. Ratinov L, Roth D. Design challenges and misconceptions in named entity recognition. In: Proceedings of the 13th Conference
on Computational Natural Language Learning. 2009. Presented at: CoNLL '09; June 4-5, 2009:147-155; Boulder, Colorado.
URL: https://aclanthology.org/W09-1119 [doi: 10.3115/1596374.1596399]

15. Lafferty JD, McCallum A, Pereira FC. Conditional random fields: probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the 18th International Conference on Machine Learning. 2001. Presented at: ICML '01; June 28-
July 1, 2001:282-289; San FranciscoCA. URL: https://dl.acm.org/doi/10.5555/645530.655813 [doi:
10.1145/1015330.1015422]

16. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural architectures for named entity recognition. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2016. Presented at: NAACL '16; June 12-17, 2016:260-270; San Diego, CA. URL: https:/
/aclanthology.org/N16-1030.pdf [doi: 10.18653/v1/n16-1030]

17. Sung M, Jeong M, Choi Y, Kim D, Lee J, Kang J. BERN2: an advanced neural biomedical named entity recognition and
normalization tool. Bioinformatics. Oct 14, 2022;38(20):4837-4839. [FREE Full text] [doi: 10.1093/bioinformatics/btac598]
[Medline: 36053172]

18. Jonker RA, Almeida T, Antunes R, Almeida JR, Matos S. Multi-head CRF classifier for biomedical multi-class named
entity recognition on Spanish clinical notes. Database (Oxford). Jul 30, 2024;2024:baae068. [FREE Full text] [doi:
10.1093/database/baae068] [Medline: 39083461]

19. Cardon R, Grabar N, Grouin C, Hamon T. Presentation of the’assessment campaign DEFT 2020: textual similarity in open
domain and extraction of’accurate information in clinical cases (presentation of the DEFT 2020 challenge : open domain
textual similarity and precise information extraction from clinical cases). In: Proceedings of the 6th joint conference Days
of Studies on the Word (JEP, 33rd edition), Automatic Processing of Natural Languages (TALN, 27th edition), Meeting
of Research Students in Computer Science for Automatic Language Processing (RECITAL, 22nd edition). Workshop Defi
Fouille de Textes. 2020. Presented at: JEP/TALN/RECITAL '20; June 8-19, 2020:1-13; Nancy, France. URL: https:/
/aclanthology.org/2020.jeptalnrecital-deft.1.pdf [doi: 10.4000/books.pufc.30067]

20. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res.
Jan 01, 2004;32(Database issue):D267-D270. [FREE Full text] [doi: 10.1093/nar/gkh061] [Medline: 14681409]

21. Denny JC, Irani PR, Wehbe FH, Smithers JD, Spickard A. The KnowledgeMap project: development of a concept-based
medical school curriculum database. AMIA Annu Symp Proc. 2003;2003:195-199. [FREE Full text] [Medline: 14728161]

22. Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc.
2010;17(3):229-236. [FREE Full text] [doi: 10.1136/jamia.2009.002733] [Medline: 20442139]

23. Friedman C, Shagina L, Socratous SA, Zeng X. A WEB-based version of MedLEE: a medical language extraction and
encoding system. Proc AMIA Annu Fall Symp. 1996;938:35. [FREE Full text]

24. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for
clinical narratives. J Am Med Inform Assoc. Jan 01, 2010;17(1):19-24. [doi: 10.1197/jamia.m3378]

25. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal diagnosis, co-morbidity and
smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak. Jul
26, 2006;6:30. [FREE Full text] [doi: 10.1186/1472-6947-6-30] [Medline: 16872495]

JMIR Med Inform 2025 | vol. 13 | e68704 | p. 15https://medinform.jmir.org/2025/1/e68704
(page number not for citation purposes)

Remaki et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://europepmc.org/abstract/MED/35475536
http://dx.doi.org/10.1093/jamia/ocac058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35475536&dopt=Abstract
https://doi.org/10.1038/s41746-022-00590-0
http://dx.doi.org/10.1038/s41746-022-00590-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35396454&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocae274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39520712&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1386-5056(23)00140-5
http://dx.doi.org/10.1016/j.ijmedinf.2023.105122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37295138&dopt=Abstract
http://dx.doi.org/10.1109/jbhi.2021.3099755
https://dl.acm.org/doi/10.3115/977035.977037
http://dx.doi.org/10.3115/977035.977037
https://aclanthology.org/W09-1119
http://dx.doi.org/10.3115/1596374.1596399
https://dl.acm.org/doi/10.5555/645530.655813
http://dx.doi.org/10.1145/1015330.1015422
https://aclanthology.org/N16-1030.pdf
https://aclanthology.org/N16-1030.pdf
http://dx.doi.org/10.18653/v1/n16-1030
https://europepmc.org/abstract/MED/36053172
http://dx.doi.org/10.1093/bioinformatics/btac598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36053172&dopt=Abstract
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae068
http://dx.doi.org/10.1093/database/baae068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39083461&dopt=Abstract
https://aclanthology.org/2020.jeptalnrecital-deft.1.pdf
https://aclanthology.org/2020.jeptalnrecital-deft.1.pdf
http://dx.doi.org/10.4000/books.pufc.30067
https://europepmc.org/abstract/MED/14681409
http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681409&dopt=Abstract
https://europepmc.org/abstract/MED/14728161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14728161&dopt=Abstract
https://europepmc.org/abstract/MED/20442139
http://dx.doi.org/10.1136/jamia.2009.002733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20442139&dopt=Abstract
https://pmc.ncbi.nlm.nih.gov/articles/PMC2233000/
http://dx.doi.org/10.1197/jamia.m3378
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-6-30
http://dx.doi.org/10.1186/1472-6947-6-30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16872495&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc.
2010;17(5):507-513. [FREE Full text] [doi: 10.1136/jamia.2009.001560] [Medline: 20819853]

27. Bejan CA, Xia F, Vanderwende L, Wurfel MM, Yetisgen-Yildiz M. Pneumonia identification using statistical feature
selection. J Am Med Inform Assoc. Sep 01, 2012;19(5):817-823. [FREE Full text] [doi: 10.1136/amiajnl-2011-000752]
[Medline: 22539080]

28. Liao KP, Cai T, Gainer V, Goryachev S, Zeng-treitler Q, Raychaudhuri S, et al. Electronic medical records for discovery
research in rheumatoid arthritis. Arthritis Care Res (Hoboken). Aug 2010;62(8):1120-1127. [FREE Full text] [doi:
10.1002/acr.20184] [Medline: 20235204]

29. Carroll RJ, Eyler AE, Denny JC. Naïve electronic health record phenotype identification for rheumatoid arthritis. AMIA
Annu Symp Proc. 2011;2011:189-196. [FREE Full text] [Medline: 22195070]

30. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2019. Presented at: NAACL '19; June 2-7, 2019:4171-4186; Minneapolis, Minnesota.
URL: https://aclanthology.org/N19-1423.pdf [doi: 10.18653/v1/n18-2]

31. French E, McInnes BT. An overview of biomedical entity linking throughout the years. J Biomed Inform. Jan
2023;137:104252. [FREE Full text] [doi: 10.1016/j.jbi.2022.104252] [Medline: 36464228]

32. Liu F, Shareghi E, Meng Z, Basaldella M, Collier N. Self-alignment pretraining for biomedical entity representations. In:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2021. Presented at: NAACL '21; June 6-11, 2021:4228-4238; Virtual Event. URL: https:/
/aclanthology.org/2021.naacl-main.334.pdf [doi: 10.18653/v1/2021.naacl-main.334]

33. Yuan Z, Zhao Z, Sun H, Li J, Wang F, Yu S. CODER: knowledge-infused cross-lingual medical term embedding for term
normalization. J Biomed Inform. Feb 2022;126:103983. [FREE Full text] [doi: 10.1016/j.jbi.2021.103983] [Medline:
34990838]

34. Achiam OJ, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. GPT-4 technical report. arXiv. Preprint posted
online March 4, 2024. 2024. [FREE Full text]

35. Tian S, Jin Q, Yeganova L, Lai P, Zhu Q, Chen X, et al. Opportunities and challenges for ChatGPT and large language
models in biomedicine and health. Brief Bioinform. Nov 22, 2023;25(1):bbad493. [FREE Full text] [doi:
10.1093/bib/bbad493] [Medline: 38168838]

36. SNOMED CT. US National Library of Medicine. URL: https://www.nlm.nih.gov/healthit/snomedct/index.html [accessed
2024-07-25]

37. Anatomical therapeutic chemical (ATC) classification. World Health Organization. URL: https://www.who.int/tools/
atc-ddd-toolkit/atc-classification [accessed 2024-05-16]

38. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR
recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. Jun 2019;78(6):736-745. [doi:
10.1136/annrheumdis-2019-215089] [Medline: 30926722]

39. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League against
rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis
Rheumatol. Sep 06, 2019;71(9):1400-1412. [FREE Full text] [doi: 10.1002/art.40930] [Medline: 31385462]

40. Lupus Systémique de l'adulte et de l'enfant. Haute Autorité de Santé. URL: https://www.has-sante.fr/jcms/p_3493410/fr/
lupus-systemique-de-l-adulte-et-de-l-enfant [accessed 2024-04-29]

41. Sclérodermie Systémique. Haute Autorité de Santé. 2018. URL: https://www.has-sante.fr/jcms/c_717292/fr/
sclerodermie-systemique [accessed 2024-04-29]

42. Syndrome des Anti-Phospholipides de l’adulte et de l’enfant. Haute Autorité de Santé. URL: https://www.has-sante.fr/jcms/
p_3375791/fr/syndrome-des-anti-phospholipides-de-l-adulte-et-de-l-enfant [accessed 2024-04-29]

43. i2b2: informatics for integrating biology and the bedside. i2b2. URL: https://www.i2b2.org/ [accessed 2024-04-26]
44. Mahajan D, Liang JJ, Tsou C, Uzuner Ö. Overview of the 2022 n2c2 shared task on contextualized medication event

extraction in clinical notes. J Biomed Inform. Aug 2023;144:104432. [FREE Full text] [doi: 10.1016/j.jbi.2023.104432]
[Medline: 37356640]

45. Dura B, Jean C, Tannier X, Calliger A, Bey R, Neuraz A, et al. Learning structures of the French clinical
language:development and validation of word embedding models using 21 million clinical reports from electronic health
records. arXiv. Preprint posted online July 26, 2022. 2022. [FREE Full text] [doi: 10.48550/arXiv.2207.12940]

46. Martin L, Muller B, Suárez PJ, Dupont Y, Romary L, de la Clergerie ÉV, et al. CamemBERT: a tasty French language
model. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020. Presented at:
ACL '20; July 5-10, 2020:7203-7219; Virtual Event. URL: https://aclanthology.org/2020.acl-main.645.pdf [doi:
10.18653/v1/2020.acl-main.645]

47. Touchent R, Romary L, de La Clergerie É. CamemBERT-bio: leveraging continual pre-training for cost-effective models
on French biomedical data. In: Proceedings of the 2024 Joint International Conference on Computational Linguistics,

JMIR Med Inform 2025 | vol. 13 | e68704 | p. 16https://medinform.jmir.org/2025/1/e68704
(page number not for citation purposes)

Remaki et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://europepmc.org/abstract/MED/20819853
http://dx.doi.org/10.1136/jamia.2009.001560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819853&dopt=Abstract
https://europepmc.org/abstract/MED/22539080
http://dx.doi.org/10.1136/amiajnl-2011-000752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22539080&dopt=Abstract
https://europepmc.org/abstract/MED/20235204
http://dx.doi.org/10.1002/acr.20184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20235204&dopt=Abstract
https://europepmc.org/abstract/MED/22195070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22195070&dopt=Abstract
https://aclanthology.org/N19-1423.pdf
http://dx.doi.org/10.18653/v1/n18-2
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(22)00257-X
http://dx.doi.org/10.1016/j.jbi.2022.104252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36464228&dopt=Abstract
https://aclanthology.org/2021.naacl-main.334.pdf
https://aclanthology.org/2021.naacl-main.334.pdf
http://dx.doi.org/10.18653/v1/2021.naacl-main.334
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(21)00312-9
http://dx.doi.org/10.1016/j.jbi.2021.103983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34990838&dopt=Abstract
https://arxiv.org/abs/2303.08774
https://europepmc.org/abstract/MED/38168838
http://dx.doi.org/10.1093/bib/bbad493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38168838&dopt=Abstract
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
http://dx.doi.org/10.1136/annrheumdis-2019-215089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30926722&dopt=Abstract
http://hdl.handle.net/2027.42/151247
http://dx.doi.org/10.1002/art.40930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31385462&dopt=Abstract
https://www.has-sante.fr/jcms/p_3493410/fr/lupus-systemique-de-l-adulte-et-de-l-enfant
https://www.has-sante.fr/jcms/p_3493410/fr/lupus-systemique-de-l-adulte-et-de-l-enfant
https://www.has-sante.fr/jcms/c_717292/fr/sclerodermie-systemique
https://www.has-sante.fr/jcms/c_717292/fr/sclerodermie-systemique
https://www.has-sante.fr/jcms/p_3375791/fr/syndrome-des-anti-phospholipides-de-l-adulte-et-de-l-enfant
https://www.has-sante.fr/jcms/p_3375791/fr/syndrome-des-anti-phospholipides-de-l-adulte-et-de-l-enfant
https://www.i2b2.org/
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(23)00153-3
http://dx.doi.org/10.1016/j.jbi.2023.104432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37356640&dopt=Abstract
https://arxiv.org/abs/2207.12940
http://dx.doi.org/10.48550/arXiv.2207.12940
https://aclanthology.org/2020.acl-main.645.pdf
http://dx.doi.org/10.18653/v1/2020.acl-main.645
http://www.w3.org/Style/XSL
http://www.renderx.com/


Language Resources and Evaluation. 2024. Presented at: LREC-COLING '24; May 20-25, 2024:2692-2701; Torino, Italia.
URL: https://aclanthology.org/2024.lrec-main.241.pdf

48. Labrak Y, Bazoge A, Dufour R, Rouvier M, Morin E, Daille B, et al. DrBERT: a robust pre-trained model in French for
biomedical and clinical domains. In: Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics. 2023. Presented at: ACL '23; July 9-14, 2023:16207-16221; Toronto, Canada. URL: https://aclanthology.org/
2023.acl-long.896.pdf [doi: 10.18653/v1/2023.acl-long.896]

49. Winkler WE. String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage. Bureau
of the Census. 2022. URL: https://files.eric.ed.gov/fulltext/ED325505.pdf [accessed 2024-04-29]

50. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl. 1965;10(8):707-710.
51. Grouin C, Leixa J, Névéol A, Rosset S, Tannier X, Zweigenbaum P. The Quaero French Medical Corpus: a ressource for

medical entity recognition and normalization. paperswithcode. URL: https://paperswithcode.com/paper/
the-quaero-french-medical-corpus-a-ressource [accessed 2024-03-28]

52. Mahajan D, Liang JJ, Tsou CH. Toward understanding clinical context of medication change events in clinical narratives.
AMIA Annu Symp Proc. 2021;2021:833-842. [FREE Full text] [Medline: 35308981]

53. Remaki A. BioMedics. Zenodo. 2022. URL: https://zenodo.org/records/13838918 [accessed 2024-04-29]
54. Wajsburt P, Petit-Jean T, Dura B, Cohen A, Jean C, Bey R. EDS-NLP: efficient information extraction from French clinical

notes. zenodo. URL: https://zenodo.org/records/11238626 [accessed 2024-04-29]
55. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, et al. Attention is all you need. In: Proceedings of the

31st International Conference on Neural Information Processing Systems. 2017. Presented at: NIPS '17; December 4-9,
2017:6000-6010; Long Beach, CA. URL: https://dl.acm.org/doi/10.5555/3295222.3295349

56. Abas AR, Elhenawy I, Zidan M, Othman M. BERT-CNN: a deep learning model for detecting emotions from text. Comput
Mater Contin. 2021;71(2):2943-2961. [FREE Full text] [doi: 10.32604/cmc.2022.021671]

57. Catalogue des terminologies. Ministère du Travail, de la Santé et des Solidarités & ANS. URL: https://smt.esante.gouv.fr/
catalogue-des-terminologies/ [accessed 2025-01-08]

58. Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE. The bootstrap. In: Dekking FM, Kraaikamp C, Lopuhaä HP, Meester
LE, editors. A Modern Introduction to Probability and Statistics: Understanding Why and How. Cham, Switzerland. Springer;
2005:269-284.

59. Eviatar T, Yahalom R, Livnat I, Elboim M, Elkayam O, Chodick G, et al. Real-world treatment patterns in patients with
systemic lupus erythematosus: associations with comorbidities and damage. Lupus Sci Med. Sep 24, 2024;11(2):25. [FREE
Full text] [doi: 10.1136/lupus-2024-001266] [Medline: 39317452]

60. Artérite de Takayasu. Haute Autorité de Santé. URL: https://www.has-sante.fr/jcms/p_3148994/fr/arterite-de-takayasu
[accessed 2024-04-29]

61. Mouthon L, Bussone G, Berezné A, Noël LH, Guillevin L. Scleroderma renal crisis. J Rheumatol. Jun 2014;41(6):1040-1048.
[doi: 10.3899/jrheum.131210] [Medline: 24833760]

62. Gérardin C, Mageau A, Mékinian A, Tannier X, Carrat F. Construction of cohorts of similar patients from automatic
extraction of medical concepts: phenotype extraction study. JMIR Med Inform. Dec 19, 2022;10(12):e42379. [FREE Full
text] [doi: 10.2196/42379] [Medline: 36534446]

63. Carrino CP, Llop J, Pàmies M, Gutiérrez-Fandiño A, Armengol-Estapé J, Silveira-Ocampo J, et al. Pretrained biomedical
language models for clinical NLP in Spanish. In: Proceedings of the 21st Workshop on Biomedical Language Processing.
2022. Presented at: BioNLP '22; May 26, 2022:193-199; Dublin, Ireland. URL: https://aclanthology.org/2022.bionlp-1.19.
pdf [doi: 10.18653/v1/2022.bionlp-1.19]

64. Lee J, Yoon W, Kim S, Kim D, Kim S, So C, et al. BioBERT: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics. Feb 15, 2020;36(4):1234-1240. [FREE Full text] [doi: 10.1093/bioinformatics/btz682]
[Medline: 31501885]

65. Entrepôt de Données de Santé. Assistance Hoptaux Publique de Paris. URL: https://eds.aphp.fr/ [accessed 2025-01-20]

Abbreviations
AP-HP: University Hospitals of Greater Paris (Assistance publique-hôpitaux de Paris)
APS: antiphospholipid syndrome
ATC: Anatomical Therapeutic Chemical
BERT: bidirectional encoder representations from transformer
CDW: clinical data warehouse
CUI: concept unique identifier
EHR: electronic health record
ICD-10: International Classification of Diseases, Tenth Revision
NER: named entity recognition
NLP: natural language processing
SLE: systemic lupus erythematosus

JMIR Med Inform 2025 | vol. 13 | e68704 | p. 17https://medinform.jmir.org/2025/1/e68704
(page number not for citation purposes)

Remaki et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://aclanthology.org/2024.lrec-main.241.pdf
https://aclanthology.org/2023.acl-long.896.pdf
https://aclanthology.org/2023.acl-long.896.pdf
http://dx.doi.org/10.18653/v1/2023.acl-long.896
https://files.eric.ed.gov/fulltext/ED325505.pdf
https://paperswithcode.com/paper/the-quaero-french-medical-corpus-a-ressource
https://paperswithcode.com/paper/the-quaero-french-medical-corpus-a-ressource
https://europepmc.org/abstract/MED/35308981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35308981&dopt=Abstract
https://zenodo.org/records/13838918
https://zenodo.org/records/11238626
https://dl.acm.org/doi/10.5555/3295222.3295349
https://www.sciencedirect.com/org/science/article/pii/S1546221821001314
http://dx.doi.org/10.32604/cmc.2022.021671
https://smt.esante.gouv.fr/catalogue-des-terminologies/
https://smt.esante.gouv.fr/catalogue-des-terminologies/
https://lupus.bmj.com/lookup/pmidlookup?view=long&pmid=39317452
https://lupus.bmj.com/lookup/pmidlookup?view=long&pmid=39317452
http://dx.doi.org/10.1136/lupus-2024-001266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39317452&dopt=Abstract
https://www.has-sante.fr/jcms/p_3148994/fr/arterite-de-takayasu
http://dx.doi.org/10.3899/jrheum.131210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24833760&dopt=Abstract
https://medinform.jmir.org/2022/12/e42379/
https://medinform.jmir.org/2022/12/e42379/
http://dx.doi.org/10.2196/42379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36534446&dopt=Abstract
https://aclanthology.org/2022.bionlp-1.19.pdf
https://aclanthology.org/2022.bionlp-1.19.pdf
http://dx.doi.org/10.18653/v1/2022.bionlp-1.19
https://europepmc.org/abstract/MED/31501885
http://dx.doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31501885&dopt=Abstract
https://eds.aphp.fr/
http://www.w3.org/Style/XSL
http://www.renderx.com/


SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms
TA: Takayasu arteritis
UMLS: Unified Medical Language System
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