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Abstract

Background: Valuable insights gathered by clinicians during their inquiries and documented in textual reports are often
unavailable in the structured data recorded in electronic health records (EHRS).

Objective: This study aimed to highlight that mining unstructured textual data with natural language processing techniques
complements the available structured data and enables more comprehensive patient phenotyping. A proof-of-concept for patients
diagnosed with specific autoimmune diseases is presented, in which the extraction of information on laboratory tests and drug
treatmentsis performed.

Methods: We collected EHRs available in the clinical data warehouse of the Greater Paris University Hospitals from 2012 to
2021 for patients hospitalized and diagnosed with 1 of 4 immune-mediated inflammatory diseases: systemic lupus erythematosus,
systemic sclerosis, antiphospholipid syndrome, and Takayasu arteritis. Then, we built, trained, and validated natural language
processing algorithms on 103 discharge summaries selected from the cohort and annotated by a clinician. Finally, all discharge
summaries in the cohort were processed with the algorithms, and the extracted data on laboratory tests and drug treatments were
compared with the structured data.

Results: Named entity recognition followed by normalization yielded F;-scores of 71.1 (95% CI 63.6-77.8) for the |aboratory
testsand 89.3 (95% CI 85.9-91.6) for the drugs. Application of the algorithmsto 18,604 EHRs increased the detection of antibody
results and drug treatments. For instance, among patients in the systemic lupus erythematosus cohort with positive antinuclear

antibodies, the rate increased from 18.34% (752/4102) to 71.87% (2949/4102), making the results more consistent with the
literature.

Conclusions: While challenges remain in standardizing laboratory tests, particularly with abbreviations, this work, based on
secondary use of clinical data, demonstratesthat automated processing of discharge summariesenriched theinformation available
in structured data and facilitated more comprehensive patient profiling.
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Introduction

Background

Since the 2010s, the widespread adoption of electronic health
records (EHRS) and health data warehouses has enabled the
development and application of new algorithms for patient
phenotyping, which corresponds to the extraction of a set of
observable patient characteristics, including laboratory test
results, symptoms, diseases, and past or current treatments [1].
The automated extraction of these characteristics from
large-scale databases supports predictive risk assessments,
preselection for therapeutic trials, and pharmacovigilance
analyses [2-4].

EHR datais typically categorized into 2 types. structured data
and unstructured data. Structured data refers to directly
gueryable numerical values, such as laboratory test results or
International Classification of Diseases, Tenth Revision
(ICD-10) codes, while unstructured data encompasses raw
clinical textsand medical imaging. Structured datafrom clinical
warehouses is often incomplete, capturing only intrahospital
records and excluding extrahospital information. For instance,
apatient’s blood test conducted at an external laboratory before
hospitalization might not be included. In addition, historical
biological resultsin clinical databases are often limited to afew
years. This is particularly problematic for conditions like
autoimmune diseases, where historical immunologic results
critical to the initial diagnosis are often documented only in
clinical text rather than in structured data. Similarly, details
about prior treatmentsare usually found only in textual records.
Valuable information that is not present in structured data is
often found in observationsrecorded in the discharge summaries
[5]. The application of automated text analysis to this
unstructured text, in conjunction with structured data, has
already demonstrated increased effectiveness in predicting
patients' clinical courses [6-11].

Transforming unstructured datainto structured formatsinvolves
multiple natural language processing (NLP) tasks. In this
research, we primarily concentrate on named entity recognition
(NER) and normalization, which are fundamental for extracting
meaningful information from large volumes of unstructured
clinical text.

NER refers to locating and classifying terms into predefined
categories, such as drug name, laboratory test, or medical
disorder. Traditional NER methods often depend on
dictionary-based term-matching techniques, which require
meticulously maintained lexical resources [12]. However,
maintaining these resources can be both labor-intensive and
error-prone. A more effective method treats NER as a
sequence-labeling task using tagging systemslike the beginning,
inside, outside, unit, and last scheme, whichiswidely recognized
in biomedical NER for its ease of implementation and efficiency
[13,14]. Sequence labeling models, particularly conditional
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random fields[15], have been extensively used for NER. When
combined with transformer-based architectureslike bidirectional
encoder representationsfrom transformer (BERT), these models
have set state-of-the-art performance benchmarks for NER in
clinical and biomedical text analyses[16-19].

Following NER, the normalization process assigns standard
codes (unique identifiers that correspond to concepts within
established medical terminologies) to the detected terms. For
example, standard codes, such as concept unique identifiers
(CUls) from the Unified Medical Language System (UMLYS)
[20], can be used to map detected entitieslike drug or [aboratory
tests to their corresponding concepts. Common normalization
strategies often rely on exact or approximate string matching
against predefined dictionaries. Tools, such as KnowledgeMap
Concept Identifier [21], MetaMap [22], MedLEE [23], MedEx
[24], HITEX [25], and cTAKES[26] have been widely adopted
in phenotyping models [27-29]. The emergence of deep
contextual embeddings, notably BERT [30], has revolutionized
NLP methodologies, including normalization tasks. Current
state-of-the-art approaches heavily use transformer-based
encoders pretrained on domain-specific corpora, demonstrating
substantial improvements in normalization [31-33].

Although large language models like GPT-4 [34] hold promise
for biomedical applications, their current performance in tasks
like NER and normalization remains limited [35]. Moreover,
implementing these model s at scal e to extract phenotypes from
large volumes of clinical documents poses considerable cost
challenges.

Goal of the Study

The aim of the study was to provide a proof-of-concept for
end-to-end patient phenotyping from their EHRs. Patient
phenotyping refers to the process of characterizing patients
based on their clinical features, such as clinical diagnoses,
laboratory results, or drug treatments. Secondary uses of EHRs
require the application of various processes to transform the
data into meaningful variables. In this research, we focused
specifically on leveraging discharge summaries (written in
French) through NLP techniques to enrich the information
contained in the structured data. We restricted our study to
patients hospitalized for one of the following immune-mediated
inflammatory diseases: systemic lupus erythematosus (SLE),
systemic sclerosis, antiphospholipid syndrome (APS), and
Takayasu arteritis (TA). Aswe analyzed autoimmune diseases,
we also restricted phenotyping to the analysis of autoantibodies
(laboratory tests) and immunosuppressive therapies (drugs),
which are central to the management of these diseases. Asshown
in Figure 1, laboratory tests and drug therapies were extracted
from both structured and unstructured data. Then, to analyze
the data jointly, a standard concept code was assigned to each
laboratory test using the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT; US edition) [36] and
drug using the Anatomical Therapeutic Chemical (ATC)
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classification [37]. Our hypothesis was that incorporating the
results of laboratory tests and drug treatments recorded in
patients discharge summaries would complement the
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information available in structured data and enable more
in-depth, interoperabl e phenotyping of patients, whileremaining
reliable.

Figure 1. Overview of the end-to-end patient phenotyping pipeline. Structured and unstructured data are extracted from electronic health records,
enabling largeinformation retrieval, refining cohort selection, and facilitating more robust patient comparisons. ATC: Anatomical Therapeutic Chemical;

SNOMED: Systematized Nomenclature of Medicine Clinical Terms.
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Selected Diseases

As a proof of concept, we focused on 4 immune-mediated
inflammatory diseases: SLE, systemic sclerosis, APS, and TA.

SLE is an autoimmune disease that mainly affects the skin,
joints, and kidneys [38,39]. According to the revised 2019
EULAR/ACR classification criteriafor SLE, patientsare dligible
for SLE criteriaonly if they have apositive antinuclear antibody
>1/80 at least once. Anti-dsDNA and anti-Smith autoantibodies
with high specificity for SLE are aso included in the
classification criteriafor SLE. Therefore, we have chosen these
3 antibodies to identify SLE patients. Hydroxychloroquine,
glucocorticoids, mycophenolate mofetil, cyclophosphamide,
and belimumab are key treatments of SLE [40] and have been
chosen to identify patients with SLE.

Systemic sclerosisis arare autoimmune disease, inducing skin
fibrosis, digestive disorders, such as gastroesophageal reflux
disease and chronic pseudoocclusive syndrome, interstitial lung
involvement, and sometimesinaugural rena crisis. Classification
criteria are also based on specific autoantibodies, including
anti-Scl-70, anticentromere, and anti-RNA polymeraselll, which
we have chosen to analyze here [41]. Therapeutic management
isalso based on glucocorticoids and immunosuppressive drugs,
such as mycophenolate mofetil.

APS is a systemic autoimmune disease defined by the
thrombosis or pregnancy morbidity in the presence of persistent
antiphospholipid autoantibodies, lupus anticoagulant, 1gG or
IgM anticardiolipin, 1gG or IgM anti-B2glycoprotein-1
antibodies. Treatment is based on curative anticoagul ation with
heparin, low-molecular-weight heparin, and antivitamin K [42].

TA is an inflammatory disease of the large arteries, leading to
arterial stenosisin young people. C-reactive protein is used as
an indicator of inflammation and disease activity in TA.
Treatment is based on immunosuppressive therapies, such as
glucocorticoids, and biologic, such as methotrexate or
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tocilizumab. Therefore, we have chosen to focus our analysis
on these treatments.

Finally, in the context of the immunosuppressive treatments
proposed, patients are at greater risk of infection; therefore,
vaccination, particularly against pneumococcal and influenza
infections, is recommended. Hence, we also looked for this
information in the texts.

Dataset Selection

The dataset used in this study comes from the clinical data
warehouse (CDW) of the University Hospitals of Greater Paris
(Assistance publique-hopitaux de Paris; AP-HP). The CDW
brings together information on all patients followed in the 39
teaching hospitals in the Paris region (>22,000 beds and 1.5
million hospitalizations per year) that use a common EHR
software, ORBIS Dedalus Health care. This software has been
gradually implemented in the 39 hospitals since 2012.

The dataset was extracted from the CDW research database, in
the integrating biology and the bedside format [43]. The
inclusion criteriafor the study were asfollows: al patients aged
>15 years with SLE, systemic sclerosis, APS, or TA who had
at least one stay at AP-HP hospitalsinitially from July 1, 2017,
to December, 31, 2020. Patients in the database were selected
in 2 ways: by the ICD-10 codes of these 4 pathologies and by
keywords present in the medica reports (using regular
expression matching), assummarizedin Table S1in Multimedia
Appendix 1[20,32,33,36,37,44-51]. For these patients, the data
available were demographic data; textual data, including all
full-text medical reports, laboratory tests performed during
patients stay, drug prescription, and administration when
available; and medico-administrative coding data (ICD-10).
The extraction covered al medical departments that could
potentially manage patients with the 4 pathologies of interest:
internal medicine and clinica immunology, nephrology,
rheumatology, dermatology, pneumology, neurology,
gastroenterology, oncology, hematology, infectious diseases,
and emergency and intensive care.
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Asthisstudy involvesthe secondary use of real-life health data,
from this large integrating biology and bedside extraction, we
limited the study to EHRs with at least one ICD-10 code
corresponding to the diseases studied (SLE, systemic sclerosis,
APS, or TA) and at least one recorded hospital discharge
summary, as these are validated by a senior clinician.
Subsequently, a subset of this study cohort of 103 hospital
discharge summaries, each corresponding to adifferent patient,
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was randomly selected and annotated by a clinician (CG),
following the same annotation rules as proposed by the national
NLP clinical chalenges 2022 [44]. Details regarding this
annotation process are provided in the Annotation Guidelines
section of Multimedia Appendix 1. The global approach of this
work was to build, train, and validate NLP algorithms on the
annotated subset before applying it to the full study cohort.
Figure 2 presents the cohort selection process.

Figure 2. Cohort selection flowchart. Starting with integrating biology and bedside extraction of 1,947,870 stays (38,384 patients), the cohort was
filtered to include stays with at least 1 International Classification of Diseases, 10th Revision (ICD-10) code corresponding to the studied diseases and
at least 1 recorded hospital discharge summary. A final study cohort of 18,604 stays (6891 patients) was created, with 103 randomly selected discharge
summaries annotated for training and validation purposes. NLP: natural language processing.
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NLP algorithms

End-to-End Pipeline

Overview

The system presented in this work required 4 NLP tasks: (1)
NER: this task identified and classified entities of interest
mentioned in the text into predefined categories. The possible
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categoriesincluded drug name, drug strength, drug dosage, drug
form, laboratory test name, and complete laboratory test. (2)
Quialification: thistask involved assigning predefined qualifiers
to the recognized named entities. Only entities classified as
“drug name” by the NER algorithm were qualified There were
4 qualifiers [52]: action (start, stop, increase, decrease, unique
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dose, and unknown), temporality (present, past, and future),
certainty (certain, hypothetical, and conditional), as well as
negation (true and false). (3) Measurement extraction: thistask
extracted and standardized the value and unit contained in the
“complete laboratory test” entities detected by the NER
algorithm. (4) Normalization: this task assigned predefined
standard conceptsto the recognized named entities. Each entity
classified as “drug name” by the NER algorithm was assigned
a code from the ATC classification system [37]. Each entity
classified as “laboratory test name” by the NER algorithm was
assigned a CUI of the UMLS [20] restricted to the laboratory
procedure semantic type and the SNOMED CT US edition
vocabulary [36]. As described in Figures 3 and Figure 4, the
laboratory test pipeline and the drug pipeline involved both
NER and normalization, while measurement extraction only

Remaki et &

concerned the laboratory test pipeline and qualification only
concerned the drug pipeline.

All thework presented in this paper was programmed in Python.
Tabular data were processed with Spark (version 2.4.8) and
distributed over 160 central processing units in paralel. This
computing processis scalable over alarge amount of data. Then,
the cohorts were analyzed using Pandas (version 1.3.5).
Inference and training of the NL P algorithms have been achieved
on a V100 graphics processing unit. The code devel oped to run
the experiments is freely available in a GitHub repository:
Aremaki/BioMedics [53]. The code makes extensive use of
EDS-NLP (version 0.13.0) [54], acollaborative NL P framework
that aims primarily at building hybrid multitask NLP pipelines
and extracting information from French clinical notes. It has
also been made publicly available under an open-sourcelicense
(BSD 3-clause): aphp/edsnip.

Figure 3. Diagram of the laboratory test pipeline. It takes raw text asinput, which is processed by 3 algorithmsin total. It starts with the extraction and
classification of relevant termsinto 2 categories: |aboratory test name and compl ete laboratory test. Then, the measurements associated with the complete
laboratory tests are extracted and standardized into 2 components: value and unit. Finally, the extracted laboratory test names are normalized to the
concept unique identifiers (CUIs) of the Unified Medical Language System (UMLS). HBV: hepatitis B virus, HCV: hepatitis C virus.
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Figure4. Diagram of the drug pipeline. It takes raw text asinput, whichisprocessed by 3 algorithmsin total. It startswith the extraction and classification
of relevant terms into 4 categories: name, strength, dosage, and form. At the same time, drugs are also qualified with several possible values: action
(start, stop, increase, decrease, unique dose, and unknown), temporality (present, past, and future), certainty (certain, hypothetical, and conditional),
and negation (true and false). Then, the extracted drugs are normalized according to the Anatomica Therapeutic Chemical (ATC) classification system.

Cp: capsule.
g . Drug pipeline )
Drug name Doliprane 1000 1 cp morning and evening.
| Drug strength | Indication: replace Befizal with Statine.
Drug dosage He is not being treated with corticosteroids.
DI fom [Named entity recognition]
Doliprane/1000/1 cp morning and evening.
Indication: replace Befizal with Statine.
He is not being treated with corticosteroids.
Qualification | Normalization
Drug Action Certainty Temporality Negation Drug ATC code
Doliprane [ ] [ Certain ] [Present] [ False ] Doliprane
Befizal [ Stop ] [Hypothetica\] [ Future ] { False ] Befizal
Statine [ Start ] [Hyporheuca\] [ Future ] [ False } Statine
corticosteroids [ ] [ ] [ ] [ True } corticosteroids Ho2 )

NER and Qualification Tasks

In the NER and qualification step, we experimented with
different methods: a rule-based method as a preliminary
approach, using the terms provided by the standard
terminologies directly for exact matching. The ATC
classification system [37] was used for drugs, and the SNOMED
CT US edition vocabulary [36] was used for laboratory tests.
A detailed description of the dictionaries is provided in Table
S2 in Multimedia Appendix 1.
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As a second approach, we experimented with a deep neural
network architecture, described in Figure 5. Themodel consists
of 2 BERTs encoders[30,55] followed by 2 convolution neural
networks[56]. Thefirst oneisfollowed by aconditional random
fields decoder [15] and a softmax block, which outputs
probability vectors based on the beginning, inside, outside, unit,
and last tagging scheme [14] to perform NER. The second is
followed by a mean pooling layer and a softmax block to
perform entity qualification. Severd pretrained language models
such as CamemBERT-EDS [45], CamemBERT-base [46],
CamemBERT-bio[47], and DrBERT [48] have been compared.
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Figure 5. Diagram of the named entity recognition and qualification architecture for laboratory tests and drugs entities. BERT: bidirectional encoder
representations from transformer; CNN: convolution neural network; CRF: conditional random field.
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To select the best approach, precision, recall, and F;-scorewere
evaluated on 20 AP-HP discharge summaries. The performance
of therule-based method is presented in Table S3 in Multimedia
Appendix 1, and the performance of the neural network method
of each pretrained language model is presented in Tables $4
and S5in Multimedia Appendix 1. The neural network approach
using CamemBERT-EDS [45] was selected as the final model

because it demonstrated superior performance compared to the
other methods. Parameters of the architecture and fine-tuning
are outlined in Table S6 in Multimedia Appendix 1.
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Measurement Extraction Task

Extraction and standardization of the numerical value and unit
were carried on the outputs of the NER step, which extractsthe
complete laboratory test entity from the text in a single block
(Iaboratory test name, numerical value, and unit). The extraction
and standardization were achieved with arule-based algorithm
using regular expressions. The algorithm steps are described in
Figure 6: (1) the laboratory test names were removed from the
complete laboratory test entity, (2) regular expressions were
designed to extract the numerical or qualitative value and the
unit, and (3) qualitative values (eg, “positive,” “negative,” or
“normal”) were standardized into graded numbers (1.0, 0.0, or
0.5), while units were converted to conventional standards.
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Figure 6. Diagram of the laboratory test measurement extraction process. HBV: hepatitis B virus, HCV: hepatitis C virus.
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Normalization Task

Theaim of the normalization step wasto determinethe standard
codefor each detected entity classified as”laboratory test name’
and “drug name.” Asdescribed in Figure 7, for agiven detected
term, similarity scores were computed for all terms of a
knowledge dictionary. Theresulting standard code corresponded
to the term with the highest similarity score. For drugs, the
knowledge dictionary is an aggregation of 2 open-source
dictionaries of drug nameswith their corresponding ATC codes:
the UMLS [20], restricted to the French ATC vocabulary [37],
and the Unique Drug Interoperability Repository created by the
French National Agency for Medicines and Health Products
Safety [57]. For laboratory tests, the knowledge dictionary
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consists of all the French and English synonyms of the UMLS
[20] restricted to the laboratory procedure semantic type and
the SNOMED CT USedition vocabulary [36]. We experimented
with 2 types of score computation: (1) fuzzy matching methods
that directly compared word characters: Jaro-Winkler Distance
[49] and Levenshtein distance [50], as well as (2) neural
network—based methods that compute cosine similarity scores
between the embeddings of the words: CODER-all [33] and
SapBERT-all [32]. Table S7in Multimedia Appendix 1 presents
the performance of each method. The neural -based method with
CODER-all seemsto be significantly better for 1aboratory tests.
However, for drugs, thereis no significantly better solution, so
we used the Jaro-Winkler Distance [49] method because it is
less computationally expensive.
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Figure7. Diagram of the normalization process. In this example, the best match of “ paracetomol,” written with atypo, is* paracetamol,” which provides

the correct Anatomical Therapeutic Chemical (ATC) code.
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to ensure privacy and comply with data protection regulations.
No financia compensation was provided, as the study relied
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Results

Dataset Description

The number of patients, hospitalizations, and discharge
summaries for each disease of the study cohort are given in
Table 1. The age distribution and the distribution of admission
start dates for each disease are presented in Figure S1 in
Multimedia Appendix 1.

Table 1. Datadescription of the study cohort. Number of patients, hospitalizations, and discharge summaries for each studied disease. The number of
discharge summaries is higher than the number of hospitalizations, as patients may change departments several times during the same stay (eg, be
transferred to an intensive care unit, etc).

Disease Number of patients Number of hospitalizations Number of discharge summaries
Antiphospholipid syndrome 1059 1818 2380

Lupus 4102 10,445 12,500

Systemic sclerosis 2031 6455 7585

Takayasu arteritis 252 833 965

We performed various analyses on the extracted data combined
with the structured datafrom the cohort. Theresults are reported
in 2 sections. The first section presents the performance of the
NLP agorithms on the annotated subset of 103 discharge
summaries. The second section isabout the application of these
algorithms to the 22,194 discharge summaries included in the
study cohort. It described the contribution of unstructured data
to structured data.

NL P Performance

Overview

The performance of the model was evaluated on 4 main tasks:
NER, qualification, measurement extraction, and normalization.
This evaluation was conducted using 2 datasets: 103 manually
annotated discharge summaries from the study cohort and the
publicly available Quaero FrenchMed corpus[51]. Performance
metrics, including precision, recall, and F;-score, were calculated
and reported along with 95% Cls derived using the empirical
bootstrap method at the discharge summary level [58]. It is
important to note that while NER and qualification required
annotated data for both training and testing, measurement

https://medinform.jmir.org/2025/1/e68704
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extraction and normalization only required annotated data for
testing. Therefore, all 103 discharge summarieswere annotated
for NER and qualification, with 83 (80.6%) randomly selected
for training and the remaining 20 (19.4%) used for testing. These
20 (19.4%) test documents were further annotated for
measurement extraction. Of these 20 documents, 11 (10.7%)
were additionally annotated for normalization, resulting in 668
annotated entities, which was a more time-consuming process.

NER Task

Our model was evaluated for the NER task on both the AP-HP
annotated discharge summaries and the Quaero FrenchMed
corpus[51]. Theresults of our annotated dataset containing 103
discharge summaries from AP-HP are presented in Table 2.
Precision, recall, and F;-score were measured in a“ strict” way,
that is, a true positive result was obtained when a predicted
entity and agold entity had the exact same boundariesand label.
The model achieved an overall F;-score of 88.8. Theresultson
the Quaero FrenchMed corpus [51] are presented in Tables S8
and S9 in Multimedia Appendix 1. The model achieved an
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overal F;-score of 66.2 for MEDLINE corpus and 71.71 for
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the European medicines agency corpus.

Table 2. Performance of the model for named entity recognition on University Hospitals of Greater Paris (Assistance Publique-Hdpitaux de Paris)
discharge summaries. The model wastrained on 83 annotated discharge summaries and tested on 20 discharge summaries. Each result was bootstrapped

by discharge summary to provide a 95% ClI given inside the brackets.

Label Number of entities (95% CI)  Precision (95% Cl) Recall (95% Cl) F1-score (95% Cl)
Laboratory test name 1292 (1603-1010) 90.6 (88.5-92.7) 89.9 (87.5-92.2) 90.3 (88.2-92.3)
Complete laboratory test 1041 (1323-793) 86.2 (84.3-88.3) 83.6 (79.1-87.5) 84.9 (82.1-87.5)
Drug name 585 (731-454) 90.8 (85.8-95.4) 92.5 (88.4-95.7) 91.6 (87.5-95.1)
Drug dosage 276 (368-194) 89.1 (85.4-94.1) 86.2 (81.7-90.8) 87.7 (84.0-92.1)
Drug form 170 (247-106) 86.5 (78.8-93.4) 94.1 (91.5-97.6) 90.1 (85.6-94.0)
Drug strength 130 (196-77) 93.1 (87.7-97.0) 93.8 (89.2-97.6) 93.5 (89.3-96.6)
Overall 3494 (4194-2885) 89.1 (87.5-90.8) 88.5 (86.4-90.5) 88.8 (87.1-90.5)

Qualification Task

The model was evaluated for the qualification task and achieved
an F-score of 78.8 on our annotated dataset containing 103
discharge summaries from AP-HP. The results are presented in
Table S10in Multimedia Appendix 1. On thetest set, the model
achieved an overall F;-score of 78.8.

Measurement Extraction Task

The model was evaluated for the measurement extraction task
on 20 annotated discharge summaries from AP-HP. Precision,
recall, and F;-score are presented in Table S11 in Multimedia
Appendix 1 and were measured ina“ strict” way: atrue positive
result was obtained when a predicted measurement and a gold
measurement had the same value and unit. The algorithm
obtained an F;-score of 96.7.

Normalization Task

The rule-based algorithm for drug name normalization and the
deep learning agorithm for the laboratory test name
normalization were both evaluated on 11 annotated discharge

summariesfrom AP-HP, 3 documents from European medicines
agency, and 833 titlesfrom MEDLINE [51]. For the evaluation,
atrue positive result was obtained when the predicted code of
an entity was part of the list of annotated gold standard codes.
Precision, recall, and F;-score are presented in Table S12 in
Multimedia Appendix 1. On our dataset of discharge summaries,
the rule-based method for drug names achieved an F;-score of
92.9 and the neural network—based method used for |aboratory
tests achieved an F;-score of 82.2.

End-to-End Pipeline

The model was evaluated on the NER and normalization task
using 11 annotated discharge summariesfrom AP-HP. Precision,
recall, and F;-score were measured in a “strict” way: a true
positive result was obtained when a predicted entity and agold
entity had exactly the same boundaries and label and the
predicted standard code of the entity was part of the list of
annotated gold standard codes. Precision, recall, and F;-score

are presented in Table 3. We obtained an F,-score of 71.1 for
laboratory tests and 89.3 for drug names.

Table 3. Performance of the models for named entity recognition and normalization tasks on University Hospitals of Greater Paris (Assistance
Publique-Hopitaux de Paris) discharge summaries. The model was tested on 11 discharge summaries. Each result was bootstrapped by discharge

summary to provide a 95% Cl given inside the brackets.

Label Number of entities (95% CI) Precision (95% CI) Recall (95% ClI) F1-score (95% ClI)
Laboratory test name 356 (204-548) 72.0 (65.3-79.1) 70.2 (59.7-77.9) 71.1 (63.6-77.8)
Drug name 312 (206-424) 91.9 (88.9-93.5) 86.9 (82.9-90.0) 89.3 (85.9-91.6)

Clinical Application

For each studied disease (SLE, systemic sclerosis, APS, and
TA), each studied antibody, and each studied drug treatment,
we reported the number of patients for whom we extracted a
positive antibody or a prescribed drug treatment from both the
structured and unstructured data of the study cohort. Lists of
CUI codes for the studied antibodies and ATC codes for drug
treatments are available in Tables S9 and S10 in Multimedia
Appendix 1. We were particularly interested in the number of
patients for whom we extracted positive antibodies or drug
treatments from the unstructured data of their EHRs that were
not available in the structured data. In the analysis of the

https://medinform.jmir.org/2025/1/e68704

unstructured data, only entities explicitly qualified as* certain”
and not negated were retained.

Laboratory Test Results

Table 4 describes the number of antibody-positive patients for
each disease, where positivity was determined either by test
values exceeding reference ranges or by explicit interpretation
of the test as positive. The first column shows the number of
patients for whom we extracted at least 1 positive test from the
structured data of their EHR. The second column shows the
number of patients for whom we extracted at least 1 positive
test from both the structured and unstructured data. The third
column shows the number of patients for whom we extracted
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at least 1 positive test from the unstructured data, but only
among patients without positive tests extracted from the
structured data.

To ensure the reliability of the detected autoantibodies across
the entire study cohort, we conducted a second evaluation
focused specifically on the studied autoantibodies. While the
precision was reported in Table 3 as 72% in the general case
for al laboratory tests, this additional analysis aimed to ensure
comparable performance for the autoantibodies studied. For
this evaluation, we randomly selected 10 positively detected
entities for each studied autoantibody, yielding a total of 110
entities. These entities, identified through NER, measurement
extraction, and normalization, were reviewed by a clinician.
Thereview identified 3 errors, resulting in aprecision of 97.3%.

Remaki et &

Finally, to identify potential errors made by the algorithm, we
examined EHR casesin which a positive autoantibody appeared
in the structured data but was not detected in the unstructured
data. For each antibody, we randomly selected 10 EHRs (for
some antibodies, fewer than 10 documents met this criterion,
so we included all available cases). A clinician reviewed 63
discharge summaries from the EHRs and identified 2 types of
algorithmic errors: (1) in 23 (26.5%) summaries, the algorithm
either failed to detect the relevant antibody or did not normalize
it correctly; and (2) in the remaining 40 (63.5%) summaries,
either the antibody was not mentioned in the text, or the mention
was interpreted as a negative result by the clinician.

Table4. Number of patients with positive antibodies mentioned in the text and in structured data.

Disease and laboratory test

Number of patients with positive tests (ratio)

Structured data only, n (%) Structured and unstructured Benefits of the unstructured
data, n (%) data, n (%)

Antiphospholipid syndrome (1059 patients)

Anticardiolipin antibody 184 (17.37) 478 (45.14) 294 (27.76)

Anti-B2GP1 antibody 103 (9.73) 334 (31.54) 231 (21.81)

Lupus anticoagulant 277 (26.16) 423 (39.94) 146 (13.79)
Systemic lupus erythematosus (4102 patients)

Antinuclear antibody 752 (18.33) 2949 (71.89) 2197 (53.56)

Anti-DNA antibodies 541 (13.19) 2174 (53) 1633 (39.81)

Anti-Smith antibodies 255 (6.22) 858 (20.92) 603 (14.7)
Systemic sclerosis (2031 patients)

Anti-RNA polymerase |11 antibody 39(1.92) 156 (7.68) 117 (5.76)

Anti-Scl-70 antibodies 97 (4.78) 568 (27.97) 471 (23.19)

Anticentromere antibody 144 (7.09) 609 (29.99) 465 (22.9)

Drug Treatments

Table 5 describes the number of patients with drug treatments
for each of the studied drugs related to the respective disease.
Thefirst column presents the number of patients for whom we
extracted at least 1 drug treatment from the structured data of

https://medinform.jmir.org/2025/1/e68704

their EHR. The second column presents the number of patients
for whom we extracted at least 1 drug treatment from both the
structured and the unstructured data. Thethird column provides
the number of patients for whom we extracted at least 1 drug
treatment from the unstructured data but only among the patients
without drug treatment extracted from the structured data.
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Table 5. Number of patients with drug treatments. It describes the number of patients with drug treatments for each of the studied drugs related to the
respective disease, extracted from structured and unstructured data. The proportions in percentage of the total number of patients diagnosed with the

respective disease are given inside parenthesis.

Diseases and drugs

Number of patients with drug treatments (ratio)

Structured data only, n (%) Structured and unstructured Benefits of the unstructured
data, n (%) data, n (%)
Antiphospholipid syndrome (1059 patients)
VKA 186 (17.56) 628 (59.3) 442 (41.74)
Heparin 238 (22.47) 677 (63.94) 439 (41.46)
Oral anticoagulant 47 (4.44) 177 (16.72) 130 (12.28)
Systemic lupus erythematosus (4102 patients)
Systemic glucocorticoids 950 (23.16) 3308 (80.64) 2358 (57.49)
Cyclophosphamide 64 (1.56) 894 (21.79) 830 (20.23)
Mycophenol ate mofetil 301 (7.34) 1263 (30.78) 962 (23.46)
Rituximab 75 (1.83) 709 (17.28) 634 (15.46)
Belimumab 43(1.05) 247 (6.02) 204 (4.97)
Methotrexate 112 (2.73) 963 (23.48) 851 (20.75)
Hydroxychloroquine 920 (22.43) 3520 (85.83) 2600 (63.4)
Prevenar 13 vaccine 122 (2.97) 984 (23.99) 862 (21.02)
Pneumovax vaccine 43 (1.05) 436 (10.63) 393 (9.58)
Influenza vaccine 96 (2.34) 577 (14.07) 481 (11.73)
Systemic sclerosis (2031 patients)
Systemic glucocorticoids 258 (12.71) 1260 (62.06) 1002 (49.33)
Cyclophosphamide 6(0.3) 390 (19.2) 384 (18.91)
Mycophenolate mofetil 88 (4.33) 463 (22.81) 375 (18.47)
Rituximab 13 (0.64) 258 (12.71) 245 (12.07)
Methotrexate 66 (3.25) 541 (26.63) 475 (23.39)
Prevenar 13 vaccine 59 (2.9) 545 (26.84) 486 (23.93)
Pneumovax vaccine 13 (0.64) 285 (14.03) 272 (13.4)
Influenzavaccine 42 (2.07) 425 (20.93) 383(18.87)
Takayasu arteritis (252 patients)
Systemic glucocorticoids 68 (27) 223 (88.49) 155 (61.51)
Cyclophosphamide 0(0) 18 (7.14) 18 (7.14)
Tocilizumab 15 (5.95) 47 (18.65) 32(12.7)
Mycophenolate mofetil 9(3.57) 21(8.33) 12 (4.76)
Rituximab 0(0) 6(2.38) 6(2.38)
Methotrexate 20 (7.94) 135 (53.57) 115 (45.63)
Prevenar 13 vaccine 9(3.57) 83(32.94) 74 (29.37)
Pneumovax vaccine 3(1.19) 48 (19.05) 45 (17.86)
Influenza vaccine 6 (2.38) 41 (16.27) 35(13.89)

To ensure the precision of the drug treatmentsidentified by the
algorithm, we conducted a second evaluation specificaly
focused on the studied drugs. Although the general precision
for all drugs had previously been reported as 91.9% in Table 3,
this additional analysis aimed to confirm comparable
performance for the specific drug treatments studied. For this
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evaluation, we randomly selected 10 positively detected entities
per studied drug (spanning NER and normalization), resulting
in atotal of 130 entities. A clinician reviewed these entities
individually and found no errors, corresponding to a precision
of 100%.
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Inference Time and Carbon Footprint

When considering scaling these methods to a CDW that may
process hundreds of thousands of documents daily, it is critical
to evaluate both processing speed and environmental impact.
The entire NLP process on the 22,194 documents took 145
minutes on a graphics processing unit (Tesla
V100-SXM2-32GB) and resulted in atotal emission of 0.39 kg
equivalent of CO,.

Discussion

Principal Findings

In this paper, we proposed a novel block-based algorithm for
extracting and normalizing medical data from text, enabling
fine-grained phenotyping of patients with autoimmune or
autoinflammatory diseases. We demonstrated that these
cascading agorithms  significantly improve patient
characterization compared to relying only on structured data.
In addition, we provided detailed results for every step of the
algorithm (NER, qualification, measurement extraction, and
normalization), evaluated our method using apublicly available
dataset, Quaero [51], and provided a comprehensive
performance comparison between models.

Our work offers several strengths. Notably, we leveraged
state-of -the-art language models, particularly the BERT model,
for named entity extraction. Indeed, when compared with recent
large language models, such as GPT, BERT models remain the
most effective for the NER task [58]. We evaluated and
compared several language models and various methods for
each step, demonstrating strong performance outcomes. The
model evaluated for the NER task on 20 annotated discharge
summaries achieved high F;-scores: 90.3 for laboratory test
names and 91.6 for drug names. Similarly, the model achieved
high F,-scores for the qualification task, the measurement
extraction task, and the overall end-to-end task. A posteriori
precision analysis also showed very good results (97.3% for
laboratory testsand 100% for drugs). Finally, asshownin Tables
4 and Table 5, our study highlights significant improvements
in information availability by enriching structured data with
information extracted from unstructured data.

Beyond these results, our findings are consistent with those of
previous studies. For instance, 71.87% (2949/4102) of patients
in the lupus cohort exhibited positive antinuclear antibodies
(=1/80), a finding that aligns with the clinical criteria for the
disease [40]. Similarly, when compared with previous data
[38,40], 85.81% (3520/4102) of patientswith SLE weretreated
with hydroxychloroquine, and 80.64% (3308/4102) received
corticosteroids during hospitalization. For comparison, arecent
conference abstract by Eviatar et al [59] reported that 81% of
patients were treated with hydroxychloroquine, 65% with
systemic corticosteroids, and 55% with immunosuppressants
(2259/4102, 55.07% in our study). In addition, 64.4%
(682/1059) of patients with APS had at least one positive
antibody assay. For patients with TA, the treatments were
consistent with national recommendations [60], with 88.5%
(223/252) of patients receiving systemic corticosteroids and
18.7% (47/252) treated with tocilizumab.

https://medinform.jmir.org/2025/1/e68704
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The clinical implications of algorithms that enable accurate
patient phenotyping are substantial. They facilitate more precise
recruitment of patientsfor studies, particularly therapeutic trials,
and support clinical practice by addressing key questions, such
as, “What happened to a patient like mine?’ Prototypes are
currently under development to construct cohorts of patients
with similar characteristics to a specific individual under care,
using information extracted from hospital reports. The agorithm
we present can identify patients with comparable immune
profiles (eg, matching positive antibodies) and analyze the
treatments they received, offering valuable insights for
personalized care.

Limitations

However, there are severd limitationsto our study. A significant
limitation lies in the complexity of standardizing laboratory
tests, especially for tests with abbreviated terms. For instance,
theglomerular filtration rate (or “DFG” in French) isnot directly
classified as a hiological test in the SNOMED CT US edition
[36], making it chalenging to standardize. Similarly, the
abbreviation “ACC” for lupus circulating anticoagulant is
missing inthe UMLS[20], which makes normalization difficult
and partially explains the lower contribution of text-based
analysisfor thisassay. In general, drug names are often written
in arelatively standardized format in texts (using either trade
names or generics), whereas the terminology for describing
biological datatendsto be morevaried. For example, aclinician
might describe “hemoglobin” using variations, such as“anemia
at 9g/dL,” “Hb=9g/dL,” or “hemoglobin at 9,” among others.
This variability complicates the normalization process for
laboratory tests, leading to poorer performance compared with
that of drug treatments. Another limitation istherelatively small
evaluation sample size. Our NLP end-to-end system was
evaluated on only 11 annotated clinical documents, comprising
668 annotated entities. Thislimited dataset is a consequence of
the labor-intensive process involved in manually annotating
CUIs and ATC codes, which constrained the number of
documents we could feasibly annotate. Also, interannotator
agreement could not be computed due to having a single
annotator involved in the annotation process. To minimize
potential biases, several precautionsweretaken. First, an expert
clinician performed the annotations following strict guidelines,
while the model was independently designed by a separate
researcher. Second, the training and test datasets were created
using distinct discharge summaries from different patients.
These precautions reduce therisk of information leakage during
model evaluation.

Finally, it is important to note that this study relies on the
secondary use of “redl-life” health caredata. Whileclinical texts
are central to characterizing patients, as demonstrated, they do
not comprehensively capture all patient characteristics. Our
error anaysis revealed that for patients with both textual
information and biological test results from the same
hospitalization, 63% (40/63) of the biological tests were either
not mentioned in the text or were interpreted by the clinician
as negative results. To enhance the accuracy of patient
phenotyping, we believe it is essential to incorporate both
structured and textual data
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Future Works

Moreover, we acknowledge that the analyses presented here are
preliminary for each pathol ogy, and we anticipate more detailed
future work in this area. Particularly, it will be necessary to
establish a precise relationship between target organ damage
and antibody positivity, some of which are known to be more
specific for certain types of damage. For example, anti-RNA
polymerase Ill antibodies are more often associated with
sclerodermic rena crisis [61], and triple positivity of APS
antibodies is also a poor prognostic marker. The type and
severity of organ damage should aso be considered in
conjunction with treatment options. These analyseswill also be
based on our current patient phenotyping work [62]. Analysis
of the dosages associated with each treatment is not currently
explored either, but work is in progress for this future step.
Another direction is adapting our methodology to other
languages. While the current implementation is tailored for
French, the approach can be generalized by substituting the
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pretrained clinical BERT model with other language-specific
alternatives, such as models pretrained for Spanish [63] or
English [64]. However, successful adaptation would require
annotated datasets specific to the new language, as well as
adjustments to the terminology and clinical standards used in
the target CDW. Beyond linguistic adaptability, the methods
described could & so be extended to unstructured dataiin different
formats, such as imaging. Addressing these directions could
advance this research toward a more comprehensive,
multilingual, and multiformat phenotyping framework.

Conclusions

To the best of our knowledge, this is the first study to
automatically analyze such a large volume of patients with
autoimmune diseases using data derived directly from text. It
seemsto usthat thisfiner, text-based characterization of patients
inthe context of rare diseases could enable researchersto target
them more effectively, and cliniciansto bring synthesisto their
management.
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