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Abstract

Background: Labeling unstructured radiology reports is crucial for creating structured datasets that facilitate downstream
tasks, such as training large-scale medical imaging models. Current approaches typically rely on Bidirectional Encoder
Representations from Transformers (BERT)-based methods or manual expert annotations, which have limitations in terms of
scalability and performance.

Objective: This study aimed to evaluate the effectiveness of a generative pretrained transformer (GPT)-based large language
model (LLM) in labeling radiology reports, comparing it with 2 existing methods, CheXbert and CheXpert, on a large chest
X-ray dataset (MIMIC Chest X-ray [MIMIC-CXRY]).

Methods: In this study, we introduce an LLM-based approach fine-tuned on expert-labeled radiology reports. Our model’s
performance was evaluated on 687 radiologist-labeled chest X-ray reports, comparing F'1 scores across 14 thoracic pathologies.
The performance of our LLM model was compared with the CheXbert and CheXpert models across positive, negative,
and uncertainty extraction tasks. Paired 7 tests and Wilcoxon signed-rank tests were performed to evaluate the statistical
significance of differences between model performances.

Results: The GPT-based LLM model achieved an average F1 score of 0.9014 across all certainty levels, outperforming
CheXpert (0.8864) and approaching CheXbert’s performance (0.9047). For positive and negative certainty levels, our model
scored 0.8708, surpassing CheXpert (0.8525) and closely matching CheXbert (0.8733). Statistically, paired ¢ tests indicated
no significant difference between our model and CheXbert (P=.35) but a significant improvement over CheXpert (P=.01).
Wilcoxon signed-rank tests corroborated these findings, showing no significant difference between our model and CheXbert
(P=.14) but confirming a significant difference with CheXpert (P=.005). The LLM also demonstrated superior performance for
pathologies with longer and more complex descriptions, leveraging its extended context length.

Conclusions: The GPT-based LLM model demonstrates competitive performance compared with CheXbert and outperforms
CheXpert in radiology report labeling. These findings suggest that LLMs are a promising alternative to traditional BERT-based
architectures for this task, offering enhanced context understanding and eliminating the need for extensive feature engineering.
Furthermore, with large context length LLM-based models are better suited for this task as compared with the small context
length of BERT based models.
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Introduction

Background

Radiology reports consist of expert observations of the
radiologist based on the Chest X-ray images of the patient.
These reports consist of free-text and unstructured informa-
tion in the form of long paragraphs. The extraction of labels
from unstructured radiology reports is the task of radiology
report labeling and it provides us structured information
which can be used for many downstream tasks such as
medical report generation and natural language explanation
generation. It also enables training of large-scale medical
imaging models [1]. Previous works for labeling of radi-
ology reports involve use of complicated feature engineer-
ing of medical domain knowledge [2]. and Bidirectional
Encoder Representations from Transformers (BERT) based
approaches [3]. Transformers have also demonstrated success
in radiology report labeling [4,5]. However, all these methods
have limitations which hinders their adoption in the clini-
cal setting. In case of methods which use complex feature
engineering, these methods have leveraged manual annota-
tion to shift the burden from feature engineering, requiring
considerable time and expertise. Furthermore, these meth-
ods do not take advantage of existing feature-engineered
labelers, which are state-of-the-art on many medical tasks.
On the other hand for methods using BERT based models,
the models are limited by the inherent limitations of BERT
models such as their noncausal nature and limited context
length. BERT-based models, despite their effectiveness in
text classification tasks, have two key architectural limitations
that constrain their performance in radiology report label-
ing. First, BERT’s bidirectional nature focuses on context
aggregation but lacks the ability to model causal relationships
in sequential data. This noncausal nature can hinder its ability
to fully capture the hierarchical and temporally dependent
structure of radiology reports, where findings are often
sequentially described. Second, BERT’s limited input context
length (typically 512 tokens) prevents it from effectively
processing the long and detailed narratives commonly found
in radiology reports. As a result, crucial information in
extended texts may be truncated, leading to incomplete or
suboptimal labeling. These limitations reduce the adaptabil-
ity of BERT-based methods to real-world radiology settings,
where comprehensive understanding of the entire report is
often required.

Large language models (LLMs) such as Qwen address
these challenges by offering extended context lengths (several
thousand tokens), allowing the model to process full
radiology reports without truncation. In addition, their ability
to incorporate causal reasoning and handle instruction-based
tasks makes them particularly suitable for medical labeling
tasks, where nuanced and ambiguous language is preva-
lent. Although BERT based methods have shown increased
abilities in the classification and other natural language tasks,
their architecture poses a hindrance to their use.

Smit et al [3] introduced a combination of existing
radiology report labelers and expert annotations to achieve
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highly accurate automated radiology report labeling . Their
approach consists of a bio-medically pretrained BERT model
[6,7], which is trained on the outputs of an existing labeler.
They call their resulting model CheXbert. While CheXbert
has generated considerable results, it has been unable to
capture the full diversity, complexity and the ambiguous
nature of natural language in the radiology reports. Their
BERT-based solution while providing remarkable perform-
ance on the task of labeling is limited in its context length and
noncausal nature. Which means for longer radiology reports it
fails to provide a solution.

In our work we propose an LLM based radiology report
labeler. LLMs have proven to be successful in their natural
language generation capabilities. These models also have
longer context lengths which makes them highly suitable for
natural language generation tasks. Furthermore, these LLMs
are adept at following instructions and given proper instruc-
tions these LLMs can be made good labelers for the radiology
reports. Our LLM-based model inherently provides ease of
use in other LLM-based solutions for the medical domain
enabling clinical automation.

Our generative pretrained transformer (GPT)-based LLM
beats the BERT-based CheXbert model on many pathologies
and with a far bigger context length can handle long reports
as compared with CheXbert. Our model outperforms the
previous labelers [8] for many pathologies on an external
dataset, MIMIC-CXR [9]. Our method of training medical
report labelers opens room for other labels and longer textual
input which makes it broadly useful for natural language
processing tasks within the medical domain.

Related Work

Many natural language processing systems have been
developed to extract structured labels from unstructured
free-text radiology reports [2,10-16]. Mostly, these meth-
ods rely heavily on feature engineering and include strict
vocabulary and grammatical rules to find and classify
radiological reports. NegEx [17], a popular rule-based
method, uses simple regular expressions for detecting
negation of findings and is often used in combination with
the Unified Medical Language System [18]. NegBio [19],
an extension to NegEx, uses universal dependencies and
subgraph matching for pattern definition and graph traver-
sal search. It includes uncertainty detection in addition to
negation detection for multiple pathologies in radiology
reports, and is used to label the ChestX-Rayl4 dataset [1].
The CheXpert labeler [8] improves upon NegBio on chest
x-ray report classification by more controlled extraction and
an improved Natural Language Processing framework and
rules for uncertainty and negation extraction. The CheXpert
labeler has been applied to generate labels for the CheXpert
dataset and MIMIC-CXR [9], which are among the largest
chest x-ray datasets publicly available. We use the MIMIC-
CXR dataset to train our LLM-based framework and report
our findings on a subset of the test set of MIMIC-CXR which
has been labeled by expert radiologists.
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Previous approaches have also been trained using
radiology reports annotated by expert radiologists [20]. In
these approaches, training data is limited by radiologist time
and expertise. Chen et al [21] trained convolutional neu-
ral networks with Global Vectors for Word Representation
[22] on 1000 radiologist-labeled reports for classification of
pulmonary embolism in chest computed tomography scan
reports and improved upon the previous rule-based peFinder
[23,24]. trained both recurrent and convolutional networks in
combination with attention mechanisms on 27,593 expert-
annotated radiology reports. Transformer-based models have
also been applied to the task of radiology report labeling [4],
trained BERT [6] and XLNet-based [25] classifiers on 3856
radiologist labeled reports to detect normal and abnormal
labels. Wood et al [5] proposed ALARM, an MRI head report
classifier on head MRI data using BioBERT model [26]
trained on 1500 radiologist-labeled reports. They demonstrate
improvement over previous fixed embedding and word2vec-
based [27] models [28] CheXbert labeler [3]. Also proposed
a BERT based model which is trained on expert annota-
ted radiology reports and achieves state of the art results
for radiology report labeling. However, their method has
limitations which include restriction to the context length of
512 which is the limitation of BERT based models.

Recent advancements in the application of LLMs
across various domains, including medical informatics, have
demonstrated their versatility and efficacy. Models such as
GPT-3 and GPT-4 have been used for diverse tasks, including
automated clinical note generation, question answering in
health care, and medical coding, showcasing their ability
to handle complex and domain-specific language tasks.
In radiology, LLMs have been explored for summarizing
imaging findings, generating patient-friendly explanations,
and aiding in clinical decision-making, highlighting their
potential beyond classification tasks. Furthermore, instruc-
tion-tuned LLMs, such as ChatGPT and specialized var-
iants like BioGPT, have been shown to adapt effectively
to biomedical domains, opening avenues for tasks such
as multimodal data interpretation and real-time clinical
assistance. These advancements emphasize the need for
further exploration of LLMs’ contextual understanding and
adaptability, particularly in radiology report labeling and
other biomedical text processing tasks.

In our work we propose an LLM based solution to solve
the task of biomedical text labeling. We not only propose
an alternative to BERT based models which achieves better
scores on certain labels and has far bigger context length than
BERT based models but our approach can also be applied to
other biomedical text labeling.

Methods
Task

Radiology report labeling is a critical task involving the
extraction of information on the presence or absence of
specific thoracic pathologies, such as consolidation or edema,
from free-text radiology reports. This process enables the
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transformation of unstructured diagnostic text into structured
data, facilitating clinical decision-making, research and the
development of predictive models. In this task, a labeler
processes the free-text radiology report as input and assigns
1 of 4 classes, blank, positive, negative, or uncertain, to
each of 14 predefined observations, reflecting the certainty
level for each prediction. A “positive” label indicates the
presence of a pathology, while “negative” denotes its absence,
and “uncertain” is used when the report is ambiguous
about the condition. The “blank™ class is assigned when
no relevant information is available for an observation. By
converting radiology reports into labeled data, this approach
supports streamlined access to essential diagnostic insights
and provides a valuable structured dataset that can be used
to train and validate machine learning algorithms in medical
imaging.

Data

In radiology, there exist 2 large datasets of chest x-rays,
CheXpert [8] (consisting of 224,316 images), and MIMIC-
CXR [9] (consisting of 377,110 images). Both datasets have
corresponding radiology reports that have been labeled for the
same set of 14 observations using the CheXpert labeler [8]
from the Impression section, or other parts of the radiology
report. Furthermore, a subset of both datasets also contain
manual annotations by expert radiologists. On CheXpert, a
total of 1000 reports (CheXpert manual set) were reviewed
by 2 board certified radiologists with disagreement resolution
through consensus. On MIMIC-CXR, a total of 687 reports
(MIMIC-CXR test set) were reviewed by 2 board certified
radiologists and manually labeled for the same 14 medical
pathology labels as in CheXpert. However, the radiology
reports for the Chexpert dataset have not been made public.
Due to nonavailability of radiology reports for the Chexpert
dataset, we used the MIMIC-CXR test set for evaluation.

Large Language Models

LLMs are built upon stacked decoder layers from the
transformer architecture, often referred to as “auto-regres-
sive models” because of their causal structure. This auto-
regressive nature enables these models to predict each token
sequentially, relying only on the preceding tokens as context.
During training, LLMs learn the task of next-token prediction,
where they must accurately anticipate the subsequent token in
a sequence given the previous tokens as input. This predic-
tion task is essentially a binary classification problem, where
the model assesses whether its predicted token matches the
correct ground truth token. The accuracy of each prediction is
evaluated by calculating a cross-entropy loss, which measures
the difference between the model’s output and the correct
token. This loss is then back-propagated through the model to
update its weights, refining its ability to generate contextually
accurate and coherent responses over time.

LLMs are pretrained on extensive amounts of diverse
text data from vast resources available on the internet. This
extensive pretraining enables the models to capture complex
patterns and detailed knowledge present in language, making
them highly effective at understanding and generating natural
language. Their exceptional performance in natural language
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generation, coupled with their ability to handle longer text
inputs, motivates their application in various specialized
domains, such as radiology report labeling.

In our work, we specifically use the Qwen model [29],
particularly the Qwenl.5-0.5B variant. This model demon-
strates significant capabilities in various natural language
generation tasks relative to its moderate size, making it
both efficient and powerful. One of the Qwen model’s
key advantages is its extensive context length of 32,000
tokens, meaning it can handle considerably larger text inputs
as context compared with BERT-based models, which are
typically limited to a 512-token context. This increased
context capacity allows the Qwen model to process lengthy
radiology reports or extended medical dialogues without
truncating important information.

The enhanced context length in LLMs is particularly
beneficial in clinical settings, where maintaining continu-
ity in patient information, such as previous history or
ongoing conversations, is essential. As LLM-based frame-
works are increasingly adopted in health care, often in the
form of biomedical chatbots and other automated systems,
the capacity to retain extensive context is critical. Our
model addresses this need, providing a solution that integra-
tes seamlessly with existing LLM-driven tools in clinical
environments. This ensures that radiology report labeling and
other clinical tasks benefit from both accuracy and the ability
to preserve a comprehensive, context-aware understanding of
patient data.

Instruction Fine-Tuning

To fully use the capabilities of our pretrained LLM, we
fine-tune it using a specialized instruction dataset. This
dataset is constructed from radiology reports paired with
corresponding pathology labels, each with an associated
certainty level from the MIMIC-CXR dataset. The goal of this
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instruction tuning is to guide the pretrained LLM to under-
stand the relationships within radiology reports, enabling it to
accurately identify pathologies and assign certainty levels. By
providing targeted instructions, we aim to refine the LLM’s
ability to interpret the clinical language and nuanced patterns
within radiology reports, thereby enhancing its performance
in radiology report labeling.

The structure of the instruction dataset is designed to
facilitate clear guidance for the LLM. As illustrated in Figure
1, each data instance consists of an instruction in the form of
a prompt to the LLM, an input value (the radiology report),
and output values (the pathology labels along with their
certainty levels). This structured approach helps the LLM
understand both the format and task requirements, allowing it
to generate accurate labels from free-text radiology reports.

To prepare the data for model processing, each instance
in the instruction dataset is tokenized using the LLM’s
tokenizer, converting text into a sequence of tokens suitable
for input. The tokenized data is then fed into the LLM,
which generates predictions based on its learned representa-
tions. Following this, we calculate the cross-entropy loss,
which measures the difference between the model’s predicted
outputs and the ground truth labels. This loss value indicates
how closely the model’s predictions align with the actual
labels. By back-propagating the loss, we adjust the LLM’s
weights which gradually enhances its accuracy and reliability
in producing pathology labels with certainty levels.

Through this fine-tuning process, our LLM becomes adept
at associating the textual features of radiology reports with
relevant pathology labels, allowing it to accurately and
efficiently label clinical data. This approach ensures that the
model is optimized specifically for radiology report label-
ing, enabling it to perform well even on complex clinical
information.
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Figure 1. Instruction fine-tuning process for a large language model to label radiology reports. The dataset includes prompts structured to guide the
large language model, input radiology reports, and corresponding pathology labels annotated with certainty levels. This method was applied to the

MIMIC Chest X-ray dataset, a large-scale de-identified chest x-ray dataset containing radiologist-labeled reports. LLM: large language model

H### Instruction:

Act as an expert radiologist and label the
given radiology report using these
pathology labels: atelectasis ,
cardiomegaly , consolidation , edema,
enlarged cardiomediastinum , fracture ,
lung lesion , lung opacity , pleural effusion,
pneumonia , pneumothorax , pleural
other , support devices, no finding"

H#H## Input:
Radiology report

### Response:

LLM

positive enlarged cardiomediastinum,
positive cardiomegaly, negative edema,
negative pneumonia, positive atelectasis

Training Details

We trained our LLM, which has a total of 463,987,712
parameters, using an instruction dataset. During the training
process, we maintained a batch size of 2, which allows
for effective gradient estimation while minimizing memory
usage. This choice of batch size is particularly beneficial
given the substantial size of our model and the complexity
of the task. The training was conducted over 5 epochs,
providing sufficient iterations for the model to learn the
intricate relationships between the radiology reports and their
corresponding pathology labels.

To optimize the training process, we used the ADAM
optimizer [30] which facilitated faster convergence and
improved performance. In addition, we implemented a
gradient accumulation strategy with a value of 2. This
approach effectively simulates a larger batch size by
accumulating gradients over two iterations before performing
a weight update, allowing us to maximize the use of available
GPU memory while still benefiting from the stability of a
larger batch size.

The learning rate was set at 1 x 10, a value that
strikes a balance between training speed and stability.

https://medinform.jmir.org/2025/1/e68618

An appropriate learning rate is crucial in preventing the
model from oscillating around the optimal solution, ensuring
gradual and consistent improvements in performance. For the
instruction tuning of our LLM, we used the SFTTrainer from
the TRL library [31]. This specialized trainer is designed for
supervised fine-tuning, providing an efficient and effective
framework for adapting pretrained models to specific tasks. It
offers a range of features that streamline the training process,
including automated handling of training loops, logging, and
monitoring of performance metrics. We leveraged 4 NVIDIA
RTX A6000 GPUs. This powerful hardware setup enables
parallel processing, significantly reducing training time while
accommodating the memory requirements of our large model.

Ablation Studies

Medical Contrastive Language-Image
Pretraining Based Similar Reports Retrieval

To evaluate the effectiveness of our LLM based solution in its
longer context we augment the LLM with similar retrieved
reports which have been retrieved based on the cosine
similarity, Medical Contrastive Language-Image Pretraining
(MedCLIP) [32] is a Contrastive Language-Image Pretraining
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(CLIP)-based [33] model which is trained on medical images.
It is trained in a constrastive manner and based on the
cosine similarity between radiology images and texts it placed
them closer or farther in its projection space. This helps
in tasks such as image-image text-text or image-text and
text-image based retrieval. To augment the input radiology
report to the LLM, CheXbert, and CheXpert alike, we retrieve
similar radiology reports from a datastore similar to [34].
MedCLIP has a limitation of 77 tokens as its context length
and therefore text-text based retrieval is not possible. To
overcome this, we use the radiology image associated with
the radiology report of 687 radiologist annotated reports from
MIMIC-CXR dataset and retrieve similar radiology images
from the train set of MIMIC-CXR, this avoids any data
leakage. Then the radiology reports corresponding to these
top-k similar retrieved images is taken as the retrieved similar
reports which are augmented to the test reports to increase the
length of radiological text and test the abilities of labeling
methods when longer context input is given. Retrieval is
based on MedCLIP representations of input images and
reports in the datastore, the datastore is precomputed offline
and indexed with FAISS [35] for efficient nearest neighbor
searching.

However, the performance of LLM dropped because
the retrieved reports are not representative of the accurate
information which can be used. Even though our model
was able to process the additional information provided,
it was unable to perform better because of the quality of
those retrieved reports. In future with the advent of chat-bot
style LLM solutions, longer bio-medical text in the form
of patient-doctor conversation will be available and can be
provided to our model as conversation history and this is
where our model can be helpful.

Ethical Considerations

To fully use the capabilities of our pretrained LLM, we
fine-tune it using a specialized instruction dataset.

Human Subject Research Ethics Review

This study did not involve direct human subject research.
Instead, it used the MIMIC-CXR dataset, a publicly available,
large-scale radiology dataset. The creation and distribution of
the dataset adhere to ethical standards, with data anonymized
to protect patient privacy. Therefore, specific ethics review
and approval for this secondary analysis were not required.

Informed Consent

The MIMIC-CXR dataset is derived from hospital records
collected during routine clinical care. Informed consent for
the use of this data was waived by the Institutional Review
Board (IRB) of the Beth Israel Deaconess Medical Center
(BIDMC), as the dataset underwent rigorous deidentifica-
tion processes to ensure compliance with Health Insurance
Portability and Accountability Act standards.
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Privacy and Confidentiality

The dataset has been thoroughly deidentified to ensure
anonymity. This includes removing all protected health
information from radiology reports, applying optical character
recognition and masking techniques to redact protected health
information from images, and assigning random identifiers
to patients, studies, and images. This guarantees that patient
confidentiality is maintained in all analyses.

Compensation

No compensation was involved in the collection or use of
the MIMIC-CXR dataset, as it is a retrospective collection of
clinical records for research purposes.

Identification of Participants

There is no risk of identification of individual participants,
as all data in the MIMIC-CXR dataset is fully anonymized.
The deidentification process for radiology reports, images,
and associated metadata adheres to strict privacy protocols to
ensure that no identifying information is present in the dataset
or the results of this study

Evaluation

In this study, we evaluate the performance of our model,
CheXbert and the CheXpert labeler, across a suite of
retrieval tasks designed to assess their capabilities in clinical
information extraction. Specifically, we focus on 3 main
retrieval tasks, namely positive extraction, negative extrac-
tion, and uncertainty extraction. For each task, we designate
the relevant class as the “positive” class for classification
purposes, meaning, for example, that the “negative” class is
treated as the positive class in the negative extraction task,
while other classes (such as positive or uncertain) are treated
as negatives. This approach allows us to directly measure the
model’s ability to distinguish between the specified class and
all others, thereby assessing its precision and recall within
clinically relevant categories.

We compute the weighted average of the F1 scores for
each of the 14 clinical findings or observations present in the
CheXpert dataset across these tasks. F1 score is a harmonic
mean of precision and recall which provides a balanced
measure of a model’s classification performance, particularly
in settings where data is imbalanced. We calculate a weighted
average of the F1 scores for each of the 14 observations
across these tasks. By this we can mitigate the impact of class
imbalance and obtain an F'1 metric that accurately reflects the
model’s performance across both common and rare observa-
tions in the dataset.

This weighted metric, referred to as weighted-F1, is
denoted simply as F1 in our results. Finally, we calculate
and report the average F1 score across all 14 clinical
observations, offering insight into the model’s general
extraction capability. This average F1 score serves as a
key performance metric, allowing for a direct comparison
between CheXbert and the CheXpert labeler on clinical
information extraction tasks relevant to medical imaging
applications in radiology .
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encompass all certainty levels, positive, negative, and
uncertain, across each of the 14 pathology categories.
The results indicate that our model demonstrates superior
performance over previous methods, particularly in the
Enlarged Cardiomediastinum and Support Devices categories,
while maintaining competitive F1 scores across the other
pathology labels.

Results

Table 1 and Table 2 present a quantitative assessment of
our model’s performance relative to prvious BERT-based
approaches for the task of radiology report labeling. Table
1 reports the F1 scores obtained by our model on the
MIMIC-CXR dataset, specifically on a radiologist-labeled
test set comprising 687 radiology reports. These scores

Table 1. F| scores for predictions made by the proposed large language model-based model (ours) compared with CheXbert and CheXpert for all
certainty levels (positive, negative, and uncertain). The evaluation was conducted on the MIMIC-CXR test set of 687 radiologist-labeled chest X-ray
reports, covering 14 thoracic pathologies.

Pathologies Ours, F score CheXbert, F| score CheXpert, F| score
Enlarged cardiomediastinum 0.9022 0.8753 0.8644
Cardiomegaly 0.8555 0.8604 0.8143
Lung Opacity 0.8653 0.8820 0.8459
Lung lesion 0.9612 0.9627 0.9543
Edema 0.9105 0.9191 0.9064
Consolidation 0.9288 0.9385 0.9215
Pneumonia 0.8784 0.8853 0.8474
Atelectasis 0.8613 0.8656 0.8576
Pneumothorax 0.9619 0.9780 0.9572
Pleural effusion 0.8510 0.8649 0.8475
Pleural other 0.9627 0.9623 0.9629
Fracture 09734 0.9758 0.9702
Support devices 0.8607 0.8402 0.8043
No finding 0.8470 0.8557 0.8557
Average 09014 0.9047 0.8864

Table 2. F| scores for predictions made by the proposed large language model-based model (ours) compared with CheXbert and CheXpert for all
certainty levels (positive, negative, and uncertain). The evaluation was conducted on the MIMIC-CXR test set of 687 radiologist-labeled chest X-ray
reports, covering 14 thoracic pathologies.

Pathologies Ours, F| score CheXbert, F| score CheXpert, F| score
Enlarged cardiomediastinum 0.8907 0.8641 0.8447
Cardiomegaly 0.8233 0.8113 0.7650
Lung Opacity 0.8008 0.8230 0.7770
Lung lesion 0.9490 0.9507 0.9415
Edema 0.8850 0.8934 0.8805
Consolidation 0.9104 0.9222 0.9101
Pneumonia 0.8886 0.8907 0.8568
Atelectasis 0.8256 0.8316 0.8206
Pneumothorax 0.9505 0.9700 0.9470
Pleural effusion 0.7983 0.8143 0.7965
Pleural other 0.9448 0.9457 0.9466
Fracture 0.9626 0.9649 0.9581
Support devices 0.7911 0.7603 0.7069
No finding 0.7704 0.7835 0.7836
Average 0.8708 0.8733 0.8525

Table 2 further delineates our model’s performance by
isolating only positive and negative certainty levels for each
of the 14 pathology labels, thereby excluding uncertain cases
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to facilitate direct comparison. In this subset, our model
yields notable improvements in F1 scores for Enlarged
cardiomediastinum, cardiomegaly, and support devices.
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The P values presented in Table 3 provide the results of
statistical comparisons between the 3 models (ours, CheX-
bert, and CheXpert) based on their F'1 scores. We performed
both a paired ¢ test and a Wilcoxon test to assess the statistical
significance of the differences between the models. The
paired ¢ test P value for the comparison between ours and
CheXbert is .35, which indicates that there is no statisti-
cally significant difference between the 2 models (P>.05).
However, the comparison between ours and CheXpert yields
a paired ¢ test P value of .01, suggesting that ours performs

Abdullah & Kim

significantly better than CheXpert at the 5% significance level
(P<.05). Similarly, the Wilcoxon test confirms this finding
with a P value of .005. The comparison between CheXbert
and CheXpert shows highly significant differences with both
a paired ¢ test P value of .0005 and a Wilcoxon test P value
of .002, indicating that these 2 models also differ significantly
in performance. Overall, the statistical tests reveal that while
ours and CheXbert are statistically similar, ours outperforms
CheXpert, and there is a significant performance difference
between CheXbert and CheXpert.

Table 3. P values from statistical tests (paired ¢ test and Wilcoxon test) comparing the performance of the proposed LLM-based model (ours) with
CheXbert and CheXpert across 14 thoracic pathologies. The evaluation was conducted on the MIMIC-CXR test set of 687 radiologist-labeled chest
X-ray reports, assessing the significance of the differences in F'| scores for all certainty levels.

Comparison Paired # test P value Wilcoxon test P value
Ours versus CheXbert .35 14

Ours versus CheXpert 01 005

Chexbert versus CheXpert 0005 002

Compared with the rule-based CheXpert labeler [8], our
model achieves substantial performance gains across all
pathology labels, marking a significant advancement over
both traditional rule-based systems and BERT-based models.
These results demonstrate the ability of our large language
model (LLM)-based approach in handling the task of
radiology report labeling with greater precision with large
context length as compared with the small context length of
BERT based models.

Figure 2 presents the performance of the proposed model
(ours) compared with the baseline models (CheXbert and
CheXpert) across 14 chest pathologies, using F1 scores
as the evaluation metric. The grouped bar chart enables

a direct comparison, where each group corresponds to a
specific pathology, and individual bars represent the scores
for each model. The results reveal that all three models
achieve consistently high F1 scores across most patholo-
gies, indicating robust performance. While the differences
are marginal, notable trends can be observed, the proposed
model demonstrates an advantage in pathologies such as
support devices and enlarged cardiomediastinum, whereas
the baseline models perform slightly better in cases like
consolidation and pneumothorax. This chart highlights the
subtle strengths and weaknesses of each model, providing a
clear visual overview of their performance.

Figure 2. Performance comparison of the proposed large language model-based model (ours), CheXbert, and CheXpert across 14 thoracic
pathologies. The F; scores for each pathology label were calculated using the MIMIC-CXR test set, comprising 687 radiologist-labeled reports.
While all models show similar performance, the proposed model demonstrates competitive or superior results in cases such as “support devices” and
“no finding.”
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Figure 3 further explores the differences by visualizing the
absolute performance gaps between the proposed model
(ours) and the 2 baseline models using a heatmap. Rows
correspond to the pathologies, and columns display the
comparisons of ours against CheXbert and CheXpert. The
heatmap emphasizes that the differences are minor, with
most pathologies showing a difference of less than 0.02 in

Abdullah & Kim

F1 scores. However, it also highlights key instances where
ours performs notably better, such as in support devices
and enlarged cardiomediastinum, while the baselines excel
slightly in consolidation and pneumothorax. By focusing on
performance differences, the heatmap provides a nuanced
perspective, making it easy to identify pathologies where the
models vary.

Figure 3. Heatmap showing the absolute differences in F; scores between the proposed arge language model-based model (ours) and the baseline
models (CheXbert and CheXpert) across 14 thoracic pathologies. The analysis is based on predictions for the MIMIC-CXR test set of 687
radiologist-labeled reports. The heatmap highlights areas where ours excels, such as “support devices,” and where baseline models perform better,

such as “consolidation.”
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Discussion
Limitations

Currently, our work is limited to 14 pathology labels
prevalent in radiology. However, our method can be extended
to other medical fields and can accommodate many more
pathology labels and can provide a reliable labeling solution.
The lack of long form radiology text limits the demonstration
of the longer contextual abilities of our model. In future
with the advent of long form bio-medical text in the form
of patient-doctor conversations, our model can provide better
solutions as opposed to previous models. Furthermore, there
is a need of more publicly available radiologist annotated
datasets for additional evaluation of trained models. Fur-
thermore, like other LLM-based approaches, our model is
susceptible to biases present in the training data, which may
inadvertently propagate into its predictions. This is particu-
larly important in the medical domain, where biases can
have significant ethical and clinical implications. Additional
mechanisms for bias detection and mitigation are necessary

https://medinform.jmir.org/2025/1/e68618
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to ensure fair and equitable outcomes across diverse patient
populations.

The computational demands of LLMs are another
limitation, as training and inference require substantial
computational resources. This may limit the accessibility
and scalability of the approach, especially in resource-con-
strained clinical settings. Exploring techniques such as model
distillation or low-rank adaptation could help reduce these
requirements while maintaining performance.

Interpretability remains a challenge with LLMs due to
their complex architecture. The lack of transparency in
how decisions are made can hinder trust and adoption
in clinical workflows, where clear justification of predic-
tions is often required. Future work should explore ways
to improve the explainability of LLM predictions, such as
attention visualization or feature attribution methods tailored
to medical tasks.

While our method demonstrates promising results in

radiology, further validation is needed in real-world clinical
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settings and across diverse medical contexts. The scalability
of our approach to other modalities, such as MRI or CT
reports, and its adaptability to different healthcare systems
must also be explored to ensure generalizability.

Principal Findings and Conclusions

In our work, we propose a novel solution using LLMs for the
challenging task of radiology report labeling. Our approach
leverages the advanced capabilities of LLMs to accurately
interpret and label various pathologies within radiology
reports, which are crucial for supporting clinical decision-
making and improving patient care. We demonstrate that
LLMs achieve superior performance over previous BERT-
based models, especially in accurately identifying specific
pathology labels. This is a significant advancement, as
certain pathologies that were previously challenging to label
accurately can now be identified with greater precision using
our LLM-based approach. In addition, our model achieves
competitive scores across a broad range of pathology labels,
confirming its robustness and versatility in handling complex
medical language.

One of the key improvements introduced by our model is
its ability to process longer radiology reports, overcoming
the context length limitations often encountered in previ-
ous models. This capability is essential in clinical settings
where comprehensive radiology reports often contain detailed
descriptions spanning multiple paragraphs, which traditional
models struggle to handle effectively. By accommodating
extended context, our model ensures that no critical informa-
tion is overlooked, thereby enhancing labeling accuracy and
reliability in real-world applications.

Furthermore, the instruction-tuning methodology allows
our approach to be extended to other biomedical text labeling
tasks beyond radiology. This generalizability of our method
makes it highly applicable across a wide range of biomedical
domains, opening doors for enhanced automation in various
clinical documentation and reporting tasks.

Abdullah & Kim

As LLM-based solutions are increasingly adopted in
clinical settings, our model is designed to integrate seamlessly
into existing workflows, promoting efficiency, and facilitat-
ing clinical automation. The potential for real-time, accurate
labeling provided by our model not only reduces the manual
workload on health care professionals but also contributes
to more timely and precise diagnostic insights, ultimately
benefiting patient outcomes.

Future research should explore integrating LLMs with
other medical technologies, such as multimodal imaging
systems that combine radiology reports with visual data
from x-rays, CT scans, or magnetic resonance images. This
integration could enable a more comprehensive analysis and
further enhance the clinical utility of LLM-based models.
In addition, extending the application of LLMs to different
medical imaging modalities and nonradiology domains, such
as pathology or cardiology, presents a promising avenue for
expanding their impact across health care.

Developing scalable and efficient LLM solutions tailored
to specific clinical needs, including resource-constrained
environments, is another critical area for further exploration.
This includes investigating lightweight alternatives or model
compression techniques to reduce computational demands
while maintaining performance.

Finally, the clinical adoption of LLMs will require
continued efforts in improving model interpretability and
building trust among health care professionals. Future work
should focus on developing user-friendly interfaces and
explainability mechanisms to facilitate the seamless integra-
tion of LLMs into routine clinical workflows. By address-
ing these challenges, LLM-based models like ours have
the potential to revolutionize clinical practice, enabling
more accurate, efficient, and scalable solutions for medical
documentation, decision-making, and patient care.
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