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Abstract

Background: Burn injuries represent a significant clinical challenge due to the complexity of accurately assessing burn depth,
which directly influences the course of treatment and patient outcomes. Traditional diagnostic methods primarily rely on visual
inspection by experienced burn surgeons. Studies report diagnostic accuracies of around 76% for experts, dropping to nearly
50% for less experienced clinicians. Such inaccuracies can result in suboptimal clinical decisions—delaying vital surgical
interventions in severe cases or initiating unnecessary treatments for superficial burns. This diagnostic variability not only
compromises patient care but also strains health care resources and increases the likelihood of adverse outcomes. Hence, a
more consistent and precise approach to burn classification is urgently needed.

Objective: The objective is to determine whether a multimodal integrated artificial intelligence (AI) system for accurate
classification of burn depth can preserve diagnostic accuracy and provide an important resource when used as part of the
electronic medical record (EMR).

Methods: This study used a novel multimodal Al system, integrating digital photographs and ultrasound tissue Doppler
imaging (TDI) data to accurately assess burn depth. These imaging modalities were accessed and processed through an EMR
system, enabling real-time data retrieval and Al-assisted evaluation. TDI was instrumental in evaluating the biomechanical
properties of subcutaneous tissues, using color-coded images to identify burn-induced changes in tissue stiffness and elasticity.
The collected imaging data were uploaded to the EMR system (DrChrono), where they were processed by a vision-language
model built on GPT-4 architecture. This model received expert-formulated prompts describing how to interpret both digital and
TDI images, guiding the Al in making explainable classifications.

Results: This study evaluated whether a multimodal Al classifier, designed to identify first-, second-, and third-degree burns,
could be effectively applied to imaging data stored within an EMR system. The classifier achieved an overall accuracy of
84.38%, significantly surpassing human performance benchmarks typically cited in the literature. This highlights the potential
of the Al model to serve as a robust clinical decision support tool, especially in settings lacking highly specialized expertise. In
addition to accuracy, the classifier demonstrated strong performance across multiple evaluation metrics. The classifier’s ability
to distinguish between burn severities was further validated by the area under the receiver operating characteristic: 0.97 for
first-degree, 0.96 for second-degree, and a perfect 1.00 for third-degree burns, each with narrow 95% Cls.
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Conclusions: The storage of multimodal imaging data within the EMR, along with the ability for post hoc analysis by Al
algorithms, offers significant advancements in burn care, enabling real-time burn depth prediction on currently available data.
Using digital photos for superficial burns, easily diagnosed through physical examinations, reduces reliance on TDI, while TDI
helps distinguish deep second- and third-degree burns, enhancing diagnostic efficiency.

Trial Registration: ClinicalTrials.gov NCT05167461; https://clinicaltrials.gov/study/NCT05167461

JMIR Med Inform 2025;13:¢68366; doi: 10.2196/68366
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Introduction

Burn injuries are among the most challenging conditions
in medical treatment [1] due to the critical need for accu-
rate depth assessment to determine appropriate therapeutic
strategies. Traditional burn depth assessment relies heavily
on visual inspection by experienced surgeons, which, while
effective in many cases, can lead to inaccuracies, espe-
cially when distinguishing between second-degree deep and
third-degree burns (76% accuracy for experts, which reduced
to 50% for nonexperts) [2-4]. These errors can lead to

improper care, postponing critical treatment for severe burns
or prompting excessive procedures for minor ones [2,3,5].

To address these challenges, this paper presents a
novel approach, BURN-AID (Burn Diagnosis with Artificial
Intelligence), leveraging multimodal imaging integrated with
a vision-language model, designed to improve the accuracy
of burn depth classification (Figure 1). This system performs
a 3-way classification of burn depth into first-, second-,
and third-degree burns, offering a more nuanced and precise
clinical decision support tool.

Figure 1. Overview of the proposed multimodal burn classification system, BURN-AID. The framework integrates digital photographs and
ultrasound TDI of burn wounds, both stored within an EMR system. A vision-language Al model, guided by expert instructions, analyzes the
multimodal data to predict burn severity —classifying injuries as first, second, or third degree. The system supports real-time clinical decision-making
by embedding predictions directly into the EMR, enabling streamlined diagnostic workflows, and aiding surgical intervention planning. Al: artificial
intelligence; BURN-AID: Burn Diagnosis with Artificial Intelligence; EMR: electronic medical record; TDI: tissue Doppler imaging.
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Ultrasound TDI

The method integrates digital photographs and ultrasound
tissue Doppler imaging (TDI) data stored within an electronic
medical record (EMR) system. The initial phase of burn
assessment uses digital photographs of the burn wound. These
images are processed to rapidly classify burns as first degree
or second degree [6]. This swift identification is crucial for
initiating immediate treatment and reducing the need for
further diagnostic procedures for mild burns. However, for
cases that potentially classify as third degree, the system
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relies on TDI data. Ultrasound TDI offers detailed imaging of
tissue structures, critical for accurate depth assessment where
visual inspection alone may fall short.

The artificial intelligence (AI)-driven approach ensures
that ultrasound resources are used judiciously, minimizing
unnecessary scans and focusing them on cases with high
severity, as indicated by initial digital photograph analysis.
This method optimizes the diagnostic workflow within the
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EMR, allowing for efficient data retrieval and processing,
thus enhancing the overall efficiency of the medical staff.

In this study, we present and evaluate BURN-AID,
an Al-based method that classifies burn depth using dig-
ital photographs and ultrasound-TDI data, measuring its
performance across first-, second-, and third-degree catego-
ries using expert-annotated clinical datasets.

Methods

Recruitment

In total, 30 patients participated in the study, with 1 excluded
due to withdrawal. Enrollment was based on a first-come,
first-served basis. Patients were screened at the Eskenazi
Burn Center, Indianapolis, and informed about the study
procedures, time commitment, and risks by the coordinator.
Those who qualified signed an institutional review board
(IRB)-approved informed consent form.

Data Exclusion

Patients were excluded if they were unable to provide
informed consent, were younger than 18 years of age, had
burns covering 75% or more of their body surface, or had
burns resulting from chemical, electrical, or radiation sources.
Patients with burns that had already undergone surgical
debridement were also excluded.

EMR System

We relied on an EMR system, the DrChrono by EverHealth
[7]. We were given access to a training account for medical
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professionals, allowing us to upload images of burn injuries.
We created an app where our Al system can retrieve data
from the EMR system and make real-time predictions. Our
system was developed in Python (Python Software Founda-
tion) using the Developer API (application programming
interface) by DrChrono. Our system is based on a Web
API, making it easily extendable to mobile or tablet apps.
This integration opens new possibilities for deploying our
system in real-time burn diagnosis. Expanding the system to
support telemedicine apps could further increase accessibility
for patients in remote or underserved areas.

Algorithm and Al Integration

The method for predicting burn depth integrates multiple data
sources and advanced Al algorithms to enhance diagnostic
accuracy. The system uses digital photographs and TDI
stored within the EMR framework. This multimodal approach
leverages the strengths of each data type to provide a
comprehensive assessment of burn depth.

Integration Within EMR Workflows

The AI model is integrated within the EMR system through
a custom-built app that uses the Developer API. In practice,
the workflow proceeds as follows: when a clinician uploads
a new case—including digital photographs and ultrasound
images—into the EMR system, our app retrieves this data
via the API in real time. The AI model then processes the
images, classifies the burn severity using the BURN-AID
algorithm (Textbox 1), and returns the prediction directly into
the patient’s record within the EMR interface.

Textbox 1: BURN-AID (Burn Diagnosis with Artificial Intelligence) algorithm.

1. Start by N observations.
2. Use K for setting parameters. Remains M = N - K.
3. For M, apply the following:

¢ Final Prediction:

(highest probability from Degree 1 and 2).

3).

* Use a classifier Ultrasound-Classifier to determine Degree 3 from non Degree 3.
* Use a classifier DigitalPhoto-Classifier to determine Degree 1 or Degree 2 or Degree 3.

o If Ultrasound-Classifier predicts Degree 3, then it is a Degree 3.
o If Ultrasound-Classifier predicts non-Degree 3, then take the prediction from the DigitalPhoto-Classifier

o If no ultrasound image, then take prediction from DigitalPhoto-Classifier (Degree 1 or Degree 2 or Degree

» Use ground truth to determine the success rate for every class, and present the results.

This integration ensures minimal disruption to existing
clinical workflows. Clinicians continue using the EMR as
they normally would, with the added benefit of automated
burn severity assessment appearing as part of the patient
documentation. The Al-generated predictions are presented
in a structured format that can be reviewed, verified, and
incorporated into decision-making. Furthermore, since the
system is Web API-based, it is platform-agnostic and can
be extended to mobile or tablet-based EMR interfaces used
at the bedside or in telemedicine contexts. This seamless
interaction supports clinicians without requiring workflow
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changes, enabling real-time, Al-assisted burn diagnosis within
the familiar EMR environment.

Digital Photograph Analysis

We designed a prompt with expert instructions to be given to
the vision-language model to generate burn depth predictions.
The detailed process is described as follows:

Several color images were taken for each burn area of the
patient, with each image (dimension 4032x3024). Per patient,
the number of images was a median of 4 (IQR 0), an average
of 4 (SD 0.96), a minimum of 2, and a maximum of 7. For
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each image of the same burn, our Al system first provides a
prediction along with an explanation. Based on the majority
of the vote, the model then provides an overall classification.
The predictions are based on the type of damage to the skin
layers as follows [8.9]:

e Epidermis layer: The thin, outermost layer of the skin
containing melanocytes, which produce melanin (skin
pigment).

e Dermis layer: The middle layer containing blood
vessels, lymph vessels, hair follicles, sweat glands,
collagen bundles, fibroblasts, and nerves. It is held
together by collagen produced by fibroblasts and
contains nerve endings that convey pain and touch
signals.

* Hypodermis (subcutaneous) layer: The deepest layer
consisting of a network of collagen and fat cells that
conserve body heat and protect it from injury.

Definitions based on burn classification given to the AI model
are as follows: [10]
* First degree: Redness of the skin without blisters.
* Second degree superficial: Presence of blisters, dermis
intact.
* Second degree deep: Dermis is burnt; the exact depth is
unknown.
e Third degree: Damage through the dermis with eschar
(white, yellow, or black), involving part or all of the
hypodermis (subcutaneous layer).

The final classifier consists of a multimodal setting, where
ultrasound TDI data are used along with digital photographs.
Thus, if TDI data are available, the BURN-AID model first
uses the TDI analysis module to generate a binary label:
third degree or nonthird degree. This prediction is given
to our Al system to make an overall prediction. In scenar-
ios where TDI data predict third-degree burns, the overall
system predicts third-degree burns. When TDI indicates
non-third-degree burns, the digital photographs are used
for further fine-grained classification, identifying first- and
second-degree burns. This system design ensures that less
severe burns (first degree) can be classified without needing
ultrasound TDI scanning. However, it incorporates TDI data
when available. Additionally, our system design integrates
EMRs in real time as soon as the data are available in the
EMR database for a patient. We further discuss the classifica-
tion with ultrasound TDI data only.

TDI Analysis

TDI is an effective technique for evaluating the mechanical
response of tissues to externally applied forces by assessing
tissue stiffness using a strain gauge incorporated into the
ultrasound probe [11-13]. Images are only collected when
the application pressure on the probe is within an acceptable
range, as detected by the strain gauge. Burn injuries cause
the denaturation of proteins, which alters the elastic properties
of subcutaneous tissue. TDI is instrumental in detecting these
alterations, helping to determine the depth of burn penetra-
tion beyond the superficial skin layers into the subcutaneous
tissue [11-13]. This is critical for identifying injuries that may
require surgical intervention, such as excision and grafting.
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TDI produces color-coded images where different hues
(blue for hard tissue and red for soft tissue) indicate the
mechanical state of the tissue. Changes in these color patterns
from healthy skin, due to burn-induced modifications, are
crucial for the system’s enhanced diagnostic accuracy. The
interpretation of TDI images involves analyzing the distribu-
tion of red, green, and blue colors to predict burn depth.
Continuous blue lines in the TDI images suggest third-degree
burns, as this indicates the tissue has hardened due to the
burn.

Burn surgeons formulated a natural language interpretation
of TDI images of burn injuries, which were fed into the
Al system, as follows: TDI assesses tissue displacement in
response to an applied mechanical force, evaluating tissue
stiffness. The image can be interpreted vertically from top
to bottom, corresponding to the skin’s layers: the epidermis
at the top, followed by the dermis, and the hypodermis
(subcutaneous layer) at the bottom. Third-degree burns are
identified by a predominant, continuous blue pattern in the
hypodermis, indicating severe burns that extend through the
dermis to the deepest skin layer. Non-third-degree burns
lack this dominant blue pattern in the hypodermis, indicating
lesser severity.

BURN-AID Framework Overview

Figure 1 illustrates the workflow of the proposed multimodal
burn classification system, BURN-AID. The process begins
with the patient with burn, whose injury is documented using
both a digital camera and an ultrasound probe. The digital
photograph captures surface-level visual information, while
the ultrasound probe collects TDI data to assess underlying
tissue characteristics.

Both types of data are stored within the patient’s EMR.
The Al system retrieves this multimodal data from the EMR
and uses it as input for classification. In addition to the image
data, the Al model incorporates expert surgeon instructions,
formulated as natural language descriptions. These instruc-
tions guide the model on what to look for within the EMR to
support clinical decision-making.

The Al system, trained to recognize patterns associated
with varying burn depths, then outputs a prediction. The final
classification determines whether the burn is first degree,
second degree, or third degree. Importantly, third-degree
burns —those that typically require surgical intervention—are
flagged accordingly. This setup enables accurate, real-time
diagnostic support directly within the clinical workflow.

Al Model Implementation

Leveraging a vision-language model, specifically the GPT-40
[14], enables the exploration of patterns described in the
expert instruction within images. The AI model uses expert
instructions (system prompt), digital photographs, and TDI
ultrasound images (when available) to generate explanations
in natural language. The output format for assessing burn
depth using TDI is structured into 2 components: burn
depth, which specifies the assessed depth of the burn,
providing direct insight into injury severity; and explana-
tion, which provides a detailed rationale for the prediction,
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elaborating on how observed color patterns in TDI images
correlate with the predefined hypothesis regarding burn depth
and severity. When analyzing multiple images, the system
provides predictions and explanations for each image first,
followed by an overall assessment based on the majority of
images.

For our experiments, we implemented the algorithm
using Python to encode the natural language expert
instructions into the system message prompt. For example,
expert instructions are: for a digital photograph, “consider
Ist degree burn if there is redness of the skin without
blisters,” and for TDI, “consider 3rd degree burn if there
is a continuous blue pattern in the hypodermis (lower
layer/bottom part of the image).” The OpenAl GPT-4
Vision API [14] was used to submit the expert instruction
and request burn depth predictions with the prompt “What
is the depth of the burn indicated by this image?” The
system provided predictions for a 3-way classification of
burn depth: first-, second-, and third-degree burns. The
experimental procedure focused on generating predictions
and explanations at the per-patient level. By focusing on
per-patient evaluation, the system ensured accurate burn
depth classification and appropriate surgical decision-mak-
ing, enhancing the overall efficiency and effectiveness of
burn injury diagnosis and treatment.

Burn Severity Classification With BURN-
AID

To classify the severity of burns, we propose a hybrid method
called BURN-AID, detailed in Textbox 1. This method
integrates 2 classifiers based on different imaging modalities:
ultrasound and digital photographs. The algorithm begins
with a dataset of N observations. A subset of K observations
is used for parameter tuning, leaving M=N-K observations
for the main classification process.

For each of the M observations, 2 classifiers are applied.
The first is an ultrasound-based classifier that performs a
binary classification to distinguish between Degree 3 burns
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and non-Degree 3 burns. The second is a digital photo—based
classifier that performs multiclass classification to differenti-
ate among Degree 1, Degree 2, and Degree 3 burns.

The final prediction for each observation follows a
decision hierarchy. If the ultrasound classifier predicts the
burn as Degree 3, this prediction is used as the final classifi-
cation. If the ultrasound classifier predicts a non-Degree 3
burn, the algorithm then relies on the digital photo classi-
fier, selecting the class with the highest probability between
Degree 1 and Degree 2. In cases where an ultrasound image
is not available, the prediction is made solely based on the
output of the digital photo classifier among all 3 classes.
After completing the classification for all M observations, the
predicted burn degrees are compared with the ground truth
labels.

Dataset Description for Experiments

A major challenge is finding publicly available datasets to
conduct experiments in our setting. While some datasets can
be found through internet sources, such as Google Image
search, these images often lack appropriate annotations and
are frequently copyrighted. Additionally, there is no available
ultrasound TDI data for second- and third-degree burns. As a
result, we rely on data collected in hospital settings.

The dataset used for this study consists of a total of
41 patients, encompassing various degrees of burn severity:
15 patients with first-degree burns, 16 patients with second-
degree burns, and 10 patients with third-degree burns. Table 1
shows details of the data statistics.

For fine-tuning the prompt and optimizing the parameters
of the proposed classifier, we used data from a subset of
9 patients: 3 with first-degree burns, 3 with second-degree
burns, and 3 with third-degree burns. The majority of the
data (n=29), which we collected, was gathered in a hospital
setting, the Richard M. Fairbanks Burn Center at Eskenazi
Hospital, Indianapolis, IN, United States.

Table 1. Distribution of patients by burn severity used for evaluating the BURN-AID (Burn Diagnosis with Artificial Intelligence) system (N=41).

Item Values, n (%)
First-degree burn 15 (37)
Second-degree burn 16 (39)
Third-degree burn (need surgery) 10 (24)

Validation

The digital photograph was captured first, immediately
followed by TDI scanning to ensure that both modalities
refer to the same stage of the burn. Two individuals were
involved in the data collection process to ensure consistency
and efficiency.

However, for a balanced representation, we included data
from 12 patients with first-degree burns obtained from a
previously published burn dataset [15], as first-degree burn
cases typically heal at home and thus are underrepresented in
hospital.

https://medinform jmir.org/2025/1/e68366

To establish the ground truth, 2 burn specialists (burn
surgeons) independently and blindly assessed each image,
reviewing multiple angles to inform their decisions. On
average, each expert took approximately 2 minutes per
case. When initial assessments differed, they collaborated
to resolve discrepancies through a consensus process, which
took up to 3 minutes per case. This final consensus served
as the reference standard, against which we compared the
validation results to evaluate the accuracy and reliability of
our method.

To ensure a comprehensive evaluation, the classifier was
assessed using a held-out set of 32 patients, comprising 12
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with first-degree burns, 13 with second-degree burns, and
7 with third-degree burns. This diverse dataset allows for a
robust analysis of the classifier’s performance across different
burn severity levels.

Statistical Analysis

Accuracy measures the proportion of correctly classified
instances out of the total instances. The Fj-score is par-
ticularly useful in situations where the class distribution
is imbalanced, as it is the harmonic mean of precision
and recall, offering a single metric that balances both
concerns. Specificity was used to measure the classifier’s
ability to correctly identify negative cases (ie, not classify-
ing an instance as a burn type when it is not). The area
under the receiver operating characteristic (AUROC) was
used to demonstrate the classifier’s ability to discriminate
between different classes. AUROC values close to 1 indicate
excellent discrimination ability, suggesting that the classi-
fier is very effective at distinguishing between different
classes. The confusion matrix provides a detailed breakdown
of the classifier’s performance by showing the number of
true positive, true negative, false positive, and false nega-
tive predictions. To assess the statistical significance of the
observed accuracy, a permutation test with 10,000 permu-
tations was conducted, where a low P value indicates a
low probability that the observed accuracy could have been
achieved by random chance.

Ethical Considerations

The study protocol and experimental design were reviewed
and approved by the IRB (IRB# 12689) at Indiana Univer-
sity. All patients provided informed consent to participate and
were compensated (up to US $300 per patient: US $100 for
the first session and US $50 for each subsequent session)
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in accordance with the IRB protocol and the ethical princi-
ples outlined in the Declaration of Helsinki. To protect the
privacy and confidentiality of research subjects, all data were
deidentified (anonymized) prior to analysis.

Results

This study evaluated the performance of a multimodal Al
system designed to identify first-, second-, and third-degree
burns from images stored in an EMR. The classifier’s
performance was assessed using several metrics to ensure
both effectiveness and reliability. Below, we present the
performance metrics.

Evaluation Outcomes

Accuracy

The classifier achieved an accuracy of 84.38%. Accuracy
is the proportion of correctly classified (aligned with the
decision made by clinicians) instances out of the total
instances. The software was least accurate with first-degree
burns, for example, sunburns, likely because the thermal
injury does not induce any changes below the epidermis,
so TDI images will show little change, as this is a
small contributor to skin elasticity relative to the dermis.
Fortunately, this is also the easiest burn depth to diagnose
clinically, and digital photos are usually sufficient.

F1-Score

The Fi-score, which provides a balance between precision
and recall, was 0.856. The precision-recall curve is given in
Figure 2, showing the trade-off.
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Figure 2. Precision-recall curves for each burn severity class—first, second, and third degree—demonstrating the performance of the BURN-AID
classifier in distinguishing between burn types. The curves highlight the trade-off between precision and recall, with high area under the curve
values indicating strong predictive accuracy, particularly for third-degree burns. These results support the model’s robustness in identifying clinically
significant burn injuries with high confidence. AP: average precision; BURN-AID: Burn Diagnosis with Artificial Intelligence.
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The specificity, representing the proportion of true negative
(nonsurgery case classified as nonsurgery) results among all
negative cases, was 83.33%.

Area Under the Receiver Operating
Characteristic Curve

The plot is given in Figure 3, which illustrates the trade-off
between the true positive rate and the false positive rate for
each class. The AUROC curve for the one-vs-rest approach
was 0.97 (95% CI 0.91-1.00) for first-degree burns, 0.96
(95% CI 0.90-1.00) for second-degree burns, and 1.00 (95%
CI 1.00-1.00) for third-degree burns, indicating excellent
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discrimination ability with high AUROC values (Figure 3).
The 95% CI range for each class reflects the precision of
the AUROC estimate, with narrower ranges indicating more
reliable estimates. For instance, the third-degree burns have
the narrowest CI (1.00-1.00), indicating a highly reliable
AUROC estimate, whereas the first- and second-degree burns
have wider CIs, suggesting a bit more variability in the
estimate. These high AUROC values and their respective Cls
suggest that our method is effective at distinguishing between
the different classes. This demonstrates that the proposed
classifier performs well across all classes, with the high
AUROC and narrow CI range highlighting its robustness in a
multiclass setting.
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Figure 3. AUROC for OvVR classification of first-, second-, and third-degree burns using the BURN-AID system. The AUC scores indicate
high discrimination ability for each class, with near-perfect performance for third-degree burns (AUC 1.00). The narrow ClIs reflect the model’s
consistency and reliability in differentiating burn severities, supporting its utility in clinical decision-making. AUC: area under the curve; AUROC:
area under the receiver operating characteristic, BURN-AID: Burn Diagnosis with Artificial Intelligence; OVR: one-vs-rest.
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Confusion Matrix were correctly identified, with 2 misclassified as first-degree

burns and 1 as a third-degree burn; and for third-degree burns,
all 7cases were correctly identified with no misclassifica-
tions. The confusion matrix visualization provides a detailed
view of the classifier’s performance across the different burn
degrees.

The confusion matrix (Figure 4A and B) provides a detailed
breakdown of the classifier’s performance by showing
the number of true positive, true negative, false positive,
and false negative predictions. For first-degree burns, the
classifier correctly identified 10 cases, with 2 misclassified
as second-degree burns; for second-degree burns, 10 cases
Figure 4. Confusion matrix visualizations showing the performance of the BURN-AID classifier across 3 burn severity levels. (A) Using digital
photographs only, the model correctly classified most cases of less severe burns (between first and second degree) but frequently misclassified
second-degree burns as third degree, potentially overestimating severity. (B) With both digital photographs and TDI, the classifier achieved its
highest accuracy for third-degree burns and showed improved overall performance. These results demonstrate the advantage of multimodal imaging

in improving diagnostic accuracy, particularly for identifying severe burns that require surgical intervention. BURN-AID: Burn Diagnosis with
Artificial Intelligence; TDI: tissue Doppler imaging.
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Significance of the Performance

A permutation test with 10,000 permutations was conducted
to assess the statistical significance of the observed accu-
racy of the classifier. The P value was found to be .0001,
indicating a very low probability that the observed accuracy
could have been achieved by random chance. This reinforces
the conclusion that the classifier is performing significantly
better than a random classifier.

Discussion

The goal of this research is to create an integrated multi-
modal Al system within an EMR framework that enhances
burn depth classification accuracy while optimizing diagnos-
tic precision and resource use.

Principal Findings

Our method achieves an accuracy of 84% that correlates with
the decision of expert burn surgeons regarding burn depth
prediction. The Al system we developed for burn diagnosis
provides natural language explanations that have the potential
to assist clinicians in making informed decisions. Unlike
other deep learning—based methods that use ultrasounds and
digital photographs and often offer explanations in the form
of saliency maps (eg, LIME [16]), which require further
processing to be useful, our system delivers direct natural
language text. This approach drastically reduces the gap in
explanations for Al systems, making them more accessible
to general clinicians. Additionally, in cases of misprediction,
these explanations aid in making final decisions, thereby
mitigating the risk of incorrect treatment decisions.

Comparison With Prior Work

Our system’s effectiveness is built on several mechanisms for
burn depth diagnosis. Traditional machine learning and deep
learning models [17,18] typically require extensive training
data to make accurate predictions, often needing millions
of samples to learn useful features from images [19-23].
However, this requirement limits their application in clinical
settings, especially in health care areas like burn diagnosis,
where data are limited, difficult to obtain, and ultrasound
data are even more challenging to acquire [6,24-27]. In our
case, we used a small number of patient data to fine-tune the
system for burn diagnosis, achieving reasonable accuracy.

We leverage large-scale pretraining, which does not
require burn data. Instead, the system is pretrained to
understand general knowledge, such as identifying patterns
in images. We also incorporate burn surgeons’ instructions
directly into the system as prompts for making predictions.
These instructions simplify the decision-making process
because the Al system only needs to identify patterns in
the ultrasound images as instructed by the ultrasound and
surgeon experts. This expert knowledge can be prerecorded,
eliminating the need for the expert presence during real-time
decision-making. The expert knowledge is embedded in the
system training, making it unnecessary during inference or
real-time predictions.
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The scarcity of publicly available clinical burn images
poses a significant challenge for the research community in
advancing this field [28]. Several prior works have resorted
to using internet-sourced burn images to develop machine
learning systems for depth prediction [28]. Digital photos,
with careful preprocessing, such as isolating the burn area and
resizing images to 224x224 pixels from a single burn wound,
are often used [29,30]. In contrast, we consider using a digital
photograph of the burn wound with patients’ body parts.
This method does not require burn segmentation and is thus
more practical in clinical settings. Additionally, our method
provides a mechanism to combine digital photography with
ultrasound imaging to address errors associated with digital
photographs alone, particularly regarding burn depth, which
is not visible in standard digital photographs.

Digital photograph—based burn classification has been
explored in deciding surgical decision-making for patients
with burn [18]. It has been observed that the accuracy in
surgical decision-making from digital photographs is 64.7%
[18]. This might be due to the fact that the digital photo
contains limited information about the deeper skin layers,
which are required to identify third-degree burns or surgical
cases. In contrast, we leverage TDI data, which improves
the accuracy to 84.38% in our Al system. In the literature,
various ultrasound methods have been used to diagnose
diseases, including burns. Some studies include pig data,
use laboratory settings, and achieve reasonable performance
[31]. The B-mode ultrasound technique uses a contact probe
operating at high frequencies to measure and assess char-
acteristics of skin tissue. In contrast, we build and eval-
uate our Al system in a multimodal setting, leveraging
TDI ultrasound data on human participants. Integration with
EMR systems allows our multimodal system to be used
in clinical settings where EMR data, such as digital photo-
graphs and ultrasound images, can be combined to make
comprehensive decisions. This integration reduces costs since
some scenarios, like predicting a first-degree burn, might
only require digital photographs, eliminating the need for
ultrasound. This flexibility helps reduce diagnosis costs and
enables faster real-time predictions, which can be updated
with new data from the EMR system.

Our system has the potential to be applied to the exten-
sive patient data available in EMR systems across hospitals,
requiring minimal involvement from burn experts. Adopting
our method to new EMR systems requires generating input
data of the burn wound, specifically digital photographs
and ultrasound imaging. The AI system then processes this
input and provides burn depth information as output. This
capability could assist expert surgeons in making more
informed decisions and potentially highlight areas where
decisions may require further review. The portable nature
of imaging systems such as cameras and ultrasound probes
allows our system to be used outside hospital settings (eg,
accidents, fire incidents, and remote areas). Developing this
system for mobile settings, such as tablet and mobile apps, is
our next step. Developing such a user-friendly app will be of
ultimate importance in far areas where there is no tertiary care
or burn centers available.
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Limitations

While the proposed method demonstrates promising results
in predicting burn depth using multimodal data, several
limitations must be considered. First, the use of digital
photographs of burn wounds introduces the potential for bias
related to variations in skin color. Since skin tone can affect
color perception and image-based classification, this could
influence model performance. To mitigate this, we cropped
the images to focus exclusively on the wound area, excluding
surrounding skin and other body parts, thereby minimizing
skin tone as a confounding factor. However, in real-world
clinical settings, such precise cropping may not always be
feasible. Future work should explore model robustness to
a wider range of skin tones and develop techniques that
are less sensitive to background features. Second, in the
case of TDI, we selectively cropped the images to include
only the upper portion where the skin layers were clearly
distinguishable. This step improved consistency and clarity in
the analysis. Nevertheless, this approach assumes ideal image
quality and positioning, which may not hold true in routine
clinical environments. As a result, the algorithm’s generaliz-
ability to full, uncropped TDI images remains to be fully
validated. Future developments could incorporate automa-
ted region-of-interest detection or full-image interpretation
to better simulate real-world use. Third, the validation of
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our Al model relied on expert annotation. We implemen-
ted a systematic approach involving blind evaluations and
consensus discussions between burn surgeons, who also had
access to B-model and TDI ultrasound data during annotation.
These decisions were informed by actual clinical treatments,
providing a strong reference for classification. However, the
current clinical gold standard for burn depth assessment
remains histological examination via biopsy. In our study,
a subset of patients (5/29) had corresponding histology data,
which served as definitive ground truth. Although our expert
annotations were consistent with these gold-standard cases,
the limited histological data constrain the broader validation
of our model’s accuracy. Future studies should aim to include
more histopathological data to strengthen model evaluation
and reduce reliance on subjective expert consensus.

Conclusions

This study presents BURN-AID, an Al-based system for
classifying burn depth using multimodal imaging, digital
photographs and ultrasound TDI, integrated within an EMR
framework. We evaluated its performance on expert-annota-
ted datasets, achieving an overall classification accuracy of
84% across first-, second-, and third-degree burns. These
results demonstrate the potential of multimodal Al to support
clinical decision-making in burn diagnosis.
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