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Abstract

Background: The growing availability of electronic health records (EHRs) presents an opportunity to enhance patient care by
uncovering hidden health risks and improving informed decisions through advanced deep learning methods. However, modeling
EHR sequential data, that is, patient trajectories, is challenging due to the evolving relationships between diagnoses and treatments
over time. Significant progress has been achieved using transformers and self-supervised learning. While BERT-inspired models
using masked language modeling (MLM) capture EHR context, they often struggle with the complex temporal dynamics of
disease progression and interventions.

Objective: This study aims to improve the modeling of EHR sequences by addressing the limitations of traditional
transformer-based approaches in capturing complex temporal dependencies.

Methods: We introduce Trajectory Order Objective BERT (Bidirectional Encoder Representations from Transformers;
TOO-BERT), a transformer-based model that advances the MLM pretraining approach by integrating a novel TOO to better learn
the complex sequential dependencies between medical events. TOO-Bert enhanced the learned context by MLM by pretraining
the model to distinguish ordered sequences of medical codes from permuted ones in a patient trajectory. The TOO is enhanced
by a conditional selection process that focus on medical codes or visits that frequently occur together, to further improve contextual
understanding and strengthen temporal awareness. We evaluate TOO-BERT on 2 extensive EHR datasets, MIMIC-IV hospitalization
records and the Malmo Diet and Cancer Cohort (MDC)—comprising approximately 10 and 8 million medical codes, respectively.
TOO-BERT is compared against conventional machine learning methods, a transformer trained from scratch, and a transformer
pretrained on MLM in predicting heart failure (HF), Alzheimer disease (AD), and prolonged length of stay (PLS).

Results: TOO-BERT outperformed conventional machine learning methods and transformer-based approaches in HF, AD, and
PLS prediction across both datasets. In the MDC dataset, TOO-BERT improved HF and AD prediction, increasing area under
the receiver operating characteristic curve (AUC) scores from 67.7 and 69.5 with the MLM-pretrained Transformer to 73.9 and
71.9, respectively. In the MIMIC-IV dataset, TOO-BERT enhanced HF and PLS prediction, raising AUC scores from 86.2 and
60.2 with the MLM-pretrained Transformer to 89.8 and 60.4, respectively. Notably, TOO-BERT demonstrated strong performance
in HF prediction even with limited fine-tuning data, achieving AUC scores of 0.877 and 0.823, compared to 0.839 and 0.799 for
the MLM-pretrained Transformer, when fine-tuned on only 50% (442/884) and 20% (176/884) of the training data, respectively.
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Conclusions: These findings demonstrate the effectiveness of integrating temporal ordering objectives into MLM-pretrained
models, enabling deeper insights into the complex temporal relationships inherent in EHR data. Attention analysis further highlights
TOO-BERT’s capability to capture and represent sophisticated structural patterns within patient trajectories, offering a more
nuanced understanding of disease progression.

(JMIR Med Inform 2025;13:e68138) doi: 10.2196/68138
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Introduction

In modern health care, electronic health records (EHRs) are
crucial as comprehensive repositories encompassing a wide
range of patient data, including diagnoses, medications,
treatments, laboratory data, and demographic information. The
accumulation of EHR data longitudinally builds EHR
trajectories, sometimes called patient trajectories. This
information serves as an important resource for assessing a
patient’s current health status and predicting potential health
risks. Using advanced deep learning (DL) models with this
extensive data opens the possibility of making predictions, such
as disease risks, treatment outcomes, and patient prognoses.
This possibility equips health care providers with the tools to
make informed decisions, ultimately improving patient care,
optimizing interventions, and reducing health care costs.

However, developing DL methods for modeling EHR data is
full of challenges. Effectively addressing the complexity of the
heterogeneous data extracted from patients’ EHR [1-4],
capturing short- and long-term relationships between medical
codes across various visits, contending with the scarcity of
publicly available EHR sources, and navigating the vast diversity
of diseases pose significant hurdles. In addition, ensuring
transparency and explainability in the predictions made by DL
techniques demands substantial effort [5-7].

Current state-of-the-art models for EHR trajectory data are based
on transformer architecture [8], in particular, models inspired
by the Bidirectional Encoder Representations from Transformers
(BERT) [9] architecture [10-14]. Such models aim to capture
short- and long-term relationships through a task-agnostic
representation learning (RL) approach, where the masked
language model (MLM) pretraining objective is very common.

The BERT-inspired models for EHR trajectory data can be
examined from various perspectives: data and model size, used
data modalities, architecture, and pretraining objectives. Within
this context, we focus on the primary and auxiliary pretraining
objective functions designed to enhance the capabilities of the
learned representation.

The primary objective typically takes the form of a generative
task, benefiting from its enhanced ability to grasp intricate
relationships. MLM objectives have found widespread
application in EHR trajectory prediction tasks, largely owing
to the capabilities of BERT models to learn the context (both
past and future simultaneously) [10,11,15-22]. The
autoregressive pretraining objective [23,24] serves as the other
approach for RL of EHR trajectory data. It accomplishes this

by predicting upcoming medical events, such as the codes for
the next day or the subsequent visit, leveraging the patient’s
historical data [25-27].

A range of auxiliary pretraining objectives has been proposed
to enhance the RL performance, incorporating either external
knowledge or using contrastive learning. Examples of the former
include Shang et al [15] and Amirahmadi et al [28] that predicted
medications based on diagnoses and diagnoses based on
medication to induce relationships within the diagnoses and
interventions in the learned representation. Med-BERT [11]
introduced a length of stay auxiliary prediction task to enrich
contextual information about the severity of patients’ health
conditions. CEHRT-BERT [16] and Claim-PT [27] incorporated
visit type predictions (eg, inpatient and outpatient visits) to
represent external domain knowledge into the model, mitigating
the effect of sparse codes based on the observation that different
medical concepts are associated with different visit types.

RareBERT [19] introduced a 1-class classification objective to
improve model performance for rare disease prediction.
Similarly, AdaDiag [18] added a domain classifier to distinguish
data from different institutes and enhance the generalizability
and robustness of the learned representation against dataset
shifts.

From the contrastive learning category, we find Hierarchical
BEHRT (Hi-BEHRT) [17] that used bootstrap your own latent
(BYOL) [29] similarity learning, operating under the assumption
that varying augmentations of the same input yield similar
representations, thereby enhancing the latent representation of
the network. Rapt [21] trained the transformer to differentiate
between different patient trajectories, relying on the Euclidean
distance between their last visits to enrich the RL’s
understanding of their health condition. In addition, Rapt used
another auxiliary objective, like the next sentence prediction,
to discern whether a trajectory belongs to a specific patient or
constitutes a fusion of various patient trajectories, facilitating
the learning of trends within health trajectories. Generative
Adversarial Networks Enhanced Pretraining (GRACE) [22],
addressing the EHR data insufficiency challenge, incorporated
a real or fake contrastive learning objective to distinguish
authentic EHR data from generative adversarial network
(GAN)–generated EHR data within the MLM framework.

Instances of medical events can influence the likelihood of other
medical events, shaping the trajectory of patients toward more
or less severe health conditions. Moreover, numerous medical
events exhibit semicausal relationships through chains of
probability paths that have not been extensively studied [30-33].
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The relative intervals between medical events play a pivotal
role in adjusting a patient’s trajectory and are a key factor for
the RL model. In pretrained language models, similar concepts
are applied to comprehend the global coherence of data. BERT
[9] used a next-sentence prediction (NSP) to capture the global
relations between sentences. However, Liu et al [34] showed
that NSP does not generate a positive impact, and Lan et al [35]
speculate that the reason lies in the simplicity of NSP and its
overlap with the MLM loss. Consequently, they replaced NSP
with sentence order prediction, prioritizing coherence prediction
over topic prediction [36,37]. Before the mentioned studies,
researchers improved their machine translation, constituency
parsing models, and object detection by altering the order of
input [38-40]. Vinyals et al [41] delved into the problem that,
while in theory incorporating the order of sequences should not
have a significant impact when using complex encoders due to

their nature as universal approximators, in practice, it does
matter due to underlying nonconvex optimization and more
fitting priors.

Furthermore, EHR trajectories encompass a history of abnormal
health conditions, including diseases, laboratory data, and
prescribed interventions like medications and procedures. The
occurrence of certain diseases can alter a person’s health
trajectory and increase the probability of other illnesses.
Similarly, interventions often mitigate the severity of conditions
at the cost of raising other health risks. Thus, every medical
event, whether it involves diseases or medications, can serve
as a cause, complication, or early symptom of the recorded
codes [42]. This study will demonstrate that order objectives,
besides the context, enhance the model performance by learning
more structural information. In summary, the contributions are
mentioned in Textbox 1.

Textbox 1. Overview of the study's main contributions.

• We have examined the ability of Bidirectional Encoder Representations from Transformers–inspired models to capture the representation of
sequential information of medical codes. Our findings indicate that although transformers and language models excel at identifying global
dependencies based on contextual information, learning the order of diseases and medications can be challenging, especially for patients with
long trajectories.

• We introduced a novel “trajectory order objective” self-supervised auxiliary task to the masked language model (MLM). This new objective was
applied at both the single code and visit levels, and we demonstrated its efficacy in enhancing the original MLM by evaluating it on heart failure,
Alzheimer disease, and prolonged length of stay downstream prediction tasks on 2 distinct datasets.

• We introduced the conditional code swapping and conditional visit swapping functions built on the “conditional-based order of medical codes.”
This function allows swapping more frequent consecutive repetitions, enabling the model to systematically learn the patterns of transitions at
both the single code and visit levels.

• We demonstrated how adding the new objective reshapes the attention behavior of the transformer model and encourages the model to attend to
relations between 2 sets rather than 2 individual codes, enabling the learning of more complex structural relationships.

Methods

Data
In this study, we extracted medical diagnoses and medication
histories from 2 distinct (EHR) trajectory datasets, namely the
Medical Information Mart for Intensive Care IV (MIMIC-IV)
hosp module [43] and the Malmo Diet and Cancer Cohort
(MDC) [44]. These 2 datasets have unique characteristics that
suit our research objectives.

The MIMIC-IV hosp module encompasses a rich, detailed
collection of inpatient EHR trajectories, comprising a total of
approximately 173,000 patient records recorded during 407,000
visits. The data spans from 2008 to 2019, offering a
comprehensive view of patient journeys within the hospital
setting. MIMIC-IV hosp module contains approximately 10.6
million medical codes associated with a large volume of patients.
The MDC data is a prospective cohort from Sweden. It consists
of approximately 30,000 individuals residing in the municipality
of Malmo (southern Sweden) between 1991 and 1996. The

cohort was recruited from a total population of about 74,000
individuals, encompassing all men born between 1923 and 1945
and all women born between 1923 and 1950. All inpatient and
outpatient visits between 1992 and 2020 have been recorded,
resulting in a total of 531,000 visits. Although the MDC dataset
has fewer overall samples, it excels in providing a more
extensive patient history, averaging 257 codes per patient
compared to MIMIC-IV’s 61 (for more details, refer to
Multimedia Appendix 1).

Diseases and medications in both datasets are classified using
the ICD (International Classification of Diseases and Related
Health Problems) and Anatomical Therapeutic Chemical Code
(ATC), respectively. These coding systems follow a hierarchical
format, providing granular details about diseases or medications
based on code length.

To facilitate our self-supervised pre-training, supervised
fine-tuning, and final testing, we randomly partitioned the
extracted cohort into 3 subsets: 70%, 20%, and 10%,
respectively. For further details on the specifications of the
MIMIC-IV and MDC datasets, refer to Tables 1 and 2.
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Table 1. Summary statistics of the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset.

Total datasetTest datasetFine-tuning datasetPretraining dataset

173,00016,00036,000121,000Patients, n

408,00037,00086,000285,000Visits, n

2,767,000248,000579,0001,940,000ICD-9a codes, n

7,854,000688,0001,655,0005,511,000ATCb codes, n

10,622,000937,0002,234,0007,451,000All codes, n

aICD-9: International Classification of Diseases, Ninth Revision.
bATC: Anatomical Therapeutic Chemical Code.

Table 2. Summary statistics of the Malmo Diet and Cancer Cohort (MDC) dataset.

Total datasetTest datasetFine-tuning datasetPretraining dataset

30,0003000600021,000Patients, n

531,00052,000107,000373,000Visits, n

1,647,000161,000331,0001,155,000ICD-10a codes, n

5,988,000580,0001,223,0004,185,000ATCb codes, n

7,634,000741,0001,554,0005,339,000All codes, n

aICD-10: International Statistical Classification of Diseases, Tenth Revision.
bATC: Anatomical Therapeutic Chemical Code.

Ethical Considerations
The use of the MDC dataset for this study was approved by the
Ethics Review Board of Sweden (Dnr 2023-00503-01).
Regarding the MIMIC-IV dataset, all protected health
information (PHI) is officially deidentified. It means that the
deletion of PHI from structured data sources (eg, database fields
that provide age, genotypic information, and past and current
diagnosis and treatment categories) is performed in compliance
with the HIPAA (Health Insurance Portability and
Accountability Act) standards in order to facilitate public access
to the datasets.

Data Processing and Problem Formulation

Each dataset D comprises a set of patients P, D = {P1,P2,...,P|D|}.
In our study, we considered a total of |D|= 172,980 patients for
MIMIC-IV and |D|= 29,664 patients for the MDC cohort. We
represent each patient’s longitudinal medical trajectory through
a structured set of visit encounters. Given the continuous
recording of medical codes in the MDC cohort, we define a visit
entity V for each code and all previous subsequent codes
occurring within a 6-month time window. For the MIMIC-IV,
we used the predefined visits. This representation is denoted as

P, Pi = {Vi
1, V

i
2, …, Vi

O}, where O represents the total number

of visit encounters for patient I. For each visit, Vj
i = Ij ∪Mj is

the union of all diagnoses codes Ij ⊂ I and prescribed

medications Mj ⊂ M that are recorded for the Pi at visit Vj
i. To

reduce the sparsity, we excluded less frequently occurring
medical codes and retained only the initial 4 digits of ICD and
ATC codes (refer to Multimedia Appendix 1). This process
resulted in 2195 ICD-9 (International Classification of Diseases,

Ninth Revision) and 137 ATC-5 unique codes for the MIMIC-IV
dataset and 1558 ICD-10 (International Statistical Classification
of Diseases, Tenth Revision) and 111 ATC-5 unique codes for
the MDC dataset. In addition, for the MIMIC-IV, we converted
medication data from National Drug Code (NDC format to ATC
format to benefit from its hierarchical structure and improve
comparability.

To guide the model in understanding changes in encounter times
and the structure of each patient’s trajectory, like BERT, we
used special tokens. A CLS token is placed at the beginning of
each patient's trajectory, while a SEP token is inserted between
visits. Consequently, each patient trajectory is represented as

Pi={CLS, V1
i,SEP, V2

i,SEP,…,V0
i,SEP}, providing the model

with valuable context for analysis and prediction.

Heart Failure Prediction
The primary downstream task is heart failure (HF) prediction,
where the model predicts the incidence of the first HF ICD
codes IN=HF on the Nth visit, given the patient’s previous history
of diagnosis and medication intervention:

For each patient’s trajectory, if there were no occurrences of
the target disease, it is considered a negative case; otherwise,
we excluded the first visit with target codes and all subsequent
visits and considered it a positive case. Furthermore, all ATC
codes related to HF treatment are excluded. To mitigate
trajectory length bias, trajectories with fewer than 10 and 30
visits are excluded from MIMIC IV and the MDC dataset,
respectively, ensuring an equal average number of visits within
positive and negative cases. Following these preprocessing
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steps, we obtained Cohorts with a history of 5 visits for
MIMIC-IV and 20 visits for the MDC dataset on average. As
a remark, in the MDC Cohort, this task is equivalent to
predicting HF in the next 6 months, as per the preprocessing
design.

Alzheimer Disease Prediction
The next downstream task is Alzheimer disease (AD) prediction.
Similar to the HF prediction downstream task, the model
predicts the occurrence of the first AD ICD codes IN=AD on the
Nth visit, considering the patient’s previous history of diagnoses
and medication interventions:

We followed the HF prediction preprocessing steps. The AD
downstream prediction task was tested on the MDC dataset.

Prolonged Length of Stay Prediction
To explore the adaptability of pretrained models to a distinct
task from the one they were initially trained on (code prediction),
we used the prediction of prolonged length of stay (PLS) as a
binary classification downstream task. In this task, the model
is assigned the objective of predicting the PLS in the Nth visit
based on a patient’s diagnoses and medications in previous
visits in the MIMIC-IV dataset:

Consistent with [45], patients with a stay longer than 5 days
were considered positive cases for PLS. To maintain consistency
with the HF prediction task, trajectories with fewer than 3 visits
were excluded, and the average number of visits was equalized
between positive and negative cases. Following these steps, we
obtained a Cohort with an average history of 5 visits (refer to
Multimedia Appendix 1).

Methods

Recent studies have underscored the effectiveness of using
multihead transformer architecture and MLM self-supervised
learning in the domain of EHR trajectory modeling. While these
methods have exhibited superior performance in various
contexts, we focus on investigating their limitations related to
sequential order learning and propose enhancements to address
this issue.

A fundamental aspect of EHR trajectory modeling is the critical
role of the sequential order of medical events in guiding patients’
trajectories. For instance, the timely administration of
appropriate medical interventions can significantly alter a
patient’s trajectory, either improving the severity of their
condition or, conversely, leading to unintended side effects.

Models Objective
Our approach involves pretraining a transformer model on 2
distinct generative and contrastive self-supervised learning
objectives: MLM and Trajectory-Order Objective (TOO). The
MLM is crafted to learn the context, while TOO is designed to
capture relations between local contexts. By simultaneously
training the model on both of these objectives, we aim to
leverage the entire set of patient trajectories and acquire a more
comprehensive data representation.

MLM
The MLM generative task is used to learn the contextual
dependencies among medical codes. In this paper, we corrupt
the input by randomly masking the medical codes in each

patient’s trajectory, denoted as Pi
corrupted, and train the model to

maximize the likelihood of the masked codes, denoted as xk:

where is the conditional probability modeled by a deep neural
network with parameter . We used a sliding window approach
across patients’ trajectories to generate additional samples for
the MLM objective (refer to Multimedia Appendix 1).

In the trajectory order objective, we train the transformer model
to learn the relative positions of local features across 2
hierarchical levels, visits and medical codes. The TOO task
helps the model gain insights into both causal and noncausal
relationships within medical codes and visits. We achieved this
by permuting each patient’s trajectory, using them as negative
samples, while the unpermuted sequences served as positive
examples for the TOO self-supervised contrastive learning task.

In this equation, state ∈ {permutated, ordered} denotes whether

the trajectory Pi is ordered or permutated, and ystate ∈{0,1} is
the corresponding label. We implemented the TOO task at the
code level and visit level, by code swapping and visit swapping,
respectively (refer to Figure 1).
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Figure 1. Code versus visits swapping. (A) Code swapping does not alter the visit structures of patient trajectories and only substitutes one medical
code with another medical code in a different visit. (B) Visits swapping substitutes one visit, along with all its contents, with another visit, further
disrupting the relative-time-wise dependencies between diagnoses and medications.

Code swapping: We initiated code swapping by swapping codes
between different visits of a patient’s trajectory. Given the
complexity, especially for long trajectories, we designed and
implemented 2 distinct methods. First, we randomly selected
and swapped a subset of code pairs ci and cj with uniform
probability, called random code swapping (RCS).

Second, to further facilitate the learning process for the
transformer model and guide it toward more meaningful
patterns, we introduced a conditional code swapping function
(CCS; ci, cj). The idea is to prioritize code pairs that show a
temporal dependency. The CCS function will provide a
numerical estimate for such temporal relations, and in practice,
code pairs (ci, cj) with large CCS (ci, cj) values are sampled
more often than pairs with smaller values. We defined the CCS
function as follows:

Here, CCnt(ci, cj) is the count of all occurrences of code pairs
(ci, cj) with the condition that code ci appears after code cj and
that they are located in different visits. The count is performed
over all patient trajectories in the pretraining dataset. The max
operator in the nominator forces the CCS function to only
consider the simple temporal dependencies that code ci follows
code cj. In other words, the maximum operator transforms the
bidirectional transition graph between 2 medical codes into a
unidirectional graph based on observations in the pretraining
dataset. To account for a possible difference in the number of
diagnoses and the number of medications, the CCS function
was adjusted with a scaling factor Si,j (refer to Multimedia
Appendix 1, for more details). Finally, ε is a small number added
to allow for a nonzero probability of selecting code pairs
regardless of the relation between CCnt(ci, cj) and CCnt(cj, ci).
Figure 2 show the CCS values, as a heatmap, for a selection of
code pairs (ci, cj) for both datasets used in this study.
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Figure 2. The conditional code swapping matrix heat map for a subset of medical codes in the medical information mart for Intensive Care IV and
Malmo Diet cohort datasets.
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Figure 3. Trajectory order objective-Bidirectional Encoder Representations from Transformers architecture and example patient trajectory input. MLM:
masked language modeling; TOO: trajectory-order objective.

Visits Swapping
Visit swapping aims to teach the model the coherence between
different levels of local features in the global context. Instead
of swapping positions of individual ci and cj codes, this method
involves swapping the positions of all medical codes in visit x
with those in visit y. Similar to code swapping, we implemented
2 methods for swapping visits. In the first method, we randomly
sampled 2 visits x and y, with a uniform probability, and
swapped them, denoted random visit swapping (RVS).

Second, we introduced the conditional visit swapping (CVS)
function to prioritize among the visits to swap. This
prioritization is based on the presence of codes within the visits
that exhibited the simple temporal relation from the CCS
approach as expressed by the CCS function above. To that end,
the CVS function is calculated as the sum of CCS scores for all
medical codes within visits x and y:

Similar to the way the CCS function was used for code
swapping, pairs of visits with large CVS(vx,vy) values are
sampled more often than visit pairs with lower values.

Figure 2 shows the CCS matrix heat map for a subset of medical
codes in the MIMIC-IV and MDC datasets. Each row and
column represents a medical code, and the heat map indicates
the CCS score for all combinations of medical codes. Pairs with
higher scores (indicated by lighter colors here) are more likely

to be swapped with each other. Due to the long-tail distribution
of medical codes and the predominance of less frequent codes,
only a subset of the more frequent codes is displayed here.
Examples of medical code pairs with the highest CCS scores
are printed on the right side. For instance, in the MIMIC-IV
dataset, “chronic kidney disease” and “diabetes mellitus” exhibit
one of the highest CCS scores, suggesting that kidney disease
frequently follows diabetes (but not vice versa). Similarly, in
the MDC dataset, “atrial fibrillation” and “essential
hypertension” have a high CCS score, indicating that atrial
fibrillation often appears after hypertension. Training the model
explicitly on such relationships allows it to learn more relevant
connections between diseases and medications.

Model Architecture
In this study, we used a multihead attention transformer encoder,
drawing inspiration from BERT [8,9]. The model architecture,
illustrated in Figure 3, includes an embedding module, a
multihead attention transformer encoder, a feed-forward layer,
and 2 classifier heads. The embedding module integrates medical
codes with their associated temporal information. To capture
the temporal dynamics, each medical code is paired with a visit
sequence number, represented by 2 types of embeddings: a
trainable visit number embedding and a nontrainable sinusoidal
embedding, added together. These embeddings are summed
with the medical code embeddings to form the input tensor X0,
which is then passed through a standard transformer encoder to
obtain the transformed representation X1:
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The learned representation is then passed to both the MLM and
TOO classifier heads. The MLM classifier is a large softmax
applied along the vocabulary dimension, used for predicting
masked tokens. The TOO classifier is a binary classifier
responsible for predicting the correct temporal order of the
medical codes.

Pretraining TOO-BERT
In the pretraining phase, we adopted a multitask learning
approach to train the transformer network on both the MLM
and TOO tasks simultaneously. For each batch, we alternated
between these 2 objectives and performed gradient
descent-based optimization on the weighted sum of their
respective losses. This strategy allowed the model to learn both
tasks cohesively, mitigating the risk of catastrophic forgetting
that could occur if the objectives were trained sequentially
[46,47] (ie, training on MLM first and then on TOO).

The total loss function for pretraining was defined as follows.

Each patient trajectory consists of a sequence of diagnoses,
medications, and their associated visit sequence numbers, which
are processed as input to TOO-BERT. The model includes an
embedding layer, a multihead transformer encoder, and 2
classifier heads. First, all medical codes and their temporal
information are embedded in the embedding layer. The
combined embeddings are then passed through the multihead
transformer encoder, followed by the MLM and TOO classifiers.

where WMLM and WTOO represent the weights assigned to each
loss.

For the MLM objective, we randomly masked 15% [9] of the
medical codes (equation 4). Similar to BERT and Med-BERT,
during the masking process, each code had an 80% (n/N) chance
of being replaced by [Mask], 10% (n/N) by a random code, and
10% (n/N) remained unchanged.

In the TOO task, we trained the model to classify the permuted
trajectories using RCS, CCS, RVS, and CVS methods. We
initially evaluated the model’s capability on the TOO task across
various permutations.

Fine-Tuning for Downstream Task
Following the pretraining phases for trajectory representation
learning, we added a Bidirectional Gated Recurrent Unit
(Bi-GRU) classifier head on top of the pretrained network,

similar to Med-BERT, and finetuned it using the fine-tuning
split for each specific downstream task. To enhance the
fine-tuning process, we incorporated a layer-wise learning rate
decay strategy [48,49] with gradient descent to decrease the
weight changes in the initial layers compared with the later
layers, thereby retaining the basic knowledge acquired during
pretraining. In the final step, we compared the performance of
our models against Logistic Regression, Random Forest, MLP,
Bi-GRU, and a pretrained transformer with only the MLM
objective.

Implementation Details
We set aside 10% (12000/121000 in the MIMIC-IV and
2000/21000 in the MDC dataset) of the pretraining dataset for
monitoring the transformer’s performance on the MLM and
TOO pretraining objectives. The fine-tuning dataset was divided
into 5 splits. For each iteration, we fine-tuned the pretrained
models and trained the baseline models on 4 splits, using the
remaining portion for early stopping. The reported results
represent the average and SD of the performance across the 5
trained models on the isolated test dataset.

For the pretraining phase, we used a neural network featuring
5 self-attention heads and one transformer encoder with a dk =
dv = dx = 36 (refer to Multimedia Appendix 1), comprising
approximately 300,000 learnable parameters. In each dataset,
we computed the length of the trajectory for all patients and
considered the 0.7 quantiles of the trajectory lengths as the
maximum sequence length. For trajectories exceeding this
length, we applied a moving window to generate additional
augmented pretraining samples. We used the Adam optimizer
with a learning rate of 7e-5, a weight decay of 0.015, and a
dropout rate of 0.1, and trained the model until the loss curve
stabilized. The MLP network comprises 2 hidden layers with
250 and 100 nodes, and the Bi-GRU network features one
bidirectional GRU layer with 64 hidden nodes.

Results

Evaluation of Pretraining on the TOO Auxiliary Task
We assessed the effectiveness of the transformer models in
learning the proposed TOO auxiliary objectives through a series
of experiments conducted on the MDC and MIMIC-IV datasets.
The four proposed swapping methods (RCS, CCS, RVS, and
CVS) were applied with different amounts of swapped code or
visit pairs, and the models’ performance in detecting whether
a trajectory contained swapped codes or visits was evaluated
under varying amounts of swapping. Figure 4 illustrates the
impact of increasing the percentage of swaps on classification
performance for each dataset and swapping method.
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Figure 4. The accuracy of the transformer model in classifying various types of swapping during the pretraining phase on the 10% unseen data from
the pretraining split is shown for MDC and MIMIC-IV datasets. (A) The pretrained model can classify permuted samples with even a very low percentage
of swapping on the MIMIC-IV dataset. On the other hand, classifying the permuted samples on the MDC was quite challenging. (B) The classification
accuracy of the visits-swapped samples increases by raising the number of swapped visits for both methods and both datasets. MDC: Malmo Diet and
Cancer Cohort; MIMIC-IV: Medical Information Mart for Intensive Care IV.

As shown in Figure 4A, for the MIMIC-IV dataset, the
transformer model could easily detect swapped trajectories using
RCS and CCS methods for swap percentages above 40%
(25/62). In contrast, the MDC dataset presented a different
challenge. MDC trajectories are, on average, approximately 8
times longer (in terms of visits per patient) than those in

MIMIC-IV. Here, the model struggled with the RCS, failing to
find solutions effectively across any percentage of swapped
pairs. In the CCS task, the model began to classify swapped
trajectories more accurately only when the percentage of swaps
exceeded 45% (102/254).
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The results for the visit-swapping tasks (RVS and CVS) are
presented in Figure 4B. These tasks proved more challenging
for the models, especially at lower percentages of swaps. For
the CVS task in the MDC dataset, the model required over 80%
(14/18) of visits to be swapped before achieving satisfactory
classification performance. Conversely, in the RVS task, the
model achieved 0.8 accuracy with just 40% (7/18) of swapped
visits.

For the MIMIC-IV dataset, the CVS task remained difficult for
the transformer models, with only a single visit swap (1/2, 42%).
However, in the RVS task, the model successfully classified
trajectories with only one visit swap, demonstrating greater ease
in learning visit-level temporal disruptions in this dataset.

To improve the pretraining performance on the MDC cohort
with the RCS swapping method, we used a transfer learning
approach. Initial weights from the transformer using the CCS
method were used for the RCS task with 45% (102/254) code
swapping, and this resulted in an accuracy of 0.684. This

approach was also applied during the fine-tuning step
for MLM+TOORCS on the MDC dataset.

Evaluation of Downstream Tasks
We evaluated the prediction performance of HF and PLS for
the MIMIC-IV dataset, while for the MDC dataset, we evaluated
the HF and AD prediction performance. The datasets’
specifications and the downstream tasks definitions are described
in the section data. The percentages of swapping used for RCS,
CCS, RVS, and CVS during pretraining are shown in
Multimedia Appendix 1, Table S2 in Multimedia Appendix 1,
and the selection was based on the performance on the validation
performance within the fine-tuning dataset.

Table 3 shows the performance of Logistic Regression, Random
Forest, MLP, Bi-GRU, the transformer pretrained with the MLM
auxiliary task, and the 4 variations of the MLM+TOO auxiliary
tasks. Consistent with the results of the Med-BERT model [11],
the transformer pretrained with only MLM outperformed almost
all other conventional methods in all downstream tasks for both
datasets.

Table 3. Average AUCa values (%) and SD for different methods for the HFb prediction, ADc prediction, and PLSd prediction downstream tasks on
the test datasets.

PLS prediction (MIMIC-IV)HF prediction (MIMIC-IVf)AD prediction (MDC)HF prediction (MDCe)Model or dataset

54.2 (0.4)83.8 (1.1)56.4 (1.1)62.4 (1.1)Logistic regression

51.1 (0.3)78.6 (1.6)51.8 (0.3)60.7 (0.5)Random forest

59.3 (1.9)86.0 (0.5)68.0 (1.5)67.9 (3.0)MLP

55.9 (1.0)85.0 (1.3)60.4 (1.1)62.3 (1.2)Bi-GRU

60.2 (1.2)86.2 (0.9)69.5 (1.6)67.7 (2.6)MLMg

58.4 (0.9)88.1 (0.7)65.6 (0.7)65.1 (1.2)MLM+TOOh
RCS

i

60.4 (1.2)89.8 (0.8)67.2 (1.3)64.6 (2.7)MLM+TOOCCS
j

57.3 (0.8)87.9 (1.7)70.4 (0.2)72.8 (3.1)MLM+TOORVS
k

58.8 (1.6)87.2 (1.8)71.9 (1.6)73.9 (1.9)MLM+TOOCVS
l

aAUC: area under the receiver operating characteristic curve.
bHF: heart failure.
cAD: Alzheimer disease.
dPLS: prolonged length of stay.
eMDC: Malmo Diet and Cancer Cohort.
fMIMIC-IV: Medical Information Mart for Intensive Care IV.
fgLM: masked language modelling.
hTOO: trajectory-order objective.
iRCS: random code swapping.
jCCS: code swapping function.
jRVS: random visit swapping.
lCVS: conditional visit swapping.

The visit-level TOO objective methods yielded the best HF and
AD prediction performance on the MDC dataset, which features
much longer patient trajectories. Using the CVS for the TOO
objective achieved the highest area under the receiver operating
characteristic curve (AUC) of 0.739 and 0.719 for HF and AD
prediction, respectively. Moreover, since the model pretrained

with random code swapping exhibited weak performance on
the MDC dataset (Figure 4A), we initialized the model with the
weights of the CCS pretrained model. We achieved
approximately 0.74 accuracy on the TOO objective and
subsequently fine-tuned this model for HF prediction, increasing
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the AUC to 0.65.9. However, this result remained lower than
that of the transformer pretrained solely on MLM.

For HF prediction on the MIMIC-IV dataset, the TOO auxiliary
task with code swapping improved performance more than other
methods. Applying the CCS over the TOO objective achieved
the best AUC of 0.89.8. Although predicting the PLS on the
next visit is challenging for all models, adding the CCS objective
led to the best AUC.

Performance Boost on Data Insufficiency
We further evaluated the impact of combining the proposed
TOO with the MLM, using varying fine-tuning sample sizes

for predicting HF on the MIMIC-IV test dataset, and compared
its performance to the transformer pretrained on MLM and
MLP, the most successful conventional method. Fine-tuning
sample sizes was reduced to 50% (442/884), 20% (176/884),
and 10% (88/884). Figure 5 presents the performance of the
MLP (orange line), the transformer pretrained with only MLM
(red line), and transformers pretrained with MLM combined
with RCS (blue line), CCS (green line), RVS (black line), and
CVS (pink line). As the sample size decreased, the transformer
pretrained with MLM+TOOCCS achieved higher AUC scores,
highlighting its effectiveness in handling data insufficiency.

Figure 5. Comparison of HF prediction AUC values for the test sets by fine-tuning on different data sizes on the MIMIC-IV dataset. The shadows
represent the 90% CI. AUC: area under the receiver operating characteristic curve; HF: heart failure; MIMIC-IV: Medical Information Mart for Intensive
Care IV. MLM: masked language modeling; MLP: multilayer perceptron; TOO: trajectory-order objective.

The Effect of TOO on Attention Weights
Visualizing the attention scores, Ah, of the transformer provides
valuable insights into the model’s decision-making process and
its representation learning capabilities. More capable models
can learn and attend to more complex patterns. Figure 6 shows
attention scores for the fine-tuned models based on only MLM,
MLM+TOORVS, and MLM+TOOCCS pretraining. The attention
scores come from a single patient trajectory for the HF
prediction task on the MIMIC-IV dataset. Attention scores for
all TOO-BERT variants can be found in Multimedia Appendix

1. In the rightmost column, the attention scores of the model
pretrained solely with MLM show a primary focus on the latest
codes in the trajectory. In contrast, models pretrained with the
TOO objective (shown in the first and second columns) exhibit
more diverse attention patterns, capturing more complex and
structured relationships across the trajectory. In addition, models
pretrained with the visit-level TOO objective (RVS)
demonstrated an increased focus on the interactions between
sets of consecutive codes (ie, segment-level attention). In
contrast, the model pretrained with the CCS objective tended
to exhibit attention at the individual code level.
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Figure 6. The attention scores (5 heads) for 3 fine-tuned models on HF prediction for the MIMIC-IV dataset, shown for a specific sample from the test
set. HF: heart failure; MIMIC-IV: Medical Information Mart for Intensive Care IV.

In Figure 6, lighter colors in the heatmap indicate higher
attention weights, while darker colors represent lower attention
weights. The variations within each model’s attention heads are
meaningful, reflecting how the model allocates attention to
specific medical codes within the trajectory. The attention scores
of the model pretrained on MLM+CCS demonstrate a greater
ability to learn complex patterns. For better interpretability, the
attention scores for each head are normalized between 0 and 1,

though the original values range from 0 to 0.033, with slight
variations across different models.

Discussion

Principal Findings
The sequential order of the medical codes and their interactions
within a patient’s EHR trajectory is crucial for understanding
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and modeling their health status. While BERT-inspired methods
have shown good results in this domain, the challenge lies in
capturing the intricate relationships between diseases and
prescribed interventions. TOO-BERT enhances the performance
of BERT-inspired models by simultaneously learning the order
of medical codes and the context of the EHR trajectory. Our
approach involves pretraining these models explicitly on the
sequential information within a patient’s EHR trajectory, aiming
to enhance their learning capability by using the temporal
structure. In addition, the introduction of 2 novel weighting
methods, CCS and CVS, within the TOO objective enables the
models to learn more relevant and frequent causal and
correlation dependencies with a data-driven approach.

The pretraining results highlight the differences in learning
sequential information between the MIMIC-IV and MDC
datasets. The MDC dataset, characterized by an average of
approximately 18 visits per patient, presented more challenges
in learning single code level sequential information compared
to the MIMIC-IV dataset, which has an average of about 2.5
visits per patient (Figure 4A). This discrepancy could stem from
the tendencies of transformers to learn the global dependencies
and might require additional strategies to capture local patterns
as well [50-53]. In addition, the performance of the model
initialized with weights from the CCS task in the MDC dataset
on the RCS task demonstrated that the proposed conditional
probability approach can effectively help the model converge
(section Evaluation of pretraining on the TOO auxiliary task).

Combining the proposed TOO with the MLM improved
estimated AUC values for all downstream tasks on both datasets.
Interestingly, in longer trajectories, visit-level swapping seemed
more informative than code-level swapping, suggesting that the
TOO auxiliary pretraining objective may improve the efficacy
of the transformer in modeling long EHR trajectory data, in
addition to suggested architectural improvements [54,55].
Moreover, code-level TOO-BERT reduced the performance of
MLM in the MDC dataset, possibly due to the increase in MLM
loss associated with adding the TOO auxiliary task during
pretraining. Transformers trained solely on MLM demonstrated
similar performance to MLP, indicating the complexity of EHR
trajectories and data insufficiency in pretraining these models.
The addition of the TOO task leveraged the MLM, potentially
compensating for data insufficiency in complex models.

Predicting PLS from previous visits based on diagnoses and
medications proved to be a particularly challenging task for all
models. In addition, while previous research has indicated that
BERT-inspired models are excellent few-shot learners
[11,24,56], the addition of the TOO auxiliary task showed
superior performance with reduced fine-tuning sample sizes for
HF prediction in the MIMIC-IV dataset.

The CCS and CVS weighting function enhances the learning
process by prioritizing more frequent transitional patterns. This
prioritization helps the model focus on meaningful
dependencies, such as transitions where the occurrence of one
event strongly predicts the occurrence of another. By
emphasizing these strong correlations, the model can converge
more efficiently and avoid learning from rare or noisy transitions
that may not represent meaningful relationships.

This approach is particularly beneficial in the context of small
datasets. CCS and CVS ensure the model concentrates on the
most informative patterns early in training, which not only
facilitates convergence but also helps reduce overfitting to
spurious relationships. While larger datasets and highly
expressive models may eventually learn such relationships
without CCS, the function remains valuable for guiding the
model toward robustness in more resource-constrained settings.
The other way to conceptualize CCS and CVS is the
resemblance to first-order and higher-order Markov chains.
CCS amplifies the probability weight of swapping a code pair
based on the observation that the occurrence of one code
increases the probability of observing the other in future visits.
Similarly, CVS approximates a higher-order Markov chain by
considering a set of conditions [57].

An interesting finding in our study was that training transformers
on sequential information enables them to learn more intricate
structures. The variability in the size and number of tiles in the
attention weights (Figure 6) suggests that the TOO-objective
enabled the transformers to learn a wide range of patterns.
However, a quantitative analysis approach would be more
suitable for gaining a more concrete understanding of the
attention behaviors.

Limitations
This study has several limitations. The TOO task only considers
the order of the medical codes and skips the time irregularity
of visits in the EHR [58-60]. Extending the investigation of the
new TOO-BERT variant to other datasets with larger sample
sizes and longer visit trajectories would enhance our
understanding of the differences between code and visit-level
swapping pretraining objectives. Furthermore, the inclusion of
additional EHR data sources with various modalities, such as
test result values and demographic information, with continuous
and categorical data types, in TOO-BERT requires further
exploration.

Future Directions
Future research directions may involve a more comprehensive
investigation of the challenges associated with the lack of
locality in transformers and the exploration of more
sample-efficient techniques to enhance the performance of
TOO-BERT methods in data-limited scenarios. Enhanced
positional encoding techniques and transformer architectures
could prove beneficial. The impact of history length, influenced
by code and visit level swapping, could be examined by
pretraining TOO-BERT on larger datasets with longer visit
histories. Furthermore, assessing the performance of pretrained
TOO-BERT on other types of downstream tasks or tasks subject
to dataset shifts would be valuable.

Conclusion
In this study, we explored the potential of incorporating the
relative positions of medical codes to improve the learned
representation of intricate disease-intervention dependencies,
especially in scenarios involving lengthy sequences and limited
data. Our introduction of TOO-BERT extends the capabilities
of the MLM by focusing on the sequential information within
patients’ trajectories at both the single code and visit levels. In
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addition, to enhance the TOO objective, we introduced
condition-based code and swapped self-supervised tasks. The
outcomes highlight TOO-BERT’s superior performance in
predicting PLS, AD, and HF across different sample sizes. Our
analysis of attention weights reveals that the TOO task equips

transformers to grasp more intricate structural patterns. Future
research might involve exploring more sample-efficient
pretraining methods and refining transformer architecture and
positional encoding to enhance TOO-BERT’s representation
learning capabilities further.
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