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Abstract
Background: Leptospirosis, a zoonotic disease caused by Leptospira bacteria, continues to pose significant public health
risks, particularly in tropical and subtropical regions.
Objective: This systematic review aimed to evaluate the application of machine learning (ML) and deep learning (DL)
techniques in predicting and diagnosing leptospirosis, focusing on the most used algorithms, validation methods, data types,
and performance metrics.
Methods: Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, Checklist for
Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS), and Prediction
model Risk of Bias Assessment Tool (PROBAST) tools, we conducted a comprehensive review of studies applying ML
and DL models for leptospirosis detection and prediction, examining algorithm performance, data sources, and validation
approaches.
Results: Out of a total of 374 articles screened, 17 studies were included in the qualitative synthesis, representing approxi-
mately 4.5% of the initial pool. The review identified frequent use of algorithms such as support vector machines, artificial
neural networks, decision trees, and convolutional neural networks (CNNs). Among the included studies, 88% (15/17) used
traditional ML methods, and 24% (4/17) used DL techniques. Several models demonstrated high predictive performance, with
reported accuracy rates ranging from 80% to 98%, notably with the U-Net CNN achieving 98.02% accuracy. However, public
datasets were underused, with only 35% (6/17) of studies incorporating publicly available data sources; the majority (65%,
11/17) relied primarily on private datasets from hospitals, clinical records, or regional surveillance systems.
Conclusions: ML and DL techniques demonstrate potential for improving leptospirosis prediction and diagnosis, but future
research should focus on using larger, more diverse datasets, adopting transfer learning strategies, and integrating advanced
ensemble and validation techniques to strengthen model accuracy and generalization.
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Introduction
Overview of Leptospirosis and Its
Diagnosis
Leptospirosis, a zoonotic disease caused by pathogenic
Leptospira bacteria, is a global public health concern, with an
estimated 1.03 million cases and approximately 58,900 deaths
annually [1]. The disease is particularly prevalent in tropical
and subtropical regions, where environmental factors such as
heavy rainfall, poor sanitation, and frequent flooding facilitate
bacterial survival and transmission. Although less common,
leptospirosis also occurs in temperate regions, including the
United States, especially in areas prone to flooding or with
high populations of animal carriers like rodents and livestock
[1].

In the United States, the Centers for Disease Control
and Prevention (CDC) reports approximately 100‐150 cases
annually, with the majority occurring in Puerto Rico and
Hawaii due to their specific environmental conditions.
Isolated cases in areas like New York City and California
highlight the mobility of the disease and its potential for
travel-related transmission [1].

Transmission primarily occurs through direct contact with
the urine or reproductive fluids of infected animals or
exposure to contaminated water and soil, especially follow-
ing periods of heavy rainfall [2]. High-risk activities include
wading, swimming, or boating in potentially contaminated
freshwater. Effective control measures include improving
sanitation, controlling rodent populations, and educating
at-risk populations. The disease manifests with a broad
range of clinical symptoms, from mild flu-like symptoms to
severe complications such as Weil’s disease, characterized by
jaundice, renal failure, pulmonary hemorrhage, and multi-
organ dysfunction, which can lead to death if not treated
promptly [1].

The diagnosis of leptospirosis is challenging due to the
nonspecific nature of its early symptoms, which often overlap
with other febrile illnesses. Traditional diagnostic methods
include the microscopic agglutination test (MAT), considered
the gold standard, and polymerase chain reaction (PCR).
MAT is labor-intensive and requires specialized laboratory
capabilities, making it less accessible in many endemic
regions [2]. PCR, while offering early detection by identify-
ing Leptospira DNA in blood or urine, also requires advanced
laboratory infrastructure. Rapid diagnostic tests (RDTs)
provide quicker results, but their sensitivity and specificity
can vary depending on the Leptospilora serovars and disease
stages, limiting their effectiveness in some settings [2,3].
Machine Learning and Deep Learning in
Disease Detection
Machine learning (ML) and deep learning (DL) have emerged
as powerful tools in the field of disease detection and
management. ML involves training computers to apply
past experiences to solve new problems, leveraging algo-
rithms that enable the machine to identify patterns, make

predictions, and produce insightful judgments based on data.
The increasing availability of computational power and data
storage has significantly boosted the application of ML across
various fields, including public health. In the context of
infectious diseases like leptospirosis, ML can analyze large
datasets, including clinical and laboratory data, to identify
patterns and relationships that might not be apparent through
traditional statistical methods [4-6].

DL, a subset of ML, further enhances these capabilities
by using neural networks with multiple layers to automat-
ically extract, analyze, and understand useful information
from raw data. Unlike traditional ML techniques that rely
on handcrafted features, DL models are capable of automatic
feature engineering, which significantly enhances classifica-
tion performance. DL techniques, driven by neural networks,
are known for their accuracy and performance, particularly
in complex tasks such as image recognition and analysis
[6-8]. For example, convolutional neural networks (CNNs)
have been successfully applied to medical imaging, enabling
the precise identification and classification of pathogens in
microscopy images [9], which is crucial for diseases like
leptospirosis.

The application of ML and DL in leptospirosis diagno-
sis represents a significant advancement over traditional
methods. ML algorithms can analyze clinical and laboratory
data, including patient symptoms, demographic information,
and test results, to predict the likelihood of leptospirosis. This
capability is particularly valuable in settings where access
to advanced diagnostics is limited, as it allows for earlier
and more accurate detection, potentially reducing the time to
diagnosis and improving patient outcomes [10].

DL models, particularly CNNs, have shown great promise
in analyzing blood and urine samples, medical imaging, and
environmental data to predict the presence of Leptospira or
the likelihood of an outbreak. These models can distinguish
Leptospira bacteria in microscopy images with high accuracy,
reducing the need for skilled microbiologists and improving
diagnostic accessibility in low-resource settings [4].

One of the most significant advantages of using ML
and DL in leptospirosis diagnosis is their ability to inte-
grate diverse data types—such as clinical, laboratory, and
environmental data—into comprehensive predictive models.
These models can be used for individual patient diagnosis and
public health surveillance, enabling more targeted and timely
interventions. For example, predictive models that incorporate
climatic and environmental factors, such as rainfall patterns
and flooding data, can help identify regions at higher risk for
leptospirosis outbreaks, allowing for proactive disease control
measures [10].

Despite the significant potential of ML and DL to
revolutionize the diagnosis and management of leptospiro-
sis, comprehensive reviews focusing specifically on their
application in this area are scarce. Most existing reviews
have primarily concentrated on more prevalent conditions
such as tuberculosis, malaria, and COVID-19, with minimal
attention given to zoonotic diseases like leptospirosis [4,5].
Furthermore, there is a recognized gap in the literature
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concerning the application of advanced AI techniques in
the context of neglected tropical diseases, such as leptospi-
rosis, where the potential for these technologies to improve
diagnostic accuracy remains underexplored [6,11]. This gap
underscores the need for a focused review that synthesizes
current research, identifies the most effective ML and DL
models, and evaluates their impact on public health outcomes
related to leptospirosis.

The aim of this systematic review is to comprehensively
evaluate the application of ML and DL techniques in the
prediction and diagnosis of leptospirosis. This review will
address the following key research questions:

1. Which ML and DL algorithms are most frequently used
in leptospirosis prediction and diagnosis, and how well
do they perform?

2. What validation methods are most used in the evalua-
tion of ML and DL models for leptospirosis? and how
reliable are these methods?

3. What types of data are most used in ML and DL models
for leptospirosis? How does the type of data influence
the performance of these models?

4. What are the main challenges and limitations identified
in the research studies regarding ML and DL applica-
tions in leptospirosis prediction and diagnosis?

Methods
Study Design
We conducted a systematic review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) checklist [12] ( Checklist 1). The Checklist
for Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies (CHARMS) was
used to frame this review’s objectives [13].

Search Strategy
PubMed, IEEE, ACM, and Web of Science databases were
searched for articles published from inception till May 29,
2024. Hand-searching of references within included articles
was conducted to shortlist other potential articles. Our search
strategy used a combination of subject terms related to
“machine learning” and “Leptospirosis” (see Multimedia
Appendix 1).

Eligibility Criteria
We included full-text English language articles that devel-
oped or validated diagnostic or predictive ML models for
human leptospirosis. Our review focused specifically on ML
and DL methods, including logistic regression, Bayesian
learning, and generalized additive models when these were
implemented within an ML or DL framework [14].

Several categories of studies were excluded. First, we
omitted case reports, case series, letters, corrigenda, editorial
commentaries, literature reviews, and meta-analyses. Second,
we excluded purely applied statistical methods that were not
integrated with ML or DL frameworks, including traditional
statistical analyses that did not incorporate ML optimization

techniques. Third, non-artificial intelligence methods as well
as general artificial intelligence (AI) approaches that could
not be classified as either ML or DL (such as rule-based
expert systems without learning components or symbolic AI
methods) were excluded [14].

The distinction between included and excluded methods
was based on whether the approach involved automated
learning from data. For instance, while standard logis-
tic regression was excluded, logistic regression implemen-
ted with ML techniques like automated feature selection
or hyperparameter tuning was included. Similarly, simple
threshold-based diagnostic rules were excluded unless they
were derived through ML processes. This approach ensured
our review focused specifically on applications of ML and
DL technologies in leptospirosis diagnosis and prediction.

In this review, diagnostic ML models refer to models that
predict the disease status of an individual, while predictive
models forecast the probability of future occurrence of the
disease in an individual.
Study Selection
A total of 3 independent reviewers (SS, AJ, and BR)
conducted the initial search across 4 databases using
predefined search terms within the title and abstract,
strictly following the inclusion and exclusion criteria. Zotero
bibliography software was used to manage the search results
by tracking reasons for inclusion and exclusion, grouping
records, importing PDFs, and exporting data to Microsoft
Excel for extraction. The interrater agreement between the
coauthors was evaluated using Cohen’s kappa (κ>0.80)
[15,16], ensuring a high level of consistency across the
reviewers.

To enhance the screening process, we employed
ChatGPT-4o (June 2024 version) as a fourth reviewer.
This advanced large language model (LLM) was specifi-
cally selected for its proven capabilities in biomedical text
analysis (OpenAI) and superior handling of technical medical
terminology compared to previous versions. We opted to use
only this single model to maintain consistency in evalua-
tion criteria and avoid potential variability from multiple
LLMs. During implementation, abstracts were systematically
input to ChatGPT-4o with standardized prompts mirroring
our inclusion and exclusion criteria, and all outputs were
automatically logged for verification.

While ChatGPT-4o provided valuable preliminary
classifications (achieving 88% initial alignment with human
reviewers in our pilot test), we implemented a rigorous
3-stage human verification protocol: (1) initial matching
of AI recommendations with human decisions, (2) consen-
sus discussion for discrepancies (κ<0.80), and (3) final
unanimous approval. For example, the model initially
recommended including 12 statistical modeling studies that
were properly excluded after human review. This AI-assis-
ted process reduced initial screening time by 30% while
maintaining 100% alignment with final human decisions
through our verification protocol, which followed PRISMA-
AI guidelines [12] to mitigate potential AI limitations.
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We emphasize that ChatGPT-4o served strictly in an
advisory capacity, and no studies were included solely based
on its recommendation. This approach aligns with emerging
best practices for LLM-assisted systematic reviews [17,18],
with complete verification records available in our supple-
mentary materials (Multimedia Appendix 2).
Quality Assessment
The articles selected for inclusion were then subjected to a
quality assessment using the Prediction model Risk of Bias
Assessment Tool (PROBAST) tool [13], which categorizes
bias as low, medium, or high (see Multimedia Appendix 3).
All authors assessed the quality of their respective parts,
starting with a pilot of 5 articles to ensure consistency.
The PROBAST tool evaluates risk of bias based on 4
segments—participants, predictors, outcome, and analysis.
Each segment’s risk of bias was rated as high, medium,
low, or unclear. If any domain suggested a high risk of
bias, the overall risk of bias for that study was considered
high. These studies were not excluded but were analyzed
to understand their limitations and impact on the overall
findings. The assessment was conducted independently by all
authors, ensuring a thorough evaluation process.
Data Extraction
For the extraction process, a standardized form was used to
collect data relevant to the review’s objectives. This form
was adapted from the CHARMS [15] and the Transparent
Reporting of a Multivariable Prediction Model for Individ-
ual Prognosis or Diagnosis (TRIPOD) guidelines [19]. The
extracted information included publication type, publication
year, author, title, country of research, source of data, type of
data (public or private), overall number of samples, and data
collection methods (see Multimedia Appendix 4).

Additional details were gathered on the ML and
DL algorithms used, including whether the models were
pretrained or developed from scratch, as well as the use of
transfer learning, data augmentation, validation methods, and
evaluation metrics. The strength of leptospirosis predictions
was documented using performance metrics. Tasks were
categorized into segmentation, classification, and object
detection, noting the type of classification and any limitations.

To ensure consistency, reviewers conducted a pilot phase
where they independently extracted data from the first 5
articles and compared results, achieving a high agreement
(κ=0.98). Afterward, all 17 articles were reviewed, and
discrepancies were resolved through discussion. The studies
were then rigorously categorized before moving to theme
formation. One author (SS) defined the themes, which were
reviewed and adjusted by the other authors (AJ and BR) to
ensure comprehensive categorization.
Outcomes Assessed
The primary outcomes assessed in this review include the
diagnostic and predictive performance of various ML and
DL methods for leptospirosis detection, focusing on metrics
like accuracy, area under the curve (AUC), sensitivity, and
specificity. It also evaluates the applicability and generaliza-
bility of these models in health care settings, emphasizing the
integration of advanced neural network architectures, transfer
learning, and data augmentation to enhance performance.
Data Analysis
We grouped the collected studies into summary tables based
on the type of ML and DL models used for leptospirosis
detection. R (version 4.3.2; R Foundation for Statistical
Computing) was used to perform both descriptive statistical
analyses and create visualizations.

Results
Search and Selection Results
Figure 1 illustrates the process of identifying relevant
literature. A comprehensive search across 5 databases yielded
a total of 374 articles. After removing 25 duplicate records,
349 unique articles were screened based on their titles and
abstracts. Following this initial screening, 61 articles were
selected for full-text review. Of these, 45 were excluded for
various reasons, including not meeting inclusion criteria or
insufficient data for analysis. Ultimately, 16 studies were
included in the review, with 1 additional study identified
through hand-searching reference lists, bringing the total to
17 studies included in the qualitative synthesis.
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Figure 1. Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram illustrating the search and
selection process used to identify relevant studies. AI: artificial intelligence; ML: machine learning; DL: deep learning.

Study Description
In this systematic review, we examined 17 studies (n=17)
published between 2012 and 2024 that used ML and DL
techniques for the prediction and diagnosis of leptospirosis
(see Figure 2). Most studies were published in 2019 (n=3,
18%), 2022 (n=3, 18%), and 2023 (n=3, 18%). Brazil was
the most common country of research, contributing 4 studies
(24%), followed by New Caledonia with 3 studies (18%).
Regarding data sources, 6 studies (35%) used health records,
6 studies (35%) used environmental data, and 5 studies (29%)
used epidemiological data.

Most studies (11/17, 65%) focused on predictive model-
ing, while 6/17 studies (35%) concentrated on diagnosis.

ML algorithms were overwhelmingly preferred, with 15/17
studies (88%) using techniques such as SVM, decision tree
(DT), and random forests. DL algorithms, including CNN
and multilayer perceptrons (MLPs), were used in 4/17 studies
(24%), and only 1/17 study (6%) combined both ML and DL
methods. All studies developed models from scratch without
using transfer learning, and only 1/17 study (6%) reported the
application of data augmentation techniques.

Regarding model validation, cross-validation methods
were most frequently used in 11/17 studies (65%), while
holdout validation methods, such as train and test splits, were
used in 6/17 studies (35%).
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Figure 2. Distribution of studies on machine learning and deep learning applications for leptospirosis diagnosis and prediction by year and task type.

Assessment of Risk of Bias in Machine
Learning Models
In assessing the risk of bias across the included 17 studies,
most were categorized as having a medium risk across key
domains (Figure 3). A total of 14 studies (82%) were rated as
having a medium risk of bias related to participant selection,
primarily due to the selection of specific regions or popula-
tions that may not fully represent broader leptospirosis cases.
Examples include studies by [10,20-32]. In addition, 2 studies
(12%) [33,34] were rated as low risk, while 1 study (6%) [35]
was rated as high risk due to narrower participant selection.

Regarding predictors, 16 studies (94%) demonstrated a
medium risk of bias, often because they relied heavily on

environmental or clinical data without fully accounting for
confounding variables. Only 1 study (6%) [34] was rated
as low risk in this domain. For outcome bias, 13 studies
(76%) [10,20-27,29,30,34,35] were assessed as low risk, with
clear and consistent definitions applied across participants. A
total of 4 studies (24%) [28,31-33] exhibited medium risk,
mainly due to subjective outcome determinations or a lack of
standardized measures.

In the analysis domain, 13 studies (76%) [10,22-33]
demonstrated medium risk due to concerns about validation
techniques, handling of missing data, and small sample sizes,
while 4 studies (24%) [20,21,34,35] were rated as low risk,
reflecting stronger analytical methodologies.
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Figure 3. Distribution of risk of bias across domains in machine learning and deep learning studies for leptospirosis.

Frequently Used ML and DL Algorithms
for Leptospirosis Prediction and
Diagnosis
This systematic review considered all ML and DL techniques
used in the included studies and examined their applications
in either leptospirosis prediction or diagnosis (classification).
Figure 4 illustrates the distribution of classifiers across the
studies, highlighting the diversity of approaches and the
frequency of use of certain models.

For prediction tasks, the most commonly used ML
technique was support vector regression (SVR), applied in
2 studies [32,33]. In addition to SVR, several other ML
techniques were prominently featured. These included the
naïve networks and TAN (tree augmented naive) networks
used by Mayfield et al [24] for predictive risk mapping, and
the random forest classifier and M1 mixed model used by
Jayaramu et al [30] for predictive risk modeling.

Models like LeptoScore and QuickLepto, applied by
Galdino et al [10], further illustrate the diversity of
approaches taken in predictive modeling. SVM and MLP
used in predictive risk modeling by Ahangarcani et al
[26], while Mohammadinia et al [27] applied geographi-
cally weighted regression, generalized linear models, artificial
neural networks (ANNs), and SVM for similar tasks. In
addition, feedforward neural networks were used by [31] in

prediction tasks, demonstrating the growing role of neural
network models in this domain.

For diagnosis (classification) tasks, ANNs were widely
used, appearing in studies by [20,28]. FuzzyARTMAP and
ARTMAP-IC, both variants of ANN, were also used by
[20] to achieve classification. In addition, Bayesian classifi-
ers such as Naïve Bayes were applied by [21,29], further
showcasing the diversity of ML techniques in classification
tasks.

CNNs were another frequently used DL model for
classification. Specifically, U-Net, a variant of CNN, was
used by [34] and achieved an impressive accuracy of 98%.
Other classifiers, such as k-nearest neighbors (KNNs), DTs
(J48), and random forests, were used in multiple studies, with
[23,29] demonstrating their efficacy in disease classification.

Performance evaluations showed that many studies
combined multiple classifiers. For example [29], applied
naïve Bayes, KNN, MLP, J48 decision tree, random forest,
multinomial logistic regression, and Adaboost within the
same study, with random forest achieving the highest
performance at 87% accuracy and 91% sensitivity.

Hybrid approaches combining ML and DL were also
present, such as the use of a genetic algorithm combined
with both ML and DL techniques in [25], which attained an
accuracy of 99%.
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Figure 4. Heatmap of classifier usage across included studies [10,20-35]. ANN: artificial neural network; DL: deep learning; FAM: fuzzy adaptive
resonance theory mapping; FFN: feed forward network; GA: genetic algorithm; GWR: geographically weighted regression; J48: J48 decision
tree; JRIP: repeated incremental pruning to produce error reduction; LASSO: least absolute shrinkage and selection operator regression; Maxent:
maximum entropy model; ML: machine learning; RF: random forest; SVM: support vector machine; SVR: support vector regression; TAN: tree
augmented naïve network; U-Net: U-Net convolutional neural network.

Upon comparing prediction and diagnosis (classification)
tasks, it becomes evident that ML models dominated
predictive risk mapping studies, while DL models, particu-
larly U-Net, were more frequently used in classification tasks
related to disease detection. For risk modeling, techniques
like decision trees (J48) and random forest classifiers were
commonly applied, with high specificity rates achieved in
studies such as those by [21,30].

Interestingly, 50% of the studies (n=8) used more than one
algorithm to assess performance, highlighting the importance
of comparative evaluations in the field. Supervised-learning
algorithms were predominant throughout the studies, with no
mention of unsupervised-learning methods, such as K-means,
or reinforcement-learning algorithms.

In summary, the most frequent algorithms in prediction
tasks were SVR and random forest, while in diagnosis, ANN
and U-Net stood out as the most frequently used. Across
both types of tasks, the performance metrics indicated high
accuracy and sensitivity, showcasing the reliability of ML and
DL techniques in leptospirosis research.

Algorithm Performance Metrics
Performance assessment is a crucial process in evaluat-
ing ML and DL models. Various metrics are used to
measure model performance, including accuracy, sensitivity,
specificity, precision, F1-score, AUC, mean squared error
(MSE), R-squared (R²), mean absolute error (MAE), and
root mean squared error (RMSE). These metrics are typically
evaluated using hidden or unseen examples to assess model
generalizability. In the included studies, accuracy was the
most frequently reported metric, followed by sensitivity,
precision, specificity, and F1-score. For prediction tasks,
MSE, MAE, RMSE, and R² were used to assess regression
performance.

Tables 1 and 2 demonstrates the widespread use of
accuracy rates across various models. The studies examined
used accuracy as the primary indicator of performance,
although other metrics such as sensitivity and specificity
were also highlighted. For instance, the performance of the
ANN in the Seremban City dataset reached 80% accuracy,
83% sensitivity, and 75% specificity, while achieving an
AUC of 87%. Models such as the Fuzzy ARTMAP applied
to other datasets showed lower performance, with accuracy
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ranging between 60% and 80%, highlighting the variability in
effectiveness across different methods.

Table 1. Performance of best classification models from the research studies.

Study Model Accuracy, % Sensitivity, % Specificity, % AUCa, %
F1-score,
%

Rahmat et al [28] ANNb —c 86.44 79.33 89.04 —
Collins et al [19] ANN 80 80 — — —
Collins et al [19] Fuzzy ARTMAPd 80 80 — — —
Nery et al [21] JRIPe 80.10 85 81 82.60 75
Shenoy et al [29] Random forest — 87 — 91 86
Sonthayanon et al
[25]

GAf 98.90 — — — —

Nery Jr et al [22] JRIP — 84 99 — —
Kulkarni et al [34] U-Netg 98.02 — — — —
Lopez et al [23] J48h 70.5 — — — —
Zhao et al [35] Maxenti model — — — 96 —
aAUC: area under the curve.
bANN: artificial neural network.
cIndicates metrics that were either not reported or not utilized in the original studies.
dARTMAP: adaptive resonance theory mapping.
eJRIP: repeated incremental pruning to produce error reduction.
fGA: genetic algorithm.
gU-Net: U-Net convolutional neural network.
hJ48: J48 decision tree.
iMaxent: maximum entropy.

Table 2. Performance of best prediction models from the research studies.
Study Model Accuracy, % Sensitivity, % Specificity, % AUCa, % MSEb R2 MAEc RMSEd

Douchet et al
[32]

SVRe —f — — — 0.19 — — —

Sonthayanon et
al [24]

TANg — — — 89 — — — —

Jayaramu et al
[30]

RFCh 82.60 60 96.60 — — — — —

Galdino et al
[10]

LASSOi 78.30 81.10 57.10 — — — — —

Ahangarcani et
al [26]

SVMj 86.55 — — 85.48 — — — —

Mohammadinia
et al [27]

GWRk — — — — 0.05 0.85 0.01 —

Douchet et al
[33]

SVR — — — — — 0.75 0.44 —

Thibeaux et al
[31]

FFNl — — — — — — — 0.67

aAUC: area under the curve.
bMSE: mean squared error.
cMAE: mean absolute error.
dRMSE: root mean squared error.
eSVR: support vector regression.
fIndicate metrics that were not reported or used in the original studies.
gTAN: tree augmented naïve network.
hRFC: random forest classifier.
iLASSO: least absolute shrinkage and selection operator regression.
jSVM: support vector machine.
kGWR: geographically weighted regression.
lFFN: feed forward network.
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However, as with all model comparisons, it is not possi-
ble to directly compare the efficiency of models trained
and evaluated on dissimilar datasets. To provide a meaning-
ful evaluation, studies that implemented multiple machine
learning methods on the same datasets were carefully selected
for comparison. This allows for an accurate ranking of
the algorithms based on their mean scores for accuracy,
sensitivity, specificity, F1-score, and other metrics.

In several cases, regression models like SVR were
assessed using MSE and R² values to gauge prediction
performance. For instance, the SVR model in the Reunion
Island dataset showed an MAE of 0.75 and an RMSE of 0.44,
while other datasets revealed higher error rates, reflecting the
challenges in prediction tasks [32].

The study also reveals that deep learning models,
particularly those employing architectures like U-Net and
CNN, achieved outstanding accuracy rates, with U-Net
recording an accuracy of 98% [34]. Random forest models
also performed consistently well, particularly in classification
tasks, achieving high sensitivity and specificity.

Figure 5 shows the number of studies that reported various
performance metrics, highlighting that accuracy and AUC
were the most frequently used measures across the reviewed
articles. This pattern reflects the widespread reliance on these
metrics to evaluate classification performance in leptospiro-
sis-related models. For instance, in one of the best-performing
models, a genetic algorithm achieved an accuracy rate of
99%, significantly outperforming other models.

Figure 5. Number of algorithm performance metrics used in reviewed articles of dataset types used (public and private). AUC: area under the curve;
F1: F1-score; MAE: mean absolute error; MSE: mean squared error; RMSE: root mean squared error.

Datasets and Data Sources
ML and DL studies for leptospirosis prediction and diag-
nosis rely on diverse datasets with distinct characteristics
(see Table 3). Public datasets, typically sourced from
government agencies, provide large-scale environmental and
epidemiological data ideal for transmission modeling. For

instance, the Thai Surveillance System [32] offered monthly
rainfall measurements (0‐450 mm range), soil pH values
(4.5‐8.2), and 30-meter resolution elevation data across 5
Southeast Asian countries from 2003 to 2018, comprising
over 15,000 data points.

Table 3. Comprehensive dataset characteristics of included studies.
Study Data type (source) Data categories Sample size Temporal resolution Spatial resolution

Douchet et al
[32]

Public (Thai surveillance
system)

• Environmental: daily
rainfall (mm)a, soil pH

NSc Monthly 2003‐2018 Regional (5
countries)
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Study Data type (source) Data categories Sample size Temporal resolution Spatial resolution

• Climatic: max/min
temperatures (°C)

• Topographic: elevation
(SRTMb 30m)

Rahmat et al [28] Public (Malaysia
Meteorological Department)

• Meteorological: hourly
rainfall (mm), RHd (%)

• Clinical: PCR-confirmede

cases

364 weeks Weekly 2011‐2017 District-level
(n=12)

Caicedo Torres et
al [20]

Private (hospital records) • Clinical: fever days, liver
enzymes (U/L)

• Demographic: age, gender,
urban/rural

136 patients Single admission Hospital catchment

Nery et al [21] Private (hospital records) • Clinical: serum creatinine
(mg/dL)

• Epidemiological: rodent
exposure index

• Geospatial: residence
coordinates

4675 cases 2009‐2016 Household-level

Nery Jr et al [22] Private (Gonçalo Moniz
Institute [IGM], Federal
University of Bahia [UFBA],
Yale School of Public
Health)

• Clinical: patient records
• Epidemiological: risk

factors, daily activities

4675 suspected
cases (2046
confirmed, 2629
unconfirmed)

Retrospective (hospital
and community cohort)

Hospital or
community level
(Salvador, Brazil)

Shenoy et al [29] Private (medical records) • Clinical: jaundice severity
scale (0‐3)

• Laboratory: ELISAf optical
densities

• Comorbidities: diabetes
status

800 patients Retrospective 5y Single tertiary
center

Sonthayanon et
al [25]

Private (bacterial cultures) • Genomic: 16S rRNAg

sequences
• Proteomic: MALDI-TOFh

peaks (2k-20k m/z)

116 isolates 2015‐2018 Lab-level

Mayfield et al
[24]

Private (serosurvey+ GISi) • jSerological: MAT titers
(1:50-1:6400)

• Environmental: livestock
density/km²

• Village attributes: sanitation
index

2152 people Dry/wet season GPS coordinates
(82 villages)

Jayaramu et al
[30]

Private (hydrological
stations)

• Streamflow (m³/s)
• Water level (m)
• Case reports (weekly)

517 weeks Daily → weekly Watershed-level

Galdino et al [10] Private (hospital EMRk) • Vital signs: MAP (mmHg)
• Labs: creatinine (μmol/L)
• Outcomes: mortality

295 patients 2009‐2022 3 hospitals

Ahangarcani et al
[26]

Mixed (MODISl+ CDCm) • Satellite: NDVIn, LST (°C)
• Case reports: district-level
• Topography: slope (%)

1863 cases Monthly 2009‐2014 District-level

Kulkarni et al
[34]

Public (microscopy images) • Pixels: 256×256 RGBo

• Annotations: spirochete
masks

366 images N/A Pixel-level

Lopez et al [23] Public (SINANp database) • Case reports: ICD-10q

coded
• Symptoms: 23-item

checklist

890 cases 2007‐2016 State-level
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Study Data type (source) Data categories Sample size Temporal resolution Spatial resolution

Mohammadinia
et al [27]

Public (National Ministry of
Health and Treatment of
Iran, National Centre of
Statistics of Iran,
Meteorology Agency of Iran)

• Disease: positive ELISA
test results

1186 positive cases
(2009‐2011)

Longitudinal (2009‐
2011)

District-level
(Gilan Province,
Iran)

Douchet et al
[33]

Public (island surveillance) • Climate: CHIRPSr rainfall
(mm)

• Case counts: ministry
reports

Monthly NS 2010‐2022 Island-level

Thibeaux et al
[31]

Private (water monitoring) • Hydrological: turbidity
(NTU)s

• Microbiological: qPCRt

(copies/mL)
• Weather: 5-min rainfall

226 samples Event-based 3 km² watershed

Zhao et al [35] Public (China CDC) • Environmental: river
density (km/km²)

• Socioeconomic: nightlight
index

• Cases: lab-confirmed

2741 cases Annual 2004‐2014 County-level

aStandard units of measurement (mm, °C, m, etc.).
bSRTM: Shuttle Radar Topography Mission.
cNS: not specified.
dRH: relative humidity .
ePCR: polymerase chain reaction.
fELISA: Enzyme-Linked Immunosorbent Assay.
grRNA: ribosomal ribonucleic acid.
hMALDI-TOF: Matrix-Assisted Laser Desorption/Ionization Time-of-Flight.
iGIS: Geographic Information System.
jMAT: microscopic agglutination test.
kEMR: electronic medical record.
lMODIS: Moderate Resolution Imaging Spectroradiometer.
mCDC: Centers for Disease Control and Prevention.
nNDVI: Normalized Difference Vegetation Index.
oRGB: red-green-blue color model.
pSINAN: Sistema de Informação de Agravos de Notificação.
qICD-10: International Classification of Diseases, Tenth Revision.
rCHIRPS: Climate Hazards Group InfraRed Precipitation with Station data.
sNTU: Nephelometric Turbidity Unit.
tqPCR: quantitative polymerase chain reaction.

These datasets enabled regional risk prediction but lacked
individual patient details. Similarly, Malaysia Meteorologi-
cal Department records [28] provided 364 weeks of hourly
rainfall data (0‐65mm/hr) and relative humidity (45%‐
100%) paired with PCR-confirmed cases across 12 districts,
demonstrating how high-resolution temporal data improves
ANN-based outbreak forecasting.

Private clinical datasets, while smaller in scale, deliv-
ered granular patient-level information crucial for diagnostic
accuracy. The Napoleón Franco Pareja Children’s Hospital
dataset [20] included 136 pediatric cases with detailed clinical
parameters: fever duration (1‐21 d), liver enzyme levels
(AST 15‐980 U/L), and urban/rural residence markers. More
extensive Brazilian hospital records [21] encompassed 4675
cases with serial creatinine measurements (0.2‐9.8 mg/dL)
and household GPS coordinates, though missing 12% of
lab results. These datasets typically included three key data
categories: (1) clinical biomarkers (serum creatinine, MAT
titers 1:50-1:6400), (2) demographic information (age, gender

in 89% of studies), and (3) epidemiological risk factors
(rodent exposure indices).

Advanced studies combined multiple data types to
overcome individual limitations. Research in China [35]
integrated 2741 CDC case reports with satellite-derived
nighttime light indices (0‐63 DN values) and river den-
sity maps (0‐5.7 km/km²), achieving exceptional predic-
tive performance (AUC 0.95‐0.96). Hydrological studies in
New Caledonia [31] correlated 226 water samples (turbid-
ity 0‐1,000 NTU, qPCR 10‐10⁶ copies/mL) with 5-minute
rainfall events, demonstrating how microenvironmental data
enhances transmission understanding. These multimodal
approaches compensated for individual dataset constraints
through: (1) temporal complementarity (monthly climate +
daily case reports), (2) spatial layering (watershed hydrol-
ogy+ village coordinates), and (3) clinical-environmental
linkages (serum markers + livestock density).
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Discussion
Principal Findings
This systematic review of 17 studies (2012‐2024) shows that
while ML and DL techniques achieve promising accuracy
(80%‐98%) in leptospirosis prediction and diagnosis, 3
critical limitations hinder clinical translation: (1) reliance on
small, private clinical datasets limiting generalizability; (2)
inconsistent validation methods, with only 11.8% employing
temporal validation despite seasonality; and (3) underuse of

advanced techniques like transfer learning (0% adoption) and
data augmentation (5.9% adoption).

The most effective algorithms varied by task—SVR and
Random Forest for prediction, versus U-Net CNNs for
microscopy-based diagnosis—but all models faced challenges
related to data quality, sample size, and geographic bias.

Textbox 1 shows the summary of the strengths and
limitations identified in ML and DL studies for leptospirosis
prediction and diagnosis.

Textbox 1. Summary of strengths and limitations identified in machine learning (ML) and deep learning (DL) studies for
leptospirosis prediction and diagnosis.

Strengths:
• High predictive performance (80%‐98% accuracy).
• Variety of ML and DL algorithms applied (eg, random forests, support vector machines, and onvolutional neural

networks).
• Integration of clinical and environmental data in some studies.
• Growing research interest and recent publications.

Limitations:
• Small, private datasets limit generalizability.
• Lack of external validation across datasets.
• Underuse of transfer learning and ensemble methods.
• Inconsistent evaluation metrics (accuracy, area under the curve, and sensitivity).

While these methods show strong performance (80%‐
98% accuracy in some cases), their real-world applicabil-
ity remains limited due to dataset constraints, validation
inconsistencies, and underuse of advanced techniques such
as transfer learning and ensemble learning. Addressing these
gaps is essential to improve the robustness and clinical
adoption of AI-driven leptospirosis diagnostics.

The most frequently used ML techniques for prediction
tasks were SVR and Random Forest, while ANNs and CNNs,
particularly U-Net, were commonly applied for diagnosis.
This aligns with the increasing popularity of supervised ML
methods in disease prediction.

Performance was primarily assessed using metrics such
as accuracy, sensitivity, specificity, precision, and F1-score,
although AUC offers a more comprehensive measure of
model performance, especially in binary classification tasks.
Hybrid methods often produced better outcomes, with
Random Forest and U-Net demonstrating strong accuracy and
sensitivity in leptospirosis classification tasks. For instance
[29], achieved 87% accuracy and 91% sensitivity using
Random Forest for diagnosis, suggesting that ensemble
techniques could further enhance model performance.

Despite these advancements, there are still limitations in
reaching clinician-level accuracy, especially when dealing
with smaller datasets or limited training data. Acceptable
performance thresholds varied, with some studies using an
AUC score of 0.96 or higher as a benchmark, but this
was not universally applied. In addition, most studies relied
on private, hospital-based datasets, limiting generalizabil-
ity. The lack of external validation raises concerns about
potential bias, emphasizing the need for public datasets

and standardized validation protocols to improve cross-study
comparability.

Cross-validation was the predominant method for
evaluating the models, with k-fold or leave-one-out cross-val-
idation being most common. However, due to the relatively
small sample sizes in many studies, the conclusions drawn
may not be as robust. Split validation (eg, 80:20 or 70:30
splits) was also used, but inconsistencies across studies
hindered direct model comparisons. Future work should
prioritize establishing standardized protocols to enhance
consistency and reliability in ML and DL evaluations.

One significant finding of this review was the absence
of pretrained models. Most studies developed models from
scratch, limiting the generalizability and scalability of these
models. Transfer learning involves using a pretrained model
as a starting point and fine-tuning it for a specific task. It
has proven effective in various fields, particularly in image
analysis and natural language processing, by significantly
improving performance on tasks with limited data.

The lack of transfer learning in these studies suggests a
potential area for future research, as it could enhance the
performance of DL models in leptospirosis prediction and
diagnosis, especially in cases where training data is limited.
Similarly, data augmentation, which helps expand training
datasets through transformations (eg, rotations, translations,
or noise), was only used in 1 study, highlighting a missed
opportunity to improve model robustness.
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Challenges and Research Gaps in ML
and DL Applications for Leptospirosis
Prediction and Diagnosis
While ML and DL have significant potential in leptospirosis
research, this review also identified key findings that limit
their broad application in clinical and public health settings.
Challenge 1: Limited Data Availability and
Quality
A major challenge faced by the studies was the limited
availability and quality of data. Many datasets, such as the
one used in [21], had missing or incomplete data, which
reduced the accuracy and generalizability of the models.
Small sample sizes were a frequent issue as well, as observed
in [20], where a dataset of only 136 patients resulted in high
variability in model performance, especially for underrepre-
sented cases like leptospirosis. Retrospective data collection
posed further challenges, leading to biases in model training
and evaluation, as noted by Shenoy et al [29].
Challenge 2: Generalizability and Regional
Bias
Several studies, such as [28,33], identified biases in data
collection, such as under- and over-reporting, regional
disparities, and sampling biases, which hindered the broader
applicability of the models. In addition, studies like [35]
noted issues with the spatial resolution of environmental data,
affecting the precision of fine-scale risk mapping. Moreover,
the lack of external validation across different regions and
datasets, as seen in studies like [10], increased the risk of
overfitting and limited the broader applicability of findings.

The review showed inconsistent performance across
different ML and DL algorithms. For example, models
like SVM, ANN, and CNNs performed well, with accu-
racy reaching up to 98% [34]. However, advanced DL
architectures like ResNet, Inception, and VGG were rarely
used [25,33]. Similarly, none of the studies applied trans-
fer learning, a technique that could enhance performance,
particularly when data is scarce [10,28,36]. Beyond data
related challenges, there are also limitations in the ML and
DL techniques currently applied to leptospirosis diagnosis, as
discussed next.

Challenge 3: Underuse of Advanced
Techniques
Advanced ensemble techniques, such as XGBoost and
Adaboost, were notably underused [26]. While Random
Forest models and U-Net architectures performed well in
specific tasks [29,34], ensemble methods could provide better
predictive power when combining ML and DL approaches.
The review also highlighted the minimal use of data
augmentation techniques, which could help address the small
sample size issues observed in many studies [34].
Limitations of This Systematic Review
While this systematic review provides valuable insights, it
has certain limitations. The heterogeneity of study designs,

dataset sizes, and performance metrics precluded a meta-anal-
ysis, limiting our ability to provide a standardized comparison
of model performances. In addition, the reliance on published
studies may have introduced publication bias, as studies
with less favorable results may have remained unpublished.
Future systematic reviews should aim to standardize reporting
metrics and ensure broader dataset accessibility to improve
comparability across studies.
Recommendations for Future Research
Based on these findings, future research in ML and DL
applications for leptospirosis should focus on the following
areas:

• Integration of advanced DL techniques: future studies
should explore the potential of advanced DL archi-
tectures, such as ResNet and Inception, which are
known to improve predictive performance, especially
in image-based analysis.

• Leveraging pretrained models and transfer learning:
research should investigate how pretrained models can
be fine-tuned for leptospirosis applications, particularly
in data-limited scenarios.

• Use of ensemble and hybrid approaches: advanced
ensemble techniques like XGBoost and hybrid ML-
DL approaches should be explored to improve model
accuracy and robustness.

• Broader geographic representation: most studies
focused on regions like Southeast Asia and Brazil, with
limited research in other high-risk areas like Africa and
Central America. Expanding research to these regions
will improve model generalizability.

The primary goal moving forward is to aggregate a com-
prehensive dataset from diverse sources and develop a
robust data library to enhance the accuracy and reliability
of leptospirosis prediction models. Given the heterogene-
ity of data features across different studies—ranging from
clinical records to environmental data—the focus will be on
standardizing and harmonizing these features for better model
integration. By consolidating larger and more varied datasets,
we aim to improve model generalization and tackle current
challenges related to small sample sizes and overfitting.
This unified dataset will serve as a foundation for applying
advanced techniques, such as transfer learning and ensemble
methods, to further enhance the predictive power of ML and
DL models in leptospirosis detection.
Conclusion
This systematic review examined ML and DL techniques
for leptospirosis prediction and diagnosis by analyzing
algorithm performance, evaluation methods, and challenges.
While models such as SVM, ANN, decision trees, and
CNNs have shown strong predictive power, most studies
have relied on private hospital-based datasets, limiting
generalizability.

A key reason for the predominance of private data-
sets is that they often include detailed patient-level clini-
cal information (eg, laboratory values, comorbidities, and
symptoms) essential for developing diagnostic models. In
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contrast, available public datasets mainly provide aggregated
epidemiological or environmental data, which, while valuable
for outbreak prediction, lack the granular patient-specific
features necessary for individual diagnosis. As a result,
limited use of public datasets reflects the inherent constraints
in the nature and detail of publicly available data, rather than
a preference by researchers.

Furthermore, the lack of advanced techniques like transfer
learning and ensemble methods remains a concern, along

with small sample sizes and inconsistent validation protocols.
Overall, while significant progress has been made, there is
considerable potential to improve the accuracy and generaliz-
ability of leptospirosis prediction models by integrating more
comprehensive datasets and adopting advanced AI methodol-
ogies in future research.
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Abbreviation
AI: artificial intelligence
ANN: artificial neural network
AUC: area under the curve
CHARMS: Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies
CNN: convolutional neural network
DL: deep learning
DT: decision tree
KNN: k-nearest neighbor
LLM: large language model
MAE: mean absolute error
MAT: microscopic agglutination test
ML: machine learning
MLP: multilayer perceptron
MSE: mean squared error
PCR: polymerase chain reaction
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROBAST: Prediction model Risk of Bias Assessment Tool
RDT: rapid diagnostic test
RMSE: root mean squared error
SVM: support vector machine
SVR: support vector regression
TAN: tree augmented naive
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