JMIR MEDICAL INFORMATICS Gaspar et al
Original Paper

Natural Language Processing and ICD-10 Coding for

Detecting Bleeding Events in Discharge Summaries:
Comparative Cross-Sectional Study

Frederic Gaspar!?*, PhD; Mehdi Zayene®, MSc; Claire Coumau'?#, MSc; Elliott Bertrand?, MSc; Marie Bettex>,
MD; Marie Annick Le Pogam®*, MD, PhD; Chantal Csajka’>**, PhD

ICenter for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne, Switzerland

2School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland

3Effixis SA, Lausanne, Switzerland

“Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva and Lausanne, Switzerland

3 Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne,
Switzerland

*these authors contributed equally

Corresponding Author:

Frederic Gaspar, PhD

Center for Research and Innovation in Clinical Pharmaceutical Sciences
Rue du Bugnon 19

Lausanne 1011

Switzerland

Phone: 41 763306834

Email: frederic.gaspar@chuv.ch

Abstract

Background: Bleeding adverse drug events (ADEs), particularly among older inpatients receiving antithrombotic therapy,
represent a major safety concern in hospitals. These events are often underdetected by conventional rule-based systems relying
on structured electronic medical record data, such as the ICD-10 (International Statistical Classification of Diseases and
Related Health Problems 10th Revision) codes, which lack the granularity to capture nuanced clinical narratives.

Objective: This study aimed to develop and evaluate a natural language processing (NLP) model to detect and categorize
bleeding ADEs in discharge summaries of older adults. Specifically, the model was designed to distinguish between “clinically
significant bleeding,” “severe bleeding,” “history of bleeding,” and “no bleeding,” and was compared with a rule-based
algorithm using ICD-10 codes.

Methods: Clinicians manually annotated 400 discharge summaries, comprising 65,706 sentences, into four categories: “no
bleeding,” “clinically significant bleeding,” “severe bleeding,” and “history of bleeding.” The dataset was divided into a
training set (70%, 47,100 sentences) and a test set (30%, 18,606 sentences). Two detection approaches were developed and
evaluated: (1) an NLP model using binary logistic regression and support vector machine classifiers, and (2) a traditional
rule-based algorithm relying exclusively on predefined ICD-10 codes. To address class imbalance, with most sentences
categorized as irrelevant (“no bleeding”), a class-weighting strategy was applied in the NLP model. Model performance was
assessed using accuracy, precision, recall, F'j-score, and receiver operating characteristic (ROC) curve analyses, with manual
annotations as the gold standard.

99 <

Results: The NLP model significantly outperformed the rule-based approach across all evaluation metrics. At the document
level, the NLP model achieved macro-average scores of 0.81 for accuracy and 0.80 for F-score. Precision was particularly
high for detecting severe (0.92) and clinically significant bleeding events (0.87), demonstrating strong classification capability
despite class imbalance. ROC analyses confirmed the model’s robust diagnostic performance, yielding an area under the curve
(AUC) of 0.91 when distinguishing irrelevant sentences from potential bleeding events, 0.88 for identifying historical mentions
of bleeding, and notably, 0.94 for differentiating clinically significant from severe bleeding. In contrast, the rule-based
ICD-10 model demonstrated high precision (0.94) for clinically significant bleeding but poor recall (0.03) for severe bleeding
events, reflecting frequent missed detections. This limitation arose due to its reliance on commonly used ICD-10 codes (eg,
gastrointestinal hemorrhage) and inadequate capture of rare severe bleeding conditions such as shock due to hemorrhage.
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Conclusions: This study highlights the considerable advantage of NLP over traditional /CD-10-based methods for detecting
bleeding ADEs within electronic medical records. The NLP model effectively captured nuanced clinical narratives, including
severity, negations, and historical bleeding events, demonstrating substantial promise for improving patient safety surveil-
lance and clinical decision-making. Future research should extend validation across multiple institutions, diversify annotated
datasets, and further refine temporal reasoning capabilities within NLP algorithms.
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Introduction

Adverse drug events (ADEs) are a significant patient safety
issue, particularly among older adult inpatients. Globally,
ADEs are estimated to affect 10%-40% of hospitalized
patients, contributing to increased morbidity, mortality, and
health care costs [1-3]. Among older adult patients, who are
often treated using complex medication regimens, the risk of
ADEs is even higher due to age-related physiological changes
and a higher prevalence of polypharmacy [4,5]. Data on the
incidence and impact of ADEs in Switzerland’s hospitals are
sparse, however, making it difficult to fully assess the scope
of the problem [6].

Antithrombotic therapy, commonly prescribed to prevent
thrombotic events, significantly increases the risk of bleeding
by inhibiting normal clotting mechanisms. Studies have
shown that approximately 36% of older adult inpatients on
antithrombotic therapy experience bleeding complications,
which can lead to extended hospital stays and increased
morbidity and mortality [5]. The widespread use of polyphar-
macy in this population further compounds the risk of drug
interactions, contributing to ADEs [7]. In Swiss hospitals, the
timely and accurate detection of bleeding events is considered
crucial to improve patient outcomes and ensure safer care [8].

Electronic medical records (EMRs) provide an opportu-
nity to automate the detection of ADEs such as bleeding.
Bleeding events are commonly identified through structured
data, particularly via the diagnostic codes in the (ICD)
International Classification of Diseases, which are frequently
used for billing purposes. However, ICD codes often lack the
specificity required to capture the complexity and nuances of
bleeding ADEs [9-11]. Research has shown that ICD codes
frequently underreport ADEs, with sensitivities below 50%
in many cases, leading to an incomplete picture of patient
safety [12]. In addition, coding algorithms for detecting
ADEs usually exhibit low sensitivity and precision, and
there is no universally accepted set of ICD-10 (International
Classification of Diseases, 10th Revision) codes or algorithms
that ensures the consistent identification of bleeding ADEs
in administrative data [13]. Although a manual review of
medical records can be more accurate, it is labor-intensive
and impractical for widespread use [10].
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Natural language processing (NLP), a branch of artificial
intelligence, provides a scalable solution to the automated
extraction and classification of information on bleeding
ADEs from unstructured text, such as inpatient discharge
summaries and clinical notes [14,15]. These notes often
contain detailed narrative descriptions of clinical events, such
as “nonglomerular microhematuria” or “no visible bleeding
at the anamnesis,” which billing codes might miss [16].
NLP models can detect key clinical information buried
within these narrative notes, providing more accurate insights
into patients’ conditions than frequently used methods such
as ICD coding. Previous studies have demonstrated that
NLP can detect ADEs from clinical notes with accuracies
as high as 85%-90%, significantly outperforming standard
methods [17-20]. By leveraging NLP and integrating it into
hospital workflows, health care professionals can improve the
surveillance of ADEs, make more timely interventions, and
provide more responsive, personalized patient care [21].

In this study, conducted within the framework of the
Swiss Monitoring of Adverse Drug Events (SwissMADE)
project [8], we hypothesized that an NLP-based approach
would be more effective than ICD code-based algorithms
for detecting and categorizing bleeding ADEs among older
adult inpatients receiving antithrombotic therapy at Lausanne
University Hospital. The primary objective was to develop an
NLP model capable of identifying bleeding ADEs from the
discharge summaries of older adult inpatients hospitalized in
2015 and 2016 and to categorize these events based on their
timing (ie, before admission or during the hospital stay) and
severity (clinically significant bleeding or severe bleeding).
The secondary objective was to compare the NLP model’s
performance against standard /CD-10-based algorithms and
identify the most effective automated method for detecting
bleeding ADEs in Switzerland’s health care context.

Methods
Study Design

We conducted a secondary analysis of unstructured data in
the EMRs investigated by the SwissMADE study, a multi-
center, cross-sectional study that used retrospective medical
data from 4 large Swiss hospitals [8]. Figure 1 provides an
overview of the methodological framework used in this study.
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Figure 1. Overview of the methodological framework used in this study. ADE: adverse drug event; AUC: area under the curve; BERT: Bidirectional
Encoder Representations from Transformers; HDBSCAN: hierarchical density-based spatial clustering of applications with noise; ICD-10-GM:
German Modification of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision; ISTH: International
Society on Thrombosis and Haemostasis; NLP: natural language processing; UMAP: uniform manifold approximation and projection.

Data selection

Analyzed 7513 discharge summaries and used unsupervised clustering techniques
(BERT, UMAP, HDBSCAN) to identify 400 summaries most likely to include
bleeding ADE:s for detailed analysis.

|

Clinical annotation

Clinicians annotated 400 discharge summaries into four categories: severe bleeding,
clinically significant bleeding, antecedents of bleeding, or no bleeding. Discrepancies
were resolved by consensus to create a robust gold-standard dataset.

l

NLP classifier

Three-stage classification pipeline:

Binary classification (irrelevant vs relevant).

Multiclass classification (hemmorage vs antecedant vs absence of
bleeding).

Binary classification (clinically significant bleeding vs severe bleeding).

Aggregation of classification results into document level with support for multi-
label assignments

l

Rule-based classifier

Based on ICD-10-GM codes, bleeding was categorized as clinically significant or
severe according to ISTH severity criteria. The code list was refined and validated by
a multidisciplinary panel.

!

Model evaluation

Compared NLP and rule-based classifiers using precision, recall, F, scores, and AUC
metrics, with evaluations conducted at both sentence and document levels to capture
nuanced performance differences.

embeddings by integrating Bidirectional Encoder Representa-
tions from Transformers (BERT) into the Sentence Trans-
former library [22]. Techniques such as Uniform Manifold
Approximation and Projection (UMAP) [23] and Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [24] were applied to organize these embeddings
into “clusters” of bleeding ADEs. This methodology was
instrumental in selecting the 400 discharge summaries most
relevant to the study.

Study Population and Dataset Selection

The dataset comprised the discharge summaries of patients
aged 65 or older who were hospitalized for more than 24
hours in 2015 and 2016 and received at least one antithrom-
botic medication during their stay. These summaries also
included administrative data, such as ICD-10-GM (Interna-
tional Classification of Diseases, 10th Revision, German
Modification) diagnostic codes. A detailed description of the
SwissMADE study’s methods has been published previously

[8]. Annotation of Clinical Documents

Of the 7513 discharge summaries examined, an unsuper-
vised machine learning approach identified 400 as likely to
contain bleeding ADEs (Figure S1 in Multimedia Appendix
1 ). This approach involved text scanning, thematic aggrega-
tion, and data extraction. The study generated unique sentence
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The 400 discharge summaries were first annotated by
clinicians and then divided into a training set (n=280) and a
test set (n=120). The distribution of summaries was random-
ized to ensure the sample remained representative of the
overall population of hospitalized patients.
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Three clinicians independently annotated each discharge

summary using four predefined labels:

1. Presence of severe bleeding: this label was used
when a discharge summary explicitly identified severe
bleeding, either by using the term “severe” or by
describing conditions that meet the criteria for severe
bleeding, such as fatal bleeding, bleeding at criti-
cal sites (eg, intracranial and intraspinal), a drop in
hemoglobin of =20 g/L, or transfusion of =2 units
of blood, as defined by the International Society on
Thrombosis and Haemostasis (ISTH) [25].

2. Presence of clinically significant bleeding: this label
was used when bleeding was mentioned in the clinical
documentation but did not meet the criteria for severe
bleeding.

3. History of bleeding: this label was applied when a
discharge summary mentioned bleeding in the patient’s
medical history before their hospital admission.

4. Absence of bleeding: this label was used when a
discharge summary did not mention bleeding.

A fourth clinician resolved any disagreements, and this
classification was used as the gold standard for training the
machine learning model. Fleiss kappa coefficient, calcula-
ted from 30 summaries, showed 96% agreement among
clinicians, allowing a shift to a single-reviewer approach.
Only discharge summaries signed by an attending physician
were included to ensure data credibility.

Development of the NLP-Based Classifier

The development method comprised three phases: segment-
ing discharge summaries into sentences, classifying those
sentences, and aggregating them at the document level.

Phase 1: Segmentation

Sentences were segmented from the discharge summaries
using the pretrained French spaCy model (Explosion AI) [19],
chosen for its efficiency, robustness, and widespread adoption
in NLP pipelines [26]. Given that sentence segmentation is a
standard preprocessing step with minimal differences among
comparable models [27], no additional comparative analyses
were performed. To reduce noise, sentences with fewer than
three characters were excluded, a decision supported by pilot
tests demonstrating minimal loss of meaningful content.

Phase 2: Classification Process

The classification process addressed the challenge of class
imbalance, particularly at the sentence level, where the

https://medinform.jmir.org/2025/1/e67837

Gaspar et al

majority of sentences were labeled as “Irrelevant,” indicating
no bleeding-related information.

To mitigate this imbalance during training, a class-weight-
ing strategy was applied in the logistic regression model
used for the initial binary classification [28]. This approach
adjusted the contribution of each class to the loss function
by assigning higher weights to minority classes, such as
“severe bleeding,” and lower weights to the majority class,
“Irrelevant.” This adjustment improved the model’s ability to
identify rare but clinically critical cases. Additional details on
the dataset preparation and the class-weighting strategy are
provided in the supplementary materials.

Figure 2 illustrates the multistage classification process
for identifying bleeding ADESs in clinical narratives. Stage
1 used a binary logistic regression model to classify senten-
ces as either containing bleeding-related information (labeled
“relevant;” value=1) or not (“irrelevant;” value=0), reducing
the number of nonrelevant sentences. Stage 2 used a support
vector machine (SVM) classifier to further divide the relevant
sentences into three categories: “irrelevant,” “antecedent,” or
“bleeding-related.” Stage 3 applied a second binary classifi-
cation to “bleeding-related” sentences, categorizing them as
either “clinically significant” (value=0) or “severe” (value=

1).

Logistic regression and a bag-of-words—based SVM were
selected due to their simplicity, interpretability, and effective-
ness on smaller datasets, minimizing the risk of overfitting
compared to more complex deep learning methods. Prelimi-
nary experiments using deep learning models yielded poor
performance, likely due to the limited size of the dataset;
therefore, these methods were not pursued further in this
study.

The entire process used bag-of-words encoding to convert
the text into a format suitable for machine learning algo-
rithms. Robustness was ensured through 5-fold cross-valida-
tion [29], regularization techniques (eg, L2 regularization for
logistic regression and optimization of the penalty parameter
[C] in SVM), and hyperparameter tuning via grid search
[30,31]. These methodological choices optimized perform-
ance while preventing overfitting.
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Figure 2. Sentence-level classification pipeline for detecting bleeding events. In this pipeline: BOW-LOG: logistic regression classification using
a bag-of-words (BOW) model to determine whether the sentence contains bleeding-relevant information; BOW-SVM: support vector machine
(SVM) classification using a BOW model to assess whether there is evidence of bleeding in the sentence; BOW-LOG: a second logistic regression

classification using a BOW model to evaluate the severity of the bleeding event (ie, whether it is severe or clinically significant).

Sentence-level classification pipeline
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Phase 3: Document Aggregation

Sentence-level classification results were aggregated at the
discharge summary level by grouping sentences under their
corresponding document ID and combining the predictions
using a union-like operation. If all sentences in a document
were labeled “irrelevant,” the entire document was classified
the same. Otherwise, the document was assigned one or more
of the following labels: “antecedent,” “clinically significant
bleeding,” or “severe bleeding.” Unlike sentences, documents
could receive multiple labels.

Rule-Based Classifier Development

In parallel with the NLP approach, we developed a rule-based
classifier using /CD-10-GM codes to detect bleeding ADE:s.
This classifier enabled us to compare the analysis with the
NLP methods. We began by compiling a comprehensive list
of ICD-10 diagnostic codes related to bleeding, drawing on

https://medinform.jmir.org/2025/1/e67837

subdivisions defined by the ISTH and codes identified in
previous studies [32-34].

We thoroughly explored ICD-10 ontologies to identify
additional codes for terms such as “bleeding” and “hemor-
rhage.” A multidisciplinary panel of physicians, pharmacolo-
gists, pharmacists, and statisticians reviewed and expanded
this list, adding codes for conditions such as hemodynamic
instability, drug-induced bleeding, and contusions. We then
categorized these codes into two mutually exclusive groups
based on the ISTH’s severity criteria: “clinically significant
bleeding” and “severe bleeding.” The classification consid-
ered factors such as the site of bleeding.

The complete list of codes used appears in Tables S1 and
S2 in Multimedia Appendix 1. However, unlike the NLP
approach, the rule-based method was limited to just 2 labels
due to the absence of specific ICD-10 codes for identifying
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a patient’s history of bleeding. Moreover, the rule-based
approach did not account for timing, making it difficult to
determine whether bleeding occurred before or during the
hospital stay.

Model Evaluation and Comparison

We conducted a comparative analysis of the rule-based
classifier and the NLP method to assess their effective-
ness and accuracy in identifying hemorrhagic events from
discharge summaries. Using the independent test dataset
to ensure unbiased assessments, we applied standardized
evaluation metrics, namely precision, recall, specificity,
and Fi-score, focusing on each method’s ability to detect
clinically significant and severe bleeding. We used a receiver
operating characteristic (ROC) curve to evaluate the NLP
model’s diagnostic capacity, measuring its overall perform-
ance through its area under the curve (AUC) [35]. We also
calculated Cohen kappa to facilitate a comparative analysis of
the methods’ detection accuracies [36].

All statistical analyses were performed using Python
software (version 3.9, Python Software Foundation), ensuring
a robust computational environment. We calculated both
micro- and macro-averages to provide a comprehensive
evaluation of the classifiers’ performances. Micro-averages
were computed at the sentence level, measuring overall
performance across all sentences, while macro-averages were
calculated at the document level, giving equal weight to each
document regardless of the number of sentences it contained.

Ethical Considerations

This study involved secondary analysis of pre-existing
clinical data from discharge summaries collected within the
SwissMADE project, a multicenter, retrospective, cross-sec-
tional study approved by the Swiss Ethics Committees
(CER-VD, No. 2016-02008). This analysis used retrospective
data from EMRs collected within the SwissMADE study. The
original study protocol, approved by the ethics committee,
included a waiver of informed consent. Due to the narrative
nature of the clinical data, complete anonymization was not
feasible. Strict confidentiality measures were implemented,
including restricted data access, secure data handling, and
reporting of results in aggregate form only, in compliance
with Swiss federal and institutional data protection stand-
ards. No patient compensation was provided, as the study
involved secondary analysis of pre-existing clinical data. No
identifiable images or other materials from individual patients
were included in this paper or its supplementary materials.
Consequently, there was no requirement for obtaining consent
from individuals for use of identifiable images.

Results

Overview

A total of 400 discharge summaries were analyzed, compris-
ing 65,706 annotated sentences. Of these, 47,100 sentences

https://medinform.jmir.org/2025/1/e67837

Gaspar et al

were allocated to the training set and 18,606 to the test
set. Detailed demographic and clinical characteristics of the
hospital stays associated with each dataset are presented in
Table 1.

The distribution of sentence lengths in Figure 3 reveals
a right-skewed pattern, with most sentences under 100
characters. To reduce noise, sentences shorter than 3
characters were excluded, accounting for 2.72% of the
dataset, ensuring more meaningful content for robust model
training and evaluation.

Sentence-level analysis revealed a predominance of
“irrelevant” annotations, reflecting the large amount of
information in discharge summaries unrelated to bleeding.
However, class distribution was more balanced at the
document level, demonstrating the complexity of clinical
documentation, where multiple annotations often coexist
within a single summary. Table 2 provides the detailed
distribution of these categories.

The NLP model demonstrated strong classification
capabilities, achieving over 85% accuracy across all
categories at the document level. It also showed robust
performance, with a precision exceeding 72% across
categories and a recall of 98% for “irrelevant” instan-
ces. Fyi-scores indicated balanced performance despite class
imbalances, highlighting the model’s ability to manage
diverse data distributions. A detailed summary of the
performance metrics for our multilabel classification model
is provided in Table 3.

As shown in Figure 4, ROC curve analysis further
highlighted the model’s diagnostic accuracy. In stage one,
the model achieved an AUC of 0.91 for classifying senten-
ces as either “irrelevant” or “potentially bleeding-related,”
effectively filtering out irrelevant data. In stage 2, it refined
these classifications into the “irrelevant” and “antecedent”
categories, with AUCs of 0.88 and 0.83, respectively. Stage
3 focused on distinguishing “clinically significant bleeding”
from “severe bleeding,” achieving an AUC of 0.94. Overall,
the ROC curves demonstrated the model’s consistently high
performance across all stages, with elevated AUC values
reflecting its strong ability to distinguish between classes.

The rule-based classifier, while simpler than the multilabel
NLP model, showed high precision in identifying clinically
significant bleeding events. Table 4 provides a detailed
comparison of the algorithm’s metrics and those of the NLP
model.
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Table 1. Training and testing set patients’ characteristics.

Gaspar et al

Variable Training set Test set
Discharge summaries, n (%) 280 (70) 120 (30)
Sentences, n (%) 47100 (72) 18606 (28)
Unique patients, n (%) 270 (96) 120 (100)
Length of stay (days), median (IQR) 15 (8-28) 13 (7-22)
Female, n (%) 111 (40) 89 (74)
Age (years), median (IQR) 81 (74-87) 79 (72-85)
ICU? admissions, n (%) 17 (6) 4(3)
Modes of admission, n (%)
Emergency 214 (76) 89 (74)
Planned, 49 (18) 20 (17)
Internal transfer 15 (5) 6(5)
Transfer within 24 hours 2(1) 54)
4ICU: intensive care unit.
Figure 3. Distribution of sentence lengths in training and test sets.
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Table 2. Class distribution in the training and test sets at the sentence and document levels.

Sentence level® Document level®
Classification label Training set, n (%) Test set, n (%) Training set, n (%) Test set, n (%)
Irrelevant (absence of bleeding) 45897 (97.45) 18118 (97.38) 103 (36.79) 44 (36.67)
History of bleeding 154 (0.33) 58 (0.31) 67 (23.93) 22 (18.33)
Clinically significant bleeding 900 (1.91) 373 (2.00) 141 (50.36) 60 (50.00)
Severe bleeding 149 (0.32) 57 (0.31) 77 (27.50) 31 (25.83)

4Sentence level: frequency and proportion of each classification label per individual sentence.
bDocument level: frequency and proportion of documents containing at least one instance of the respective classification label.

Table 3. Detailed performance metrics of the multilabel classification model.

Metric Irrelevant History of bleeding  Clinically significant bleeding Severe bleeding Macro-average® Micro-average®
Accuracy  0.83 0.68 0.86 0.89 0.81 0.84
Precision  0.81 0.72 0.87 0.92 0.83 0.85
Recall 0.98 0.88 0.59 0.31 0.69 0.71
Fi-score  0.89 0.65 0.88 0.70 0.78 0.80

#Macro-average: average performance across document-level classifications.
PMicro-average: average performance across sentence-level classifications.

Figure 4. Receiver operating characteristic (ROC) curves showing the diagnostic performance of the multistage classification model at various
thresholds, illustrating the trade-off between the true positive rate (sensitivity) and the false positive rate (1 - specificity).
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Table 4. Detailed performance metrics of the rule-based classification model.

Metric Irrelevant Antecedent®  Clinically significant bleeding Severe bleeding Macro-average Micro—averageb
Accuracy 0.81 ¢ 0.86 0.74 0.80 —
Precision 0.80 — 0.94 0.50 0.75 —
Recall 0.95 — 0.77 0.03 0.58 -
Fi-score 0.87 — 0.84 0.06 0.59 —

Metrics for the “Antecedent” category are not provided due to the absence of corresponding International Statistical Classification of Diseases
and Related Health Problems, 10th Revision codes.

b“Micro—average” was not calculated as the rule-based model uses International Statistical Classification of Diseases and Related Health Problems,
10th Revision codes linked to hospital stays.

“Not available.
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The rule-based classifier achieved a precision score of 0.94
for “clinically significant bleeding,” highlighting its accuracy
in detecting these events. However, its performance in
identifying “severe bleeding” was significantly weaker, with
a recall of only 0.03. This low recall indicates that while
the model could detect severe bleeding when present, it also
frequently missed such events.

For “clinically significant bleeding,” the classifier relied
heavily on frequently used ICD-10 codes, such as K92.2
(gastrointestinal hemorrhage, unspecified), R31 (hematuria,
unspecified), and K264 (gastric ulcer, acute with hemor-
rhage), which contributed to its high precision. In contrast,
codes associated with “severe bleeding,” including R57.1

Gaspar et al

(shock due to hemorrhage) and 185.3 (esophageal varices
with bleeding), were less common in the dataset, resulting
in poorer performance for this category. The rule-based
model achieved an Fi-score of 0.84 for “clinically signifi-
cant bleeding” but only 0.06 for “severe bleeding,” underscor-
ing the disparity in its ability to handle these 2 categories.
Figure 5 highlights the comparative performance of the
NLP and rule-based models in detecting clinically significant
and severe bleeding. The NLP model consistently demon-
strated higher recall and balanced classification across both
categories, effectively addressing limitations observed in the
rule-based approach.

Figure 5. Comparative analysis of confusion matrices for bleeding detection using natural language processing (NLP) and ICD (International
Classification of Diseases) coding methods. This figure contrasts the performance of the NLP model and the /CD coding approach, displaying
the counts of true positives, true negatives, false positives, and false negatives, thus providing a comparative evaluation of both methods. /ICD-10:
International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
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Discussion

Principal Findings

This study developed and validated an NLP-based model for
detecting bleeding events from clinical narratives, achieving
a high level of accuracy. The model demonstrated 91%
sentence-level accuracy and 88% document-level accuracy.
Compared to traditional ICD-10 code-based methods, the
NLP model provided more nuanced and precise detec-
tion of bleeding events, effectively capturing details that
ICD-10 codes often miss, particularly in cases involving
secondary conditions or multiple types of bleeding ADEs.

https://medinform.jmir.org/2025/1/e67837
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These findings underscored NLP’s potential to improve the
detection and management of adverse events.

One of the model’s primary strengths lies in its high
precision and recall, even in the presence of class imbal-
ance, particularly when differentiating between “clinically
significant” and “severe bleeding.” It performed well in
interpreting complex clinical data, including negations (eg,
“no evidence of bleeding”) and secondary conditions, which
are typically challenging for rule-based ICD-10 approaches
[9]. By integrating these nuances, the NLP model pro-
vided a more comprehensive understanding of patients’
clinical status. Its ability to analyze unstructured clinical
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narratives highlights its potential for real-time decision-
making, enabling clinicians to identify bleeding events
more accurately and promptly, ultimately improving patient
outcomes in hospital settings [10,11,37].

Comparison With Prior Work

The model’s accuracy, precision, recall, and F{-scores
compare favorably with those reported in the literature,
including models based on deep learning architectures such as
biLSTM-CRF or transformers such as BERT [38]. How-
ever, most of these studies use larger English-language
datasets and cover a broader range of clinical events.
Differences in language (French vs English), dataset size,
annotation schemes, and outcome definitions make direct
comparisons difficult. While transformer-based models have
shown excellent performance in clinical NLP [39,40], their
computational demands and limited interpretability may
hinder real-world implementation [41]. In this study, we
prioritized interpretable and efficient models, such as logistic
regression and SVM, offering a favorable trade-off between
performance and usability. Future efforts may explore
hybrid frameworks that combine advanced performance with
interpretability [42].

A distinctive advantage of our approach is the use of
multilabel classification, which allows the model to detect
co-occurring conditions, such as clinically significant and
severe bleeding, or current and historical bleeding, within a
single document. This contrasts with most previous studies
that rely on single-label classifiers and enhance adaptability
to real-world clinical scenarios. However, the model still
faced challenges with temporal reasoning, particularly in
distinguishing recent events from past ones, underscoring the
need for more advanced temporal analysis techniques [43-45].

The limitations of ICD-10 coding, particularly its inability
to reflect clinical nuances, are well documented in the
literature. As previously observed by Johnson et al [46],
reliance on a small number of broad codes, such as
K92.2 (gastrointestinal bleeding, unspecified) and R57.1
(shock due to bleeding), likely contributed to low recall
for severe bleeding. ICD-10 lacks the granularity to differ-
entiate historical versus active bleeding, mild versus severe
presentations, or to correctly interpret negations. Furthermore,
ICD codes are primarily designed for billing and administra-
tive purposes, contributing to underreporting or misclassifica-
tion of bleeding ADEs [9-11,17]. These limitations further
support the relevance of NLP approaches, which offer greater
flexibility and contextual understanding.

Negation handling was a particular strength of our model.
Where many previous approaches have struggled, our model
correctly interpreted expressions such as “no source of
bleeding” [47], substantially reducing false positives and
enhancing clinical utility [48]. In hospital settings, accurate
interpretation of negation is essential to avoid unnecessary
investigations or treatments [49].

https://medinform.jmir.org/2025/1/e67837
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Limitations

This study had several limitations that should be acknowl-
edged. First, the dataset consisted solely of discharge
summaries from Lausanne University Hospital, which may
limit its generalizability. Data from a single large tertiary
care institution might not represent the variety of clinical
settings and regions in which the model could be deployed.
In addition, the over-representation of certain ICD-10
codes, such as K92.2, likely contributed to the model’s
high precision for detecting clinically significant bleeding.
Expanding the baseline dataset could help improve the
model’s robustness and ability to generalize across different
hospital environments [50]. Future work should therefore
focus on expanding the dataset with discharge summaries
from multiple hospitals, enabling broader validation and
assessment of the model’s temporal robustness and applica-
bility in diverse health care environments.

Second, class imbalance in the dataset, particularly the
limited number of “severe bleeding” cases, posed a chal-
lenge. While the model performed well overall, its detection
of rare events was enhanced by applying class weighting
during training, adjusting the contribution of each class to the
loss function. This strategy improved detection of underrepre-
sented but clinically important categories without compro-
mising overall performance. Further improvements could
involve oversampling techniques, synthetic data generation,
or advanced loss functions such as the segmented harmonic
loss [51,52]. Domain-specific keyword-enhanced classifi-
cation may also refine the model’s ability to identify
severe bleeding [53]. Despite these possible improvements,
the current class-weighting strategy and multistage frame-
work offered a robust and interpretable solution suited for
deployment in resource-constrained health care settings.

Third, despite satisfactory overall performance, the
model’s accuracy for detecting severe bleeding dropped to
around 70%. This decrease was largely due to the model’s
tendency to overinterpret numerical data (eg, hemoglobin
and hematocrit values) as indicative of severe bleeding,
particularly when such values appeared near bleeding-rela-
ted terms. These misclassifications led to false positives
and suggest a need for improved contextual differentiation
between clinically relevant data and incidental numeric
values. The model also struggled to capture the timing of
bleeding events, a critical limitation in clinical decision-mak-
ing, where understanding whether a condition is active or
historical can influence diagnosis and treatment [54]. Future
research should aim to enhance contextual differentiation and
temporal reasoning capacities within NLP models.

Finally, the study was restricted to data from 2015 to
2016 due to the reliance on high-quality, manually annota-
ted data from the SwissMADE project, making our analysis
primarily a proof-of-concept. Future studies should integrate
more recent clinical discharge summaries to validate temporal
robustness further and ensure the model remains applicable in
evolving health care environments [55].
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Future Directions

NLP models, particularly those using deep learning or
transformer-based architectures, require significant computa-
tional resources for training and deployment. Although our
model was relatively efficient, scalability remains challeng-
ing, particularly for real-time clinical applications requiring
continuous updates and large datasets. Furthermore, although
integrating large language models such as GPT-3 (OpenAl)
or BERT holds the promise of improved performance, it also
introduces concerns around computational cost and the secure
handling of sensitive patient data [50,56-59]. These practical
challenges will have to be addressed before the widespread
adoption of NLP models in clinical settings [54,60].

Conclusions

Despite some limitations, this study adds to the growing
evidence supporting the use of NLP for detecting ADEs

Gaspar et al

such as bleeding. The model outperformed standard ICD-10-
based approaches by capturing nuanced clinical information
often missed in structured data, including negations and
secondary conditions. The use of multilabel classification
improved its flexibility, allowing it to handle overlapping
bleeding events in complex clinical scenarios. These features
position NLP as a promising tool for enhancing real-time
clinical decision-making and patient safety. Future work
should focus on expanding the dataset to include records from
multiple hospitals and care settings, improving generalizabil-
ity. Integrating additional data sources, such as laboratory
results, imaging, and progress notes, and exploring advanced
NLP techniques such as BERT or GPT could further improve
accuracy and temporal reasoning. Validating the model across
diverse clinical environments and combining structured with
unstructured data will be essential to build robust tools
for bleeding ADE detection and support broader clinical
implementation.
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