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Abstract

Background: Pulmonary embolism (PE) is a critical condition requiring rapid diagnosis to reduce mortality. Extracting PE
diagnoses from radiology reports manually is time-consuming, highlighting the need for automated solutions. Advances in natural
language processing, especially transformer models like GPT-4o, offer promising tools to improve diagnostic accuracy and
workflow efficiency in clinical settings.

Objective: This study aimed to develop an automatic extraction system using GPT-4o to extract PE diagnoses from radiology
report impressions, enhancing clinical decision-making and workflow efficiency.

Methods: In total, 2 approaches were developed and evaluated: a fine-tuned Clinical Longformer as a baseline model and a
GPT-4o-based extractor. Clinical Longformer, an encoder-only model, was chosen for its robustness in text classification tasks,
particularly on smaller scales. GPT-4o, a decoder-only instruction-following LLM, was selected for its advanced language
understanding capabilities. The study aimed to evaluate GPT-4o’s ability to perform text classification compared to the baseline
Clinical Longformer. The Clinical Longformer was trained on a dataset of 1000 radiology report impressions and validated on a
separate set of 200 samples, while the GPT-4o extractor was validated using the same 200-sample set. Postdeployment performance
was further assessed on an additional 200 operational records to evaluate model efficacy in a real-world setting.

Results: GPT-4o outperformed the Clinical Longformer in 2 of the metrics, achieving a sensitivity of 1.0 (95% CI 1.0-1.0;
Wilcoxon test, P<.001) and an F1-score of 0.975 (95% CI 0.9495-0.9947; Wilcoxon test, P<.001) across the validation dataset.
Postdeployment evaluations also showed strong performance of the deployed GPT-4o model with a sensitivity of 1.0 (95% CI
1.0-1.0), a specificity of 0.94 (95% CI 0.8913-0.9804), and an F1-score of 0.97 (95% CI 0.9479-0.9908). This high level of
accuracy supports a reduction in manual review, streamlining clinical workflows and improving diagnostic precision.

Conclusions: The GPT-4o model provides an effective solution for the automatic extraction of PE diagnoses from radiology
reports, offering a reliable tool that aids timely and accurate clinical decision-making. This approach has the potential to significantly
improve patient outcomes by expediting diagnosis and treatment pathways for critical conditions like PE.

(JMIR Med Inform 2025;13:e67706) doi: 10.2196/67706
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Introduction

Pulmonary embolism (PE) is a serious medical condition where
a blood clot blocks one of the pulmonary arteries in the lungs,
typically originating from a vein in the lower limbs [1-3]. This
blockage can significantly impede blood flow, leading to
reduced oxygen levels in the blood and potential lung tissue
damage. PE is critical because it can cause sudden,
life-threatening complications such as cardiac dysfunction and
other acute admissions [4,5]. Prompt diagnosis and treatment
are crucial to improve outcomes and reduce the risk of mortality
[6,7].

Clinical imaging techniques commonly used for diagnosing
pulmonary embolisms include pulmonary computed tomography
angiography, combined computed tomography venography and
pulmonary angiography, and multidetector computed
tomography angiography [8-10]. The analysis and outcomes of
these modalities are recorded in radiology reports which describe
the presence or absence of emboli, their location, size, and
impact on pulmonary circulation. Radiology reports are
structured documents that capture the conditions observed from
radiology images [11,12]. Typically, the most important parts
of these reports are the findings and impression sections [13].
The impression section provides a clinically precise summary
of the patient’s status, typically summarizing the key findings
and diagnoses from the findings section [14]. Therefore, the
diagnosis of PE is highly likely to be mentioned in the
impression section. Early documentation of PE and its extraction
in the electronic medical record system, and consequently in
clinical workflows, is crucial for improving patient outcomes.
In this study, we aim to develop an advanced transformer-based
text classification model to extract PE diagnoses from the
impression section of radiology reports, expediting structured
data availability and enhancing the quality of care through
evidence-based practices.

Natural language processing (NLP) techniques have been
increasingly used in the field of radiology, particularly in
extracting critical information from radiology reports such as
diagnoses [15]. Studies have shown that NLP, combined with
machine learning and deep learning algorithms, can effectively
extract relevant information from radiology reports [16-18].
These techniques enable the automatic identification and
extraction of critical findings such as pleural effusion,

pulmonary infiltrate, and pneumonia, aiding in the classification
of reports consistent with bacterial pneumonia [19].
Furthermore, NLP algorithms have been developed to detect
specific findings like acute pulmonary embolism in radiology
reports, showcasing the potential of NLP in enhancing diagnostic
processes [20,21].

The application of NLP in radiology reports extends to various
medical conditions, including pulmonary embolism. Studies
have demonstrated the effectiveness of NLP in structuring the
content of radiology reports, thereby increasing their value and
aiding in the classification of pulmonary oncology according
to the tumor, nodes, and metastasis classification system, a
standard for staging cancer [22]. In addition, NLP has been used
to identify ureteric stones in radiology reports and to build
cohorts for epidemiological studies, showcasing the versatility
of NLP in medical research [23].

Recent studies have demonstrated the effectiveness of Clinical
Longformer in various clinical NLP tasks. For instance, it has
been used to identify incarceration status from medical records,
showcasing good sensitivity and specificity compared to
traditional keyword-based methods [24]. In addition, Clinical
Longformer has been successfully applied in the classification
of clinical notes for automated ICD (International Classification
of Diseases) coding, where it outperformed other models in
accuracy [25,26]. This capability to accurately interpret and
classify clinical text is crucial for improving health care delivery
and ensuring proper coding for reimbursement purposes.

On the other hand, advanced versions of the GPT family like
GPT-4 and GPT-4o, generative language models, have been
recognized for their versatility in clinical applications,
particularly in generating, summarizing, classifying, and
extracting clinical information [27-33]. Its multimodal
capabilities allow it to process not only text but also images and
audio, enhancing its utility in diverse clinical settings [34].
GPT-4 has been used in clinical trial matching, where it
automates eligibility screening, thus streamlining the recruitment
process for clinical studies [35].

This study aims to develop an large language model
(LLM)–based extraction system to automatically extract
pulmonary embolism diagnoses from radiology report
impressions. The key contributions of this study are mentioned
in Textbox 1.

Textbox 1. Key contributions.

• Enhance and accelerate clinical data availability to improve the quality of care through evidence-based approaches.

• Develop a reliable diagnoses extraction system, which examines 2 technologies: Clinical Longformer and GPT-4o.

• Deploy the developed system as a cloud-based web application, addressing a gap often found in clinical artificial intelligence research.

• Evaluate the model both before and after deployment.

Methods

Overview
In this section, we provide a comprehensive overview of the
study’s methodology. Subsequently, we explore the text

classification approach, followed by a detailed description of
the dataset used. We then describe the models applied in this
research. In addition, we discuss the deployment pipeline of the
selected model. Finally, we outline the evaluation metrics used
to assess the model’s performance.
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The primary objective of this study is to develop and deploy an
artificial intelligence (AI) solution capable of extracting PE
diagnoses from radiology report impressions. After defining
this goal, the research proceeds through 4 distinct phases. In
the first step, for collecting training and validation datasets, we
determined the appropriate data tables in the Virtua Health
clinical database and extracted radiology impressions data. This
is followed by preprocessing and transforming the data to make
it suitable for model development. The second step involves
creating and testing 2 models (Clinical Longformer and
GPT-4o), then choosing the one with the best results to proceed.
The selected model is then implemented during the third step.
In the final step, the performance of the model was tracked in
real-world conditions and evaluated on how it affected
operational outcomes.

Radiology Impressions Text Classification
Text classification is a fundamental task in NLP that involves
categorizing text into predefined labels based on its content.

This task is widely used in applications such as sentiment
analysis, spam detection, and medical report classification. Text
classification models typically preprocess the data by tokenizing
the text and transforming it into numerical representations
suitable for machine learning. An NLP approach is then used
to make predictions based on patterns in the text.

Figure 1 illustrates the process of classifying radiology report
impressions to identify PE cases, which is adopted in this study.
The workflow begins with the extraction of radiology
impressions from a clinical database. The impressions are
preprocessed by consolidating line-wise text, removing
unnecessary spaces, and applying labels to prepare the data for
analysis. Following this, 2 different text classification models
are used: Approach 1 uses a Clinical Longformer Model, while
Approach 2 involves GPT-4o, a LLM. Both models classify the
impressions into 2 categories: PE and non-PE. The goal is to
determine whether a diagnosis of PE is present in each radiology
report impression.

Figure 1. Radiology impressions text classification. PE: pulmonary embolism.

Data
The data used in this study was sourced from the electronic
medical record relational database of Virtua Health, New Jersey,
with the primary data element being the impressions of radiology
reports. These impressions, which contain key diagnostic
information, were consolidated from line-wise data and cleaned
to remove extraneous spaces. This process ensured that the data
were formatted appropriately for analysis and modeling.

The training dataset consists of 1000 samples, which were
randomly selected from radiology reports generated between
January 1, 2024, and June 30, 2024. For the validation dataset,
200 samples were randomly drawn from radiology reports
collected in July 2024. In addition, a separate testing dataset,
consisting of 200 observations, was sampled randomly from
operational data received between August 1, 2024, and August
31, 2024. The characteristics of the training and validation
datasets are outlined in Table 1. The testing dataset
characteristics will be discussed in the following section.

Table 1. Training and validation data characteristics.

Validation datasetTraining datasetMetric

2001000Number of observations

40.1843.64Average number of words (a token is approximately three-fourths of a
word)

10036Number of pulmonary embolism-positive cases

100964Number of pulmonary embolism-negative cases

As shown in Table 1, the training dataset contains 1000
observations, with an average of 43.64 words (or 32.73 tokens,
where a token is approximately three-fourths of a word) per
report impression. The training data includes 235 occurrences
of pulmonary embolism term, with 36 positive cases for
pulmonary embolism and 964 negative cases. The validation
dataset, consisting of 200 observations (1:1 ratio of classes),

has a slightly lower average word count per report impression,
at 40.18 words.

Fine-Tuned Clinical Longformer Classifier
The Clinical Longformer is a specialized transformer model
designed to handle long clinical documents, overcoming the
typical limitations of standard transformer models such as
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Bidirectional Encoder Representations from Transformers
(BERT), which can process sequences up to 512 tokens [36].
Clinical Longformer incorporates a sparse attention mechanism
that allows it to efficiently process sequences up to 4096 tokens,
making it ideal for handling lengthy clinical narratives.
Pretrained on large clinical datasets, it is particularly effective
in capturing long-term dependencies in medical text. In this
study, the Clinical Longformer is fine-tuned to classify radiology

impressions for identifying pulmonary embolism, leveraging
its ability to process comprehensive radiology report impressions
without truncating important contextual information.

We fine-tuned (full fine-tuning) the Clinical Longformer model
on a graphics processing unit server with 48 GB of memory.
The fine-tuning hyperparameters were mentioned in Textbox
2.

Textbox 2. Clinical Longformer fine-tuning hyperparameters.

• Batch size: 4

• Gradient accumulation steps: 8

• Learning rate: 2e-5

• Number of epochs: 5

• Optimizer: AdamW

• Learning rate scheduler: Linear

GPT-4o Classifier
The methodology for using GPT-4o in the text classification of
radiology impressions, specifically for PE diagnosis, is based
on a combination of chain-of-thought (COT) reasoning and
few-shot learning techniques. As outlined in Textbox 3, the
process begins by initializing an empty list to store the generated
labels. GPT-4o is then prompted using a COT and few-shot
learning template, where relevant examples of radiology
impressions with their corresponding labels (PE or non-PE) are
presented to the model. The temperature parameter is set to zero
to minimize randomness in the model’s predictions. For each
radiology impression in the dataset, the system inserts the
impression into the prompt, calls the GPT-4o API, and receives
a response that indicates whether a PE diagnosis is present. The

resulting labels are appended to the list for further analysis and
validation.

As shown in Figure 2, the prompt includes a persona where
GPT-4o is defined as a clinical AI assistant proficient in
radiology, capable of interpreting complex medical language.
The prompt further provides detailed steps, starting with
studying example impression-label pairs, followed by reading
through the target impression to extract potential diagnoses.
The model is tasked with determining whether PE is indicated
in the impression and returns the output as a structured JSON
object. This methodology leverages GPT-4o’s advanced
language comprehension capabilities to classify radiology
reports efficiently, using both clinical reasoning and context
learned from the few-shot examples.

Textbox 3. Extraction of pulmonary embolism diagnosis using GPT-4o-based chain of thought (COT) and few-shot learning algorithm.

Input: List of impressions

Output: List of labels (“Yes” if PE presents and “No” otherwise)

1. Initialize an empty list for extracted labels.

labels = []

2. Initialize chain of thought and few-shot learning prompt template.

3. Set the temperature parameter to 0.0.

4. For each item in the list of impressions do

5. Insert the current impressions item in the prompt.

6. Send the formatted prompt and temperature parameter to the GPT-4o model (API call).

7. Parse the response.

8. Append the generated label: labels.append(response[“answer”]).

9. End for

10. Return the list of generated labels.
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Figure 2. Extraction of pulmonary embolism diagnosis prompt template.

Deployment Pipeline
The deployment pipeline for the PE classification model,
illustrated in Figure 3, integrates a combination of on-premises
and Azure cloud services to create a streamlined and scalable
system. The process begins with data being sourced from an
on-premises SQL server, which stores radiology report
impressions. These impressions are transferred to an Azure SQL
database, where they are stored and prepared for further analysis.
This architecture uses direct interaction between Azure SQL,
an Azure Web App, and the Azure OpenAI service. The Azure
OpenAI service, hosting the GPT-4o model, is invoked by the
Azure Web App to perform text classification on the radiology
impressions and return pulmonary embolism classification
results. These results are then stored back in the Azure SQL

database. The web app fetches the results from Azure SQL and
displays them for end users.

As shown in Figure 4, the web app was built using Python Flask
for the backend, along with HTML, CSS, and JavaScript for
the frontend. The interface allows users to query the system by
submitting a patient’s medical record number to retrieve the
corresponding PE classification result. Users can also refresh
the data or download the results for further analysis. The table
on the right displays relevant patient information, including
patient IDs, encounter IDs, admission times, and PE
classification results. This interface serves as a convenient tool
for health care professionals to quickly identify patients with a
PE diagnosis, improving clinical decision-making and patient
outcomes by providing prompt, automated insights. The Web
App has been operationalized at Virtua Health, New Jersey.
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Figure 3. Deployment pipeline.

Figure 4. Web App. Only positive cases are displayed. This Web App has been operationalized at Virtua Health, New Jersey.

Evaluation Metrics and Statistical Testing
To evaluate the performance of the PE classification model, we
used several commonly used metrics (Textbox 4).

Textbox 4. Classification evaluation metrics.

• Sensitivity (Recall): The proportion of actual PE cases that the model correctly identified. It measures the model’s ability to detect positive cases
(PE) and is defined as the ratio of true positives to the sum of true positives and false negatives.

• Specificity: The proportion of actual non-PE cases that the model correctly identified. It reflects the model’s ability to avoid false positives,
calculated as the ratio of true negatives to the sum of true negatives and false positives.

• F1-score: A harmonic mean of precision and recall, which provides a balanced measure of the model’s performance, especially in cases of
imbalanced data. It is particularly useful for evaluating the trade-off between precision and recall in the context of PE classification.
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To rigorously evaluate and compare model performance, we
used nonparametric bootstrap sampling with 1000 iterations on
both the validation and postdeployment datasets. In each
bootstrap iteration, samples were drawn with replacement from
the dataset, and standard evaluation metrics—sensitivity,
specificity, and F1-score—were calculated. This process yielded
1000 metric estimates per model (GPT-4o and Clinical
Longformer), providing an empirical distribution for each
metric.

From these distributions, the mean and 95% CI were derived
using percentile-based estimation. This approach enables robust
quantification of performance uncertainty without assuming
normality.

To statistically compare the models, we conducted paired,
2-sided Wilcoxon signed rank tests on the bootstrapped metric
distributions. This nonparametric test assesses whether the
differences in paired metric values across bootstraps are
statistically significant. A significance level of α=.01 was used
to determine the threshold for significance.

The same bootstrapping procedure was applied to the
postdeployment dataset to calculate mean metric values and
corresponding 95% CI. However, statistical significance testing
was conducted only on the validation dataset to ensure controlled
model comparisons under consistent evaluation conditions. In
the postdeployment setting, only the GPT-4o model was in use.

Ethical Considerations
The studies involving humans were approved by Virtua Health
institutional review board (FWA00002656). The studies were

conducted in accordance with the local legislation and
institutional requirements. The ethics committee or institutional
review board waived the requirement of written informed
consent for participation from the participants or the
participants’ legal guardians or next of kin because the research
involved no more than minimal risk to subjects, could not
practically be carried out without the waiver, and the waiver
will not adversely affect the rights and welfare of the subjects.
This requirement for consent was waived on the condition that,
when appropriate, the subjects will be provided with additional
pertinent information about participation.

Results

Overview
This section presents the research findings. First, we evaluate
the Clinical Longformer and GPT-4o models using the
validation dataset during the development phase. Then, we
assess the performance of the deployed GPT-4o model post
deployment.

Models Evaluation
Figure 5 presents a comparative analysis of evaluation metrics,
including sensitivity, specificity, and F1-score, between GPT-4o
and Clinical Longformer. The results demonstrate statistically
significant differences across all 3 metrics (P<.001), as
determined by the Wilcoxon signed-rank test.

Figure 5. Evaluation metrics comparison of Clinical Longformer (baseline model) and GPT-4o.
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GPT-4o exhibits superior sensitivity, achieving a perfect
sensitivity of 1.0 (95% CI 1.0-1.0), in contrast to Clinical
Longformer, which attains a sensitivity of 0.6684 (95% CI
0.5644-0.7604). This indicates that GPT-4o captures all positive
cases correctly, whereas Clinical Longformer has a notable false
negative rate. For specificity, Clinical Longformer achieves a
perfect score of 1.0 (95% CI 1.0-1.0), slightly surpassing
GPT-4o, which attains a specificity of 0.9456 (95% CI
0.9022-0.989). Although both models perform well in
distinguishing negative cases, GPT-4o exhibits a marginally
higher false positive rate. Regarding the F1-score, GPT-4o
significantly outperforms Clinical Longformer, with an F1-score
of 0.975 (95% CI 0.9495-0.9947) compared to 0.8002 (95% CI
0.7215-0.8639) for Clinical Longformer. This improvement
reflects GPT-4o’s higher balance between precision and recall,
leading to superior overall classification performance.

The statistically significant differences across all 3 metrics
underscore GPT-4o’s robust generalization and enhanced
performance in comparison to Clinical Longformer, suggesting
its potential for improved clinical applications.

Postdeployment Performance
Based on GPT-4o’s excellent performance during the validation
phase, where it achieved superior metrics, it was selected for
deployment in the operational setting. The postdeployment
evaluation of the GPT-4o model was conducted using a dataset
of 200 records, which was selected using stratified sampling
from the operational data. Table 2 provides a summary of the
dataset characteristics, including 100 positive cases of
pulmonary embolism and 100 negative cases.

Table 2. Postdeployment testing data characteristics. A stratified random sample of 200 records was taken from the operational dataset for postdeployment
evaluation.

ValuesMetric

200Number of observations

43.76Average number of words (a token is approximately three-fourths of a
word)

100Number of pulmonary embolism-positive cases

100Number of pulmonary embolism-negative cases

In postdeployment, sensitivity remains at a perfect 1.0 (95% CI
1.0-1.0), demonstrating the model’s ability to correctly identify
all positive cases without false negatives. Specificity, however,
shows a slight decrease compared to predeployment values,
with a point estimate of approximately 0.94 (95% CI
0.8913-0.9804), suggesting a modest increase in false positives.
The F1-score remains high at approximately 0.97 (95% CI
0.9479-0.9908), indicating a strong balance between precision
and recall. While GPT-4o maintains robust predictive
performance postdeployment, with high sensitivity and a stable
F1-score, the slight decline in specificity highlights a potential
area for further refinement.

Discussion

Principal Findings
This study underscores the efficacy of GPT-4o in automating
the extraction of PE diagnoses from radiology report
impressions. GPT-4o demonstrated excellent performance across
sensitivity, specificity, and F1-scores during both validation and
postdeployment evaluations. These findings suggest that
GPT-4o’s advanced language understanding capabilities allow
it to capture subtle contextual and semantic nuances in radiology
impressions, which are often critical for accurate diagnosis.

This success is attributed to GPT-4o’s ability to leverage
large-scale training on diverse datasets, which enhances its
generalizability and adaptability. In addition, its deployment as
a cloud-based tool offers scalability, making it accessible to
health care systems of varying sizes. These attributes make
GPT-4o a transformative tool in clinical AI, setting a benchmark

for future applications in radiology and other diagnostic
domains. This success has also been recognized in various
studies, as GPT-4o has demonstrated promise in addressing
critical tasks across different areas of radiology [37-41].

Error Analysis
As indicated in the Results section, GPT-4o scored 1.0 (95%
CI 1.0-1.0) on sensitivity. However, the specificity was 0.94
(95% CI 0.8913-0.9804), hinting at a false positive rate of
around 6%. Here, we look at 3 of these false positives to uncover
any commonality.

The first sample, labeled as “Yes” while the ground truth (human
labeler) says otherwise, has the following impressions text:
“Mild right upper lobe infiltrate. Heterogeneous density of the
pulmonary artery, which could represent pulmonary embolus.”
This is a borderline case, where the text indicates a likelihood
of PE without firm confirmation. The model was able to bring
attention to this case for further evaluation. Also, ground truth
labeling may suggest the need for further validation.

The second sample’s impressions text states “(1) Limited
examination as mentioned above, particularly further evaluation
of the pulmonary arteries in the right lung. Questionable
subsegmental pulmonary embolism may be present in the right
middle lobe. Follow-up would be helpful as clinically indicated.
(2) Large right pleural effusion. Adjacent lung consolidation
suggests atelectasis. (3) Mild ground glass infiltrates in the right
upper lobe and left lower lobe. This may represent mild
pneumonitis. (4) Small left pleural effusion. (5) Incidental
findings as above.” The model indicated the presence of PE. If
we look at the text, we can see that the radiologist indicated a
questionable PE. This case is similar to the previous one, in
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which the model labels likelihoods and questionable diagnoses
as indicative of PE, which could be a useful way to bring
clinicians’ attention to the case for further evaluation.

The third sample impressions text is “(1) Small linear filling
defects involving the right lower lobe, left upper lobe, and left
lower lobe, likely sequela of chronic pulmonary embolism. No
convincing findings of acute pulmonary embolism. No imaging
findings of right heart strain. (2) Interval enlargement of multiple
pulmonary nodules measuring up to approximately 12 mm.
Further correlation with PET/CT versus follow-up computed
tomography in 3 months is recommended. (3) Areas of mild
subpleural atelectasis or scar with mild interstitial thickening
that may be related to chronic change, although mild pulmonary
edema or infection would be difficult to entirely exclude.” The
text indicates that “No convincing findings of acute pulmonary
embolism.” This resulted in a negative ground truth label.
However, the model interpreted the “likely sequela of chronic
pulmonary embolism” as an indicator of PE. The latter suggests
that filling defects were a result of a past medical condition.
Thus, this might be a definite false positive.

In summary, analyzing some of the false positives indicates the
model’s ability to bring attention to borderline cases that might
hint at the presence of PE, allowing for further clinical
validation. However, the model sometimes results in definite
false positives when the radiology text ambiguously discusses
PE in the context of past conditions.

Operational and Clinical Implications
The postdeployment results of GPT-4o show several important
operational and clinical implications. First, the model’s
sensitivity and specificity in a real-world setting indicate that
it can help distinguish between subjects who have pulmonary
embolisms and those who do not, without many false positives
or negatives. This is important in a clinical setting where missing
cases of pulmonary embolism have implications for patient
outcomes, and false positives can lead to unnecessary further
investigation or treatment. At Virtua Health, the model
successfully identified over 700 positive PE cases in 2024.

From an operational perspective, the model’s excellent accuracy
on both the validation and postdeployment testing datasets
means that the model can be operated in an autonomous manner
which would help reduce the workload of radiologists and other
health care professionals. As a result, it can classify cases
correctly, thus taking some of the pressure and time off
clinicians and their ability to concentrate on other, more
challenging or time-consuming cases. Furthermore, the model’s
high precision means that health care resources are used more
effectively, with fewer unnecessary interventions and therefore
better patient care.

Clinically, the use of GPT-4o increases the decision support
that clinicians can receive by offering a correct answer to the
question regarding the presence of pulmonary embolism based
on the information presented in the radiology reports. This early
recognition can result in early diagnosis and management and
therefore better patient results and possibly reduced mortality.
Moreover, the stability of the performance of GPT-4o in
identifying pulmonary embolisms in various datasets suggests

robustness and generality, which could be useful in various
clinical settings.

Ethical Issues in the Use of AI Models in Health Care
The employment of AI models in health care induces
multifaceted ethical issues that need to be deliberated on. The
first and foremost concern is the privacy of the patients and the
security of the information because medical information is
private. This includes strong network security, policy
compliance with laws like HIPAA (Health Insurance Portability
and Accountability Act) and General Data Protection
Regulation, and data exposure minimization during training and
use of the model. It is crucial to ensure that AI systems work
within these legal and ethical parameters to ensure the credibility
of their use.

Another important factor is compliance with regulations because
the application of AI in health care has to be compatible with
the standards that are set on a regional and international level.
This includes making sure that the process of training,
validation, and integration into the clinical workflow of the
model is well documented. These processes are easily
understandable and can be explained to health care providers,
patients, and regulators, thus establishing the ethical and legal
sustainability of technology.

Another important issue is bias and fairness as AI models trained
on small and biased datasets are likely to emit biased output.
For instance, if the training data is biased then the predictions
of the model may be unfair to some patients and thus lead to
unequal care. This is particularly a concern in health care where
discrimination can have severe impacts on minority populations,
stressing the need to ensure that datasets are inclusive, and
model evaluation focuses on fairness.

Finally, it is important that in using AI in the various fields of
life, transparency and accountability are considered to create
confidence in the use of AI. The results of the model must be
easy to understand and explain to the clinicians and patients,
hence the need for explainable AI. Moreover, it is crucial to
subject the models to routine assessments and performance
tracking to provide evidence of accountability and
trustworthiness in the long run.

To address these ethical issues, there is a need for ongoing
assessment, open reporting, and interaction between AI creators,
health care deliverers, and regulators. Thus, the main aspects
that can be improved are the aspects that when improved will
help achieve the best possible results with the use of AI in health
care while at the same time adhering to ethical principles and
protecting the rights of patients.

Bias Evaluation
LLMs are generally pretrained on large corpora of texts from
the internet. As a result, inherent biases in human language can
influence model outputs. Recent LLMs, such as GPT-4o,
undergo posttraining alignment to reduce biased responses. This
serves as the first line of defense against bias. Second, in our
case, the LLM is instructed to return a single label (yes or no),
which may further reduce the potential for hallucinations and
bias. LLMs typically require more tokens to reveal their
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underlying tendencies, which can include bias from the
pretraining stage. Finally, we evaluated the model’s performance
using the F1-score across different age groups and gender
profiles.

Table 3 summarizes the F1-score across different sex and age
groups to assess the consistency of the model’s performance

across demographic subpopulations. The model demonstrates
comparable F1-scores for both female (0.970, 95% CI
0.930-1.000) and male (0.972, 95% CI 0.937-1.000) groups,
indicating no apparent sex-based disparity in classification
performance.

Table 3. F1-score across sex and age groups.

F1-score (95% CI)Values, n (%)Variable and group

Sex

0.970 (0.930-1.000)98 (51)Female

0.972 (0.937-1.000)102 (49)Male

Age

1 (1-1)10 (5)Under 30 years

0.963 (0.867-1.000)25 (12.5)30-50 years

0.982 (0.951-1.000)93 (46.5)50-70 years

0.966 (0.906-1.000)62 (31)70-90 years

0.823 (CI 0.500-1.000)10 (5)90 years and older

Across age groups, the F1-scores remain generally high, with
minor variations. The highest score is observed in individuals
under 30 years old (F1-score=1.000), although this group
comprises only 5% of the sample, suggesting potentially limited
generalizability due to the small sample size. The model
performs well for the majority age groups—50-70 years
(F1-score=0.982, 95% CI 0.951-1.000) and 70-90 years
(F1-score=0.966, 95% CI 0.906-1.000)—which collectively
represent over 75% of the dataset. However, performance
decreases slightly for individuals aged 90 and above (F1-
score=0.823, 95% CI 0.500-1.000), likely due to a smaller
sample size and increased clinical complexity in this cohort.
Overall, the model demonstrates robust and consistent
performance across most demographic groups, with slight
variation observed at the extremes of age distribution.

Explainability
GPT-4o is an LLM built on transformer architecture, a type of
neural network that uses an attention mechanism to learn
semantics. Due to its complexity, the model is inherently a black
box. However, since the model generates output by continuing
the input text based on user instructions, the output can be
interpreted as the most probable completion (especially when
the temperature parameter is set to 0.0).

In our case, the instructions are to analyze radiology impressions
and return a “Yes or No,” indicating the presence or absence of
PE, respectively. In real-world decision-making, users are
informed that the LLM generates responses based on the most
likely continuation of the input text according to the instructions
provided. The generated label is returned to users along with
the corresponding impressions for validation and confirmation.

Exploring explainable artificial intelligence methods is highly
encouraged to better understand how input text influences LLM
output, improving predictability and transparency. Techniques

such as Shapley Additive Explanations (SHAP) and attention
mechanism analysis can support this effort. In our case,
implementation was challenging due to the use of a large
proprietary LLM (ie, GPT-4o), for which we do not have access
to the model architecture needed for such analyses. Therefore,
leveraging open-source LLMs in the future could enable the
application of these techniques.

The GPT-4o-based PE classifier is delivered through a web
application, requiring user involvement to confirm the model’s
results. In summary, our application adopts a human-in-the-loop
approach. While this supports practical use, the broader
explainability of LLM output remains an ongoing area of
research aimed at better understanding the underlying
mechanisms of next-token prediction.

Limitations
As the study shows promising results, there are important
limitations, and their implications cannot be overlooked. A
major limitation is the size of the dataset used in this study,
which is 1000 training samples, 200 validation samples, and
200 postdeployment testing samples. Another limitation is the
data imbalance in the training dataset (for the Clinical
Longformer). With such a restricted number of examples, the
model may not be able to generalize its learning to the full extent
of the clinical scenarios that are likely to be encountered in the
real world. This could lead to it being less accurate in real-world
use, where report structures can differ significantly, and larger
datasets are usually used to increase model confidence and
stability.

Another limitation has to do with the model’s generalization.
The training data was collected from a single health care
organization, Virtua Health, which means that the language and
cultural features that are unlikely to be encountered in reports
from other hospitals or countries may not be well-represented
in the model. As a result, this may restrict the applicability of
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the model to other settings unless it is retrained (or
prompt-engineered) with local data.

The study also found that the Clinical Longformer, which was
used as a baseline, could not grasp some of the semantic details,
resulting in the misclassification of 2 positive PE cases. This
suggests that future work should build on this study to enhance
the architecture of transformer models specific to clinical tasks,
especially those that entail processing medical text with
sophistication.

Some issues may occur when implementing the model in the
real world even though GPT-4o performed excellently in
controlled experiments. Real-world data often contains errors,
omissions, or other noise that the model may not be able to
handle properly. In addition, there are potential threats to
consistency in reporting practices that may lead to
inconsistencies in the information captured by the model.

Future Work
To overcome these limitations, future work should focus on the
growth of the dataset, which should be expanded to include a
bigger and more complex set of samples that would encompass
different types of radiology reports, patients, and institutions.
This will increase the size of the dataset and the variety of the
samples, which in turn will increase the model’s coverage and
stability. Data imbalance in the training dataset of the Clinical
Longformer should be tackled by using data augmentation
techniques to test the impact of validation performance.
Furthermore, the model must be tested in different health care
contexts to determine its effectiveness, which means that
external validation is critical. External validation can be
achieved through collaborations with other health systems or
testing on publicly available datasets. To mitigate real-world
operationalization challenges, future implementation should

include routine performance audits to monitor model accuracy
over time, periodic retraining with updated real-world data to
maintain robustness, and regular human validation checks to
ensure data quality and reflect evolving documentation practices.
These strategies can help maintain reliability despite variability
in data quality and reporting standards. Overall, these measures
will assist in ensuring that the model is not only efficient but
also easily implementable in various health care environments.

Conclusions
In conclusion, this study features an effective LLM-based
approach to the automation of the extraction of PE diagnoses
from radiology report impressions. We then compared the
performance of a fine-tuned Clinical Longformer and GPT-4o
and found that GPT-4o outperformed in terms of sensitivity,
specificity, and overall accuracy both before and post
deployment. The integration of GPT-4o into clinical practice
has several operational and clinical benefits, including
decreasing the need for manual review, improving clinical
decision support, and detecting cases of PE more quickly.
Furthermore, the model’s capability to lighten the load of
manual review to a great extent is a key contributor to improving
the workflow of the diagnostic process, thereby allowing
clinicians to channel their efforts toward more challenging
problems. These qualities make it suitable for application in
other clinical settings with the potential to go beyond PE
diagnosis to other medical conditions that require comprehensive
and accurate analysis of radiology reports. Not only does its
integration enhance efficiency but also the quality of clinical
decision-making processes. Future work may involve expanding
this approach to other medical conditions and improving the
integration of NLP-based models into clinical workflows to
keep on enhancing the quality of health care delivery.
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