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Abstract
Background: Integrated clinical databases from national biobanks have advanced the capacity for disease research. Data
quality and completeness filters are used when building clinical cohorts to address limitations of data missingness. However,
these filters may unintentionally introduce systemic biases when they are correlated with race and ethnicity.
Objective: In this study, we examined the race and ethnicity biases introduced by applying common filters to 4 clinical
records databases. Specifically, we evaluated whether these filters introduce biases that disproportionately exclude minoritized
groups.
Methods: We applied 19 commonly used data filters to electronic health record datasets from 4 geographically varied
locations comprising close to 12 million patients to understand how using these filters introduces sample bias along racial and
ethnic groupings. These filters covered a range of information, including demographics, medication records, visit details, and
observation periods. We observed the variation in sample drop-off between self-reported ethnic and racial groups for each site
as we applied each filter individually.
Results: Applying the observation period filter substantially reduced data availability across all races and ethnicities in all 4
datasets. However, among those examined, the availability of data in the white group remained consistently higher compared
to other racial groups after applying each filter. Conversely, the Black or African American group was the most impacted
by each filter on these 3 datasets: Cedars-Sinai dataset, UK Biobank, and Columbia University dataset. Among the 4 distinct
datasets, only applying the filters to the All of Us dataset resulted in minimal deviation from the baseline, with most racial and
ethnic groups following a similar pattern.
Conclusions: Our findings underscore the importance of using only necessary filters, as they might disproportionally affect
data availability of minoritized racial and ethnic populations. Researchers must consider these unintentional biases when
performing data-driven research and explore techniques to minimize the impact of these filters, such as probabilistic methods
or adjusted cohort selection methods. Additionally, we recommend disclosing sample sizes for racial and ethnic groups both
before and after data filters are applied to aid the reader in understanding the generalizability of the results. Future work should
focus on exploring the effects of filters on downstream analyses.
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Introduction
The rapid adoption of electronic health records (EHRs) in
the past decade has greatly expanded the availability and
accessibility of clinical data. This advancement enables health
care professionals to harness vast amounts of information,
driving medical research, personalized medicine, and overall
improvements in health care delivery [1,2]. Additionally, it
helps to build big data in health care, providing a founda-
tion for advanced analytics and informed decision-making
on a large scale. This supports the training and validation
of artificial intelligence methodologies and models, lead-
ing to improved diagnostic accuracy, personalized treatment
plans, and more efficient health care delivery. Therefore,
the collected data significantly influence the results and
hypotheses derived from these methods.

To improve diversity in health care, studies must include
populations underrepresented in the biomedical, clinical,
behavioral, and social sciences, such as individuals from
racial and ethnic minority groups, those with disabilities,
and people from disadvantaged backgrounds [3]. Fostering
diversity is vital for producing more accurate, inclusive
research outcomes that reflect the needs of all populations,
ultimately leading to more equitable health care and improved
patient outcomes [4,5].

However, the usefulness of available clinical data is
limited if it does not reliably reflect the diversity of the
underlying population. Bias in health care research refers
to systematic errors or deviations that lead to inaccurate or
skewed results, interpretations, or decisions. It usually occurs
when certain factors, whether intentional or unintentional,
disproportionately influence the research process, leading to
outcomes that do not accurately represent the truth. Thus,
scientific progress is delayed, flawed conclusions perpetuated,
and disparities in health care outcomes are reinforced [6].

Lack of diversity, which may be due to systemic bia-
ses and discrimination against individuals and groups from
minoritized populations, can lead to biased research out-
comes that exacerbate health disparities [7-10]. This can
lead to inaccurate conclusions about treatment or interven-
tions that may not apply equally across different populations.
In addition, there are still not enough big clinical longitu-
dinal datasets, which are essential for understanding long-
term health trends, progression of diseases over time, and
evaluating treatment outcomes.

When conducting observational clinical data analysis, it
is often preferable to aim for a dataset that is as complete
as possible. However, well-meaning filters that improve
completeness may introduce unintended biases in the target
population [11].

Data completeness can be defined as the extent to
which EHRs or other data sources capture all necessary
and relevant information to accurately represent a patient’s

medical history, care processes, or outcomes. It includes both
the presence and accuracy of essential data elements, such as
diagnoses, treatments, laboratory results, and preventive care
measures, ensuring a comprehensive and reliable foundation
for clinical care, research, and quality assessment [12-14].

In this study, we aim to evaluate the effect of data
completeness filters originally used by Weber et al [11] on
different datasets and how various filters impact the patient
cohort. This work extends the analysis to 4 large datasets,
including the All of Us (AoU) dataset, UK Biobank (UKBB),
and 2 geographically distinct academic medical centers.
Specifically, we focus on identifying race and ethnicity biases
introduced by commonly used filters [15].

Methods
We examined 4 distinct data sources, AoU, UKBB, Colum-
bia University dataset, and Cedars-Sinai dataset comprising
approximately 12 million patients. By analyzing the available
data and applying each filter, we aimed to investigate the
potential biases these filters may introduce.
All of Us
The AoU study, sponsored by the National Institutes of
Health, has enrolled more than 814,000 participants as of
June 18, 2024, with 80% of them coming from underrepre-
sented populations [16]. These groups include racial and
ethnic minorities, people with disabilities, those in rural or
underserved areas, and individuals from lower socioeconomic
backgrounds. Figure S1 in Multimedia Appendix 1 (provided
by the AoU study) showcases the self-reported races and
ethnicities of the participants who have completed the initial
steps of the program, providing a diverse representation. The
recruitment process spans all regions of the United States.

The AoU workbench encompasses a wealth of informa-
tion gathered from EHRs, including data from Fitbit devices,
survey responses, and socioeconomic factors. Notably, a
recent release of data in April 2023 included approximately
245,400 whole genome sequencing records and 312,940
genotyping microarrays, further enhancing the dataset’s depth
and potential for analysis.
UK Biobank
The UKBB is a large-scale, population-based study that aims
to improve the prevention, diagnosis, and treatment of various
diseases. It involves the collection of extensive health-rela-
ted data, including genetic information, from over 500,000
participants in the United Kingdom. Participants in the
UKBB, recruited at ages 40‐69 years, were registered with
the National Health Service. Researchers can download the
data through the UKBB’s Data Showcase, which collaborates
closely with the European Genome Archive.
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Cedars-Sinai
Cedars-Sinai Medical Center (CSMC) is one of the largest
hospitals in California, based in Los Angeles, and serves
up to 1 million diverse patients every year across its 40
locations in Southern California. CSMC also serves as a
large research center. The studied database comprises over
4 million patients.
Columbia University
Columbia University Irving Medical Center (CUIMC) is a
clinical, research, and educational enterprise located on a

campus in Northern Manhattan. They are home to 4 colleges
and schools that work on scientific research, education, and
patient care. The studied database comprises over 5 million
patients.

The self-reported race and ethnicity distributions of each
dataset, along with the number of participants in each dataset,
are presented in Table 1. In addition to those self-reported
categories for race and ethnicity, we defined an all group,
which includes every patient in that specific dataset. This
group serves as a baseline for comparison within the dataset.

Table 1. Self-reported race and ethnicity percentages of each dataset, along with the total number of participants in each dataset.
Dataset CSMCa CUIMCb All of Us UKBBc

Total patients, n 4,031,307 7,121,848 287,012 502,364
Race, n (%)
  American Indian and/or Alaska Native 5695 (0.14) 8275 (0.12) —d —
  Asian 205,978 (5.11) 100,046 (1.40) 8294 (2.89) 11,472 (2.28)
  Black or African 373,130 (9.26) 445,623 (6.26) 58,264 (20.30) 3552 (0.71)
  Native Hawaiian or Pacific Islanders 7082 (0.18) 6693 (0.09) 344 (0.12) —
  White 1,992,336 (49.42) 1,252,219 (17.58) 154,678 (53.89) 473,353 (94.22)
  Mixed — — 5000 (1.74) 1731 (0.34)
  Other — 1,037,027 (14.56) 4727 (1.65) 10,394 (2.07)
  Unknown 1,447,086 (35.89) 4,271,965 (59.99) 55,705 (19.40) 1931 (0.38)
Ethnicity, n (%)
  Hispanic or Latino 344,708 (8.55) 657,288 (9.23) 54,054 (18.83) —
  Non-Hispanic or non-Latino 1,691,775 (41.97) 1,298,181 (18.23) —
  Unknown 1,994,824 (49.48) 5,166,379 (72.54) 11,023 (3.84) —

aCSMC: Cedars-Sinai Medical Center.
bCUIMC: Columbia University Irving Medical Center.
cUKBB: UK Biobank.
dNot available.

A straightforward approach to identifying subsets of patients
whose data are suitable for research studies is to use
heuristic computational filters [11] that exclude patients
lacking various types of data in their records. For this study,
we evaluated 19 different filters, which can be grouped into 3
categories. The first category is based on patient demograph-
ics. This includes filters that check whether the patient has
both age and sex recorded (AgeSex), if the patient is alive
at the time of the search (Alive), if the patient has a known
address or zip code (Address or zip), and a set of age filters.
The age filters have been applied to age at the time of any
diagnosis, for example, the age filter≥65 selects patients who
are 65 years or older than 65 years at the time of any of their
recorded diagnoses.

The second category is a record-based filter, which checks
whether patients have at least 1 recorded instance of various
medical data. These filters are the presence of at least 1

diagnosis, the presence of medication records, and records
for outpatient visits.

The last category is the time span or observational period
filter, which selects patients who have had multiple interac-
tions with the health care system during a specific period of
time. The maximum time window for this category was the
6-year follow-up.

We used 19 filters, originally defined by Weiskopf et al
[17] as a metric for evaluating the completeness of EHRs, to
build patient cohorts within each dataset. These filters helped
identify the types of data available after their application. To
maintain consistency across datasets, we applied these filters
to the patient populations with EHR data in each dataset.
Detailed descriptions of each filter, along with their catego-
ries, are presented in Table 2.
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Table 2. Filters used in our analysis, grouped by category and descriptions of each filter.
Group and filter Description
Demographics

Alive Patient is alive at the time of the query
AgeSex Patient has both sex and age recorded
Age filter ≥18 Patient has a diagnosis at an age included in the filter
Age filter ≤21 Patient has a diagnosis at an age included in the filter
Age filter ≤40 Patient has a diagnosis at an age included in the filter
Age filter ≤65 Patient has a diagnosis at an age included in the filter
Age filter ≥65 Patient has a diagnosis at an age included in the filter
Age filter ≤80 Patient has a diagnosis at an age included in the filter
Address or zip code Patient has an address or zip code recorded

Medical interactions
Diagnosis Patient has at least 1 diagnosis recorded
Medication Patient has at least 1 medication prescribed and recorded
Outpatient visit Patient has at least 1 outpatient visit recorded

Observation period
1 week Patient has a recorded observation period equal or longer than the filter span
2 weeks Patient has a recorded observation period equal or longer than the filter span
1 month Patient has a recorded observation period equal or longer than the filter span
6 months Patient has a recorded observation period equal or longer than the filter span
1 year Patient has a recorded observation period equal or longer than the filter span
2 years Patient has a recorded observation period equal or longer than the filter span
6 years Patient has a recorded observation period equal or longer than the filter span

First, we queried our databases to get a count of all the
patients, grouping them by self-reported race and ethnicity.
After establishing the initial groups, we applied each filter
one at a time to see the effect of that filter on sample
availability.

This study aimed to identify the biases of different types of
filters that are used by researchers to evaluate data complete-
ness in electronic EHR datasets. Our focus is biases that
may be introduced upon applying these filters to races and
ethnicities.

We then assessed the statistical significance of the filters’
impact on different racial and ethnic subgroups through
binomial testing. Comparing the expected sample to the
observed filtered sample. For each group, we calculated the P
values by comparing the observed proportion relative to the
sum of that group and the white baseline group against an
expected baseline.

Observed proportion = filtered groupnfiltered groupn + filteredWhiten
Expected proportion = group totalngroup totaln +White totaln

Subsequently, we adjusted the P values for multiple
hypothesis correction using the Bonferroni method.

Ethical Considerations
The research performed complies with all relevant ethi-
cal regulations; the institutional review boards (IRBs) that
approved the study protocol are Columbia (IRB AAAL0601)
and CSMC (IRB STUDY00003395). Patients were enrolled
under a waiver of consent in CSMC and CUIMC. Consent in
AoU and UKBB is managed by each platform, respectively.
During the study, we only accessed nonprotected health
information and total counts, maintaining the confidentiality
of every patient.

Results
Overview
We applied the filters to each dataset separately to assess their
individual effects. Table 3 indicates the percentage of patients
remaining after applying each filter for each dataset.
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Table 3. Percentage of population remaining on each dataset after applying the different filters.
Filter Cedars-Sinai, n (%) Columbia, n (%) All of Us, n (%) UKBBa, n (%)
Alive 3,852,435 (95.56) 6,774,829 (95.12) 283,806 (98.88) 467,333 (93.02)
AgeSex 4,026,072 (99.87) 6,002,422 (84.28) 28,701 (100) 502,364 (100)
Age filter ≥18 1,624,951 (40.30) 4,286,839 (60.19) 253,948 (88.48) 229,960 (45.77)
Age filter ≤21 127,771 (3.16) 1,328,385 (18.65) 21,881 (7.62) 82,953 (16.51)
Age filter ≤40 733,191 (18.18) 2,814,216 (39.51) 103,431 (36.04) 178,503 (35.53)
Age filter ≤65 1,348,000 (33.43) 4,393,121 (61.98) 227,072 (79.12) 225,790 (44.49)
Age filter ≥65 424,790 (10.53) 1,170,388 (16.43) 81,938 (28.55) 122,327 (24.35)
Age filter ≤80 1,584,518 (39.30) 4,992,410 (70.09) 252,875 (88.10) 229,961 (45.77)
Has address or zip 1,829,303 (45.37) 4,024,099 (56.50) 287,007 (99.99) 148,261 (29.51)
Has medications 1,316,735 (32.66) 2,513,715 (35.29) 239,691 (83.51) 368,599 (77.37)
Has diagnoses 1,663,429 (41.26) 5,158,066 (72.42) 254,449 (88.66) 466,982 (92.95)
Has outpatient visits 2,963,959 (73.25) 2,893,964 (40.63) 286,214 (99.72) 230,078 (45.79)
Observation period 1 week 2,242,853 (55.63) 4,993,424 (70.11) 5254 (1.83) 223,398 (44.46)
Observation period 2 weeks 2,190,443 (54.33) 4,937,814 (69.33) 4916 (1.71) 223,203 (44.43)
Observation period 1 month 2,121,948 (52.63) 4,855,922 (68.18) 4398 (1.53) 222,915 (44.37)
Observation period 6 months 1,889,240 (46.86) 4,240,529 (59.54) 2938 (1.02) 222,006 (44.19)
Observation period 1 year 1,734,906 (43.03) 4,082,843 (57.32) 2602 (1) 221,321 (44.05)
Observation period 2 years 1,541,480 (38.23) 3,880,143 (54.48) 2241 (1) 220,300 (43.85)
Observation period 6 years 733,203 (18.18) 3,151,463 (44.25) 2007 (1) 217,257 (43.24)

aUKBB: UK Biobank.

Cedars-Sinai
Figures 1A and 2A show the percentage of available patients
in the CSMC after applying each filter. The results show
that both unknown race and unknown ethnicity are the most

affected groups when applying the filters. This causes the
values for the group all to decrease too, and it is shown across
every cohort.

JMIR MEDICAL INFORMATICS Acitores Cortina et al

https://medinform.jmir.org/2025/1/e67591 JMIR Med Inform 2025 | vol. 13 | e67591 | p. 5
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e67591


Figure 1. Available percentage of patients’ data upon individually applying all 19 filters in different ethnic subgroups in (A) the Cedars-Sinai
dataset, (B) the CUIMC dataset, and (C) the AoU dataset. The filters are in descending order following the available percentage of the category,
all. The points are connected to ease the visualization, but the filters are not cumulative. Stacked bar plots show the ethnicity distribution of the
datasets in percentages. Stacked bar plot from CSMC has 8.55% (n=344,708) of Hispanic or Latino, 41.97% (n=1,691,775) of non-Hispanic or
non-Latino, and 49.48% (n=1,994,824) of unknown ethnicity. Stacked bar plot from CUIMC has 9.23% (n=657,288) of Hispanic or Latino, 18.23%
(n=1,298,181) of non-Hispanic or non-Latino, and 72.54% (n=5,166,379) of unknown ethnicity. Stacked bar plot from AoU has 18.83% (n=54,054)
of Hispanic or Latino, 77.32% (n=221,935) of non-Hispanic or non-Latino, and 3.84% (n=11,023) of unknown ethnicity. The available percentage
values can be found in Tables S2-S4 in Multimedia Appendix 1. AoU: All of Us; CSMC: Cedars-Sinai Medical Center; CUIMC: Columbia
University Irving Medical Center.
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Figure 2. Available percentage of patients’ data upon individually applying all 19 filters in different racial subgroups in (A) the Cedars-Sinai
dataset, (B) the CUIMC dataset, (C) and the AoU dataset. The filters are in descending order following the available percentage of the category,
all. The points are connected to ease the visualization, but the filters are not cumulative. Stacked bar plots show the race distribution of the datasets
in percentages. Stacked bar plot from CSMC has 0.14% (n=5695) of American Indian and/or Alaska Native, 5.11% (n=205,978) of Asian, 9.26%
(n=373,130) of Black or African, 0.18% (n=7082) of Hawaiian Native or Pacific Islander, 49.42% (n=1,992,336) of white, and 35.89% (n=1,447,086)
of unknown race. Stacked bar plot from CUIMC has 0.12% (n=8275) of American Indian and/or Alaska Native, 1.40% (n=100,046) of Asian, 6.26%
(n=445,623) of Black or African, 0.09% (n=6693) of Hawaiian Native or Pacific Islander, 17.58% (n=1,252,219) of white, 14.56% (n=1,037,027) of
another race, and 59.99% (n=4,271,965) of unknown race. Stacked bar plot from AoU has 2.89% (n=8294) of Asian, 20.30% (n=58,264) of Black
or African, 0.12% (n=344) of Hawaiian Native or Pacific Islander, 53.89% (n=154,678) of white, 1.74% (n=5000) of mixed race, 1.65% (n=4727)
of another race, and 19.40% (n=55,705) of unknown race. The available percentage values can be found in Tables S2-S4 in Multimedia Appendix 1.
AoU: All of Us; CSMC: Cedars-Sinai Medical Center; CUIMC: Columbia University Irving Medical Center.

The results of the CSMC cohort show that every known
race or ethnicity group is above “all” in almost every filter.
However, both unknown race and unknown ethnicity are the
most affected groups when applying the filters. This causes
the values for the group all to decrease too, and it is shown
across every cohort.

Nevertheless, it is important to note that in this dataset, the
Black or African American population is the most affected
group by the filters, being significantly more affected than
the white population in 16 of 19 filters, as seen in Table
S6 in Multimedia Appendix 1. Additionally, as the observa-
tion period filter increases, every race group becomes more
affected than the white population.
All of Us
For the AoU dataset, we applied the filters to the cohort
of patients in the controlled tier 7 who had EHR records.
This process reduced the number of patients from 410,235
to 287,012. Upon applying age or sex, medication, zip code

or address (in this dataset, we have state of residence, so
we used that instead of zip code), alive status, and outpa-
tient visits, the initial cohort remained largely unchanged.
However, as more stringent age filters were applied and
the observational period was extended, the cohort popula-
tion significantly decreased. Among all the races, the Asian
group was most noticeably impacted, particularly when the
observation period filter was applied, as shown in Figure 2A.
Within this dataset, unlike at CSMC, the majority of racial
and ethnic groups follow the same pattern when each filter is
applied. It is remarkable that most of the groups experience
significant data loss compared to the White group on the same
filters, as shown in Table S7 in Multimedia Appendix 1.
Columbia University Irving Medical
Center
Similarly to the cohort from CSMC, the unknown race or
ethnicity and other values decrease the most when apply-
ing the filters, bringing down the overall percentage. The
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known races or ethnicities are again above the all group’s
percentage in almost every category. It is important to note
that unknown race and ethnicity represent close to 60%
(n=4,271,965) and 72%(n=5,166,379) of Columbia Univer-
sity Medical Center’s cohort, respectively, contributing to the
low baseline percentage for the all group.

Of the known races and ethnicities, we can see in Figures
1B and 2B that the American Indian and/or Alaska Native
population is the most significantly affected by the filters, 18
of 19, even crossing the all line. This is followed by Black or
African American, which takes the second place in 16 of 19.
However, contrary to the CSMC cohort, the non-Hispanic or
non-Latino ethnicity is the most affected by the filters, 10 of
19 filters.
UK Biobank
In the UKBB, race and ethnicity classifications differ from
those used in American institutions. To ensure consistency
in data presentation, we applied the UK government’s

recommended grouping strategy [18], aligning it with the
US classification system for comparability. We included any
other Black background, African, Black or Black British, and
Caribbean under the category Black or African origin; any
other Asian background, Asian or Asian British, Banglade-
shi, Chinese, Indian, and Pakistani under the category Asian;
any other white background, British, Irish, and white under
the category white; do not know and prefer not to answer
under unknown; any other mixed background, mixed, white
and Asian, white and Black African, and white and Black
Caribbean under mixed; and finally, other ethnic group under
other.

After this grouping, there are some aspects to remark
on from this dataset, white population represents close to
94%(n=473,353) of the group, which biases completely the
all results. Having that in mind, we can see in Figure 3
how every other race was impacted more than the baseline,
especially the Black or African origin group.
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Figure 3. Available percentage of patients’ data upon individually applying all 19 filters in different racial subgroups (A) in the UKBB dataset. The
filters are in descending order following the available percentage of the category, all. The points are connected to ease the visualization, but the filters
are not cumulative. Stacked bar plots show the race distribution of the datasets in percentages. (B) Stacked bar plot shows the racial distribution of the
dataset in percentages, showing 2.28% (n=11,472) of Asian, 0.71% (n=3552) of Black or African, 94.22% (n=473,353) of white, 0.34% (n=1731) of
mixed race, 2.07% (n=10,394) of another race, and 0.38% (n=1931) of unknown race. The available percentage values can be found in Table S5 in
Multimedia Appendix 1. UKBB: UK Biobank.

We then analyzed the differences within the most prevalent
groups in this dataset, evaluating only the 5 most common
categories. We found that the British group accounts for 91%
(n=442,973) of the total, only counting the top 5 groups.
This approach yielded results similar to those of the complete
one. The first 5 categories, in order of percentage, were
the following: British (91.7%, n=442,973), ny other white
background (3.4%, n=16,455), Irish (2.8%,n=13,346), Indian
(1.2%, n=5,955), and other ethnic group (1%, n=4,609).
These percentages account for the addition of the population
of the top 5 groups and not the total.

A low adjusted P value (eg, <.001) suggests that the
subgroup is significantly more affected by the specific filter
than the white group used as a baseline. We see across every

dataset that most of the groups are significantly more affected
by the filter than our baseline, but it is particularly notable in
groups like Black or African American and American Indian
and/or Alaska Native. The Hispanic or Latino ethnic group
also shows more significant data loss than non-Hispanic or
non-Latino across every dataset. The P values can be found in
Tables S6-S8 in Multimedia Appendix 1.

Discussion
Overview
Our study investigates the potential racial and ethnic
biases introduced by applying common data quality and
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completeness filters in clinical research databases, includ-
ing AoU, UKBB, and 2 academic medical centers. We
analyzed 19 filters across approximately 12 million patients
and discovered that certain filters significantly reduce data
availability and have a differential effect on racial and ethnic
groups.

The challenge with these filters lies in distinguishing
between patients with missing data who could be relatively
healthy, have not recently sought medical care, or have
limited access to health care systems. Each group will have a
low number of data entries in their records. Consequently,
these filters might bias the resulting cohort by selecting
sicker patients who interact with the health care system more
frequently and/or those who have more access to health
care systems. For example, in a cohort of 10,000 patients,
those with poorer health status had more laboratory tests and
medication orders, resulting in more comprehensive data in
their records [19]. On the other hand, minoritized populations
usually have less access to health care [20], which affects
the data’s completeness and reduces their data points when
we apply different types of filters. We focused on bringing
attention to the second point.
Principal Findings
Throughout the analysis of the 4 different cohorts, a
consistent pattern emerged: applied filters disproportionately
affected minoritized groups, particularly the Black or African
American group, which consistently has one of the lowest
data availabilities across all datasets, and the American
Indian and/or Alaska Native group. These filters signifi-
cantly reduced the already limited data points for minoritized
groups, further diminishing the completeness and usability
of their data compared to white or non-Latino patients. We
observe a similar pattern in the Hispanic or Latino group,
where data availability is consistently lower in every cohort
compared to the non-Hispanic or non-Latino group.

In the self-reported race groups, we observe that almost
every group has less data availability than the white group,
which is the largest within the known self-reported races
across all datasets except at CSMC. At CSMC, the most
complete group varies by filter, alternating between Asian,
Native Hawaiian or Pacific Islander, American Indian and/or
Alaska Native, and white. In contrast, in the CUIMC dataset,
the American Indian and/or Alaska Native group has the
lowest data availability.

Among the 4 distinct datasets, only the AoU dataset
closely reflects the diversity of the US population, with
approximately 50%(n=132,334) of the data representing
populations other than white. Upon applying different filters
on this dataset, as shown in Figures 1C and 2C, most groups
follow the same original pattern prior to applying the filters
and deviate from the baseline to a lesser extent, demonstrating
that it is possible to achieve a diverse and complete dataset.

Dataset diversity is essential for enhancing the gener-
alizability and inclusivity of clinical research, addressing
disparities, and improving health care outcomes for under-
represented populations. The AoU dataset, designed as a

nationwide research program, aims to collect health data
from a diverse population and succeeds at creating an
equitable framework for research where most of the groups
share the same data availability percentage. In contrast,
the CUIMC and CSMC datasets reflect the specific patient
populations of their respective regions, leading to localized
diversity compared to the national scope of the AoU dataset.
However, both are based in highly racially and ethnically
diverse US cities, giving them a unique advantage over other
institutional-level datasets. The information for the differ-
ent populations and distributions of the locations for the 4
datasets can be found in Table S1 in Multimedia Appendix 1.

Both in the United States and the United Kingdom,
the white population constitutes the majority. Minorities,
as defined by the US Office of Management and Budget,
include racial and ethnic groups such as American Indian,
Alaska Native, Asian, Black or African American, and
Native Hawaiian or Pacific Islander. These groups often
face health disparities, which can result in reduced access
to health care and underrepresentation in research cohorts
[21]. This underrepresentation may lead to inaccurate clinical
care decisions, skewed genetic associations, and suboptimal
treatment strategies.
Limitations
Our findings highlight the importance of carefully selecting
filters to ensure equitable research outcomes, particularly for
minority populations. While we do not claim these are the
most frequently used filters by researchers, nor the optimal
ones for selecting patients with complete data, it is essential
to investigate any potential biases that may be introduced
upon applying each filter before conducting research on these
populations.

Additionally, methods to mitigate bias must be used
when possible. One example is artificial intelligence–driven
synthetic data generation for bias mitigation, which can
be done using different methodologies such as generative
adversarial networks, synthetic minority oversampling, or
Bayesian networks [22]. Other techniques include reweight-
ing, suppression, or multiple imputation [23]. Advanced
statistical techniques like inverse probability weighting can
also help address these challenges and enhance dataset
diversity [24].
Future Directions
Future work should focus on understanding how the
application of these filters affects the results of common
downstream analyses, such as disease risk prediction tasks
and genome-wide association studies, and how to improve
existing techniques for bias mitigation. We also recommend
that researchers begin including sample sizes for relevant
racial and ethnic groups both before and after any used filters
are applied so that readers can better contextualize the results
of the study.

Addressing disparities in representation is critical to
creating research cohorts that accurately reflect the tar-
get population. This work underscores the challenges of
achieving data completeness and proper representation of
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racial and ethnic populations and other minoritized groups in
clinical research. Strategies to mitigate these disparities, along
with careful consideration of filters, are crucial for ensuring
equitable research outcomes and enhancing the inclusivity of
health datasets.
Conclusions
Our findings underscore the importance of using only
necessary filters, as they may affect the diversity and
completeness of sample data, which particularly affects
underrepresented populations. Upon applying different filters
to the 4 distinct datasets, we observed that only the AoU
dataset maintained the original sample distribution along
racial and ethnic groupings, with minimal deviation from the
baseline, demonstrating the potential to achieve a diverse and
complete dataset.

Researchers must consider their target population when
conducting studies and proactively address unintentional
biases that may arise in data-driven research as well as the
impact of these biases on downstream analyses. While sample
filters are often necessary, we recommend that researchers
implement techniques to mitigate biases and provide sample
size information across racial and ethnic groupings both
before and after the filters are applied, so readers can better
understand the generalizability of the study.

Future work should characterize how the application of
these filters affects downstream analyses and improve on
existing techniques to minimize their impact. We strive to
achieve a state where the datasets accurately represent the
target population of the studies and where research studies are
performed on the same population that institutions serve.
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