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Abstract
Background: Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy
(DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its applica-
tion when deployed in real-world conditions.
Objective: This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR
screening (DRS) AI algorithms in real-world outpatient public health settings.
Methods: Prior to integrating an AI algorithm for DR screening, the study involved several steps: (1) Five AI companies,
including four from India and one international company, were invited to evaluate their diagnostic performance using low-cost
nonmydriatic fundus cameras in public health settings; (2) The AI algorithms were prospectively validated on fundus images
from 250 people with diabetes mellitus, captured by a trained optometrist in public health settings in Chandigarh Tricity in
North India. The performance evaluation used diagnostic metrics, including sensitivity, specificity, and accuracy, compared to
human grader assessments; (3) The AI algorithm with better diagnostic performance was integrated into a low-cost screening
camera deployed at a community health center (CHC) in the Moga district of Punjab, India. For AI algorithm analysis, a
trained health system optometrist captured nonmydriatic images of 343 patients.
Results: Three web-based AI screening companies agreed to participate, while one declined and one chose to withdraw due to
low specificity identified during the interim analysis. The three AI algorithms demonstrated variable diagnostic performance,
with sensitivity (60%-80%) and specificity (14%-96%). Upon integration, the better-performing algorithm AI-3 (sensitivity:
68%, specificity: 96, and accuracy: 88·43%) demonstrated high sensitivity of image gradability (99.5%), DR detection
(99.6%), and referral DR (79%) at the CHC.
Conclusions: This study highlights the importance of systematic AI validation for responsible clinical integration, demonstrat-
ing the potential of DRS to improve health care access in resource-limited public health settings.
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Introduction
The global prevalence of diabetes is growing [1], leading
to increased vision loss and blindness associated with it
[2]. There is an urgent need for diabetic retinopathy (DR)
screening programs to identify vision-threatening DR to
enable timely treatment [3,4]. However, this rising prevalence
is straining health care systems already struggling to improve
care and manage health care costs [4].

Despite its critical role, DR screening (DRS) remains
limited in many low-resource settings. Conventional
screening with trained human graders is often costly,
time-consuming, and challenging to scale [5,6]. The gap
between eye care needs and ophthalmologist availability
exacerbates public health challenges [7]. In India, DR
management faces challenges due to limited screening
programs, low public awareness, and poor understanding
of routine retinal exams [8]. Artificial intelligence-driven
DRS enables faster, more affordable, and efficient screen-
ing, especially in underserved areas [9,10]. It allows noneye
health professionals to conduct screenings and refer without
specialists [11].

AI algorithms have demonstrated performance comparable
to or exceeding human experts in DR classification [12,13].
However, concerns exist about their suboptimal performance
in real-world settings and across diverse populations [14].
Real-world validation is critical to ensure AI algorithms

perform accurately in diverse settings, as disease prevalence,
image quality, and patient-related factors may differ from the
training dataset [15-17]. Prospective studies are essential for
evaluating AI systems in the contexts where they will be
deployed [18]. Hence, integrating AI into clinical practice
requires alignment with clinical workflows and stronger
evidence on its real-world accuracy and user experiences
[11,14].

This is the first Indian study to validate multiple commer-
cial AI algorithms for DRS and to assess the feasibility of
implementing a validated AI system in public health settings.

Methods
Study Design
The study prospectively validated three DR detection AI
algorithms (validation phase) and assessed the technical
feasibility of implementing a validated AI algorithm in
public health settings (implementation phase). The STARD
(Standards for Reporting of Diagnostic Accuracy Stud-
ies) checklist [19] was used to report the completeness
and transparency of the diagnostic accuracy study and
the iCHECK-DH framework to enhance the completeness
and transparency of reporting related to the digital health
implementation components [20]. Figure 1 summarizes the
study design.
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Figure 1. Study flow chart. Implementation phase occurred after the completion of the validation phase (ie, not simultaneously). AI: artificial
intelligence; CHC: community health center; DR: diabetic retinopathy; PHC: primary health center; PPV: positive predictive value; NPV: negative
predictive value; RDR: referable diabetic retinopathy.

Ethical Considerations
The study received approval from the Postgraduate Institute
of Medical Education and Research (PGIMER) Institutional
Ethics Committee (PGI/IEC/2020/001342) and followed the
recommendations of the Declaration of Helsinki. The study
was prospectively registered with the Clinical Trials Registry
India (CTRI/2022/10/046185). Individuals aged > 30 years
with a history of diabetes mellitus were screened for DR,
following the National Program for Prevention and Control
of Non-Communicable Diseases [21]. Informed consent was
obtained, and their routine care remained unchanged. All data
used in this study were anonymized prior to analysis, with no
personal identifiers retained.
Study Site (Real-World Settings)
Validation was conducted from March to June 2021 at the
Department of Endocrinology, PGIMER, Chandigarh, and a
Primary Health Center (PHC) in Khizrabad, District Mohali,
Punjab. The AI-enabled DRS was implemented between
February 2022 and June 2022 at a community health center
(CHC) in Badhani Kalan, Moga District, Punjab, India.
Sample Size
Sample sizes (validation=256; implementation=348) were
calculated assuming DR prevalence of 17%, nongradable

image rates of 18.4% in validation and 30.3% during
implementation, 70% sensitivity, 86% specificity, 95% CI,
and nonresponse rates of 10% and 15% in validation and
implementation, respectively [3,22-25].
AI Algorithms
Based on a scoping review, five AI companies that used
cloud-based AI (four Indian, one international) were invited.
Before validation, they received the study objectives and
camera or image specifications.
Fundus Image Acquisition

Training of Optometrists
Two experienced optometrists were trained for 15 days at
the Advanced Eye Centre (AEC) and PHC settings before
validation (Table S1 in Multimedia Appendix 1) [26]; two
distinct optometrists received similar training for implementa-
tion in Moga district. Training covered identifying good-qual-
ity images [27] and capturing additional images when needed.
They were supervised until proficient in independent data
collection and imaging.

Camera
All participants underwent nonmydriatic, two-field (macula
and disc-centered), 45° FOV fundus photography using a
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3Netra Classic Portable Benchtop Fundus Camera (Forus
Health) [26].

Recruitment Process
During validation, participants were recruited through
Accredited Social Health Activist (ASHA) workers at PHCs
and by research staff in the endocrinology department . The
study did not alter patients’ routine care during the recruit-
ment process. During implementation, recruitment at the
CHC was assisted by a nurse from the medicine clinic.

Darkroom
[To minimize ungradable images from nonmydriatic cameras
that are a key challenge for real-world DRS programs,
[28]dark rooms with sealed windows and ventilators were set
up at PHC Khijrabad and at CHC Badhani Kalan (Figure S1
in Multimedia Appendix 1), with participants seated in the
dark for ≥2 minutes to achieve physiological mydriasis before
imaging.

Image Grading
Image identifiers were removed, and images remained
unprocessed before AI analysis. The research optometrist
sorted and uploaded them by eye laterality (ie, right and left
eye). AI companies had no direct access; only the uploading
optometrist handled the images per the agreement with the
companies. A separate, role-based account was created for
image upload and grading, accessible only to the optometrist.
Audit logs tracked access, and secure file transfer protocols
protected the transmission of images and the human grader
had similar restricted access. Validation images were not used
for training or testing the AI.

AI Grading Protocol
The AI algorithms’ screening outcomes were inconsistent in
providing DR stages (mild nonproliferative diabetic retinop-
athy (NPDR)), moderate NPDR, severe NPDR, and prolifer-
ative diabetic retinopathy (PDR)), diabetic macular edeme
(DME) (yes/no), and referable DR (RDR) (Figure S2 in
Multimedia Appendix 1). Hence, the DR grade (yes/no) was
chosen to validate the AI algorithms discussed elsewhere
[29].

Reference Standard Grading
All AI screening outputs were manually graded by human
graders using the International Classification for Diabetic
Retinopathy (ICDR) classification system [30]. Images were
labeled as “gradable” or “non-gradable,” and DR as “present”
or “absent.” DR was classified as mild, moderate, or severe
NPDR and PDR [30]. Microaneurysms that are early signs of
DR, indicate mild NPDR [31]. Any DR mentioned above,
including moderate NPDR were considered referable DR
(RDR) [30]. DME was defined as hard exudates with or
without foveal involvement [3]. Images with ≥80% visibility
and clear view up to the third vascular branch were consid-
ered gradable and assessed for DR [27].

• Validation phase: Two masked human graders (HG1
and HG2), a trained optometrist with three years of
grading experience, and a retina-trained ophthalmol-
ogist with seven years of grading experience, with
different institutional affiliations, independently graded
all the fundus images. A senior vitreoretinal expert
with 25 years of grading experience re-evaluated 224
images from 56 participants (75%) where HG1 and
HG2 disagreed on DR presence. A strong level of
agreement [32] (κ=0.85) was observed between HG2
and the senior retina specialist; hence, HG2 grading was
considered the reference standard (RS) for AI valida-
tion.

• Implementation phase: All images were independently
graded by two masked human graders (HG1 and
HG2), who were different from those involved in the
validation phase. In cases of disagreement, the grades
were reviewed and adjudicated by a senior vitreoreti-
nal specialist with over eight years of experience in
grading. The final consensus-based, arbitrated dataset
served as the RS and was used for all statistical
analyses.

AI Integration and Implementation
The better-performing AI algorithm was integrated into the
3Netra Classic and pilot-tested for two weeks at AEC and
District Hospital (DH), Mohali. This phase ensured hardware-
software compatibility, assessed internet connectivity, and
included dummy tests to validate outputs before implemen-
tation. The two-week testing at PGIMER and DH Mohali
validated the full AI workflow, identified technical issues,
assessed reliability in clinical settings, and highlighted data
and reporting bottlenecks.

This feedback led to key refinements, including better
internet connectivity, mandatory clinical variables, faster
result turnaround, and local data storage on the National
Institute of Transforming India (NITI) server for compli-
ance. Final adjustments were implemented at Moga and
Mohali sites (Figure S3 in Multimedia Appendix 1). The
AI algorithm did not undergo additional training during the
implementation period. Testing was conducted by optomet-
rists, supported by a research optometrist, and supervised
by the data scientist and principal investigator. The research
team coordinated with the AI company to address feedback,
and the machine learning scientist assisted with preimplemen-
tation adjustments.

Poststudy, a follow-up mechanism was established to
ensure continued service delivery (6 mo), with the optomet-
rist monitored for adherence to screening protocols. Notably,
the retinal camera and adjustable stand were retained at the
CHC rather than being reclaimed as study assets, reinforc-
ing sustainability through local ownership and continuity of
service.
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Referral Recommendation and Telephonic
Follow-Up
Referral were based on cases diagnosed as moderate or more
severe, as well as those with DME [30]. Participants requiring
follow-up were contacted by phone one month after their
DRS appointment to assess compliance, with up to three
contact attempts made to gather this information.
Data Analysis
The study data was collected using Research Electronic Data
Capture (REDCap) [33]. Deidentified data were downloaded
from REDCap and imported into Stata/IC (version 15.1;
StataCorp) [34] for analysis.

The AI platform’s sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
were estimated with 95% exact binomial CIs. A P value of
<·05 was considered significant for all statistical tests. A
κ value was calculated monthly during the implementation
phase to assess the optometrists learning in image acquisi-
tion and the AI algorithm’s performance in image quality
and DR diagnosis. This measured the agreement between AI
and RSs for image quality and DR diagnosis. The folders
with missing bilateral or macula-centered images and people
without diabetes mellitus were excluded from the analysis.
All analyses were conducted on an eye-wise basis.

Results (Implementation)
Three AI algorithm companies Leben Care Health Serv-
ices, Retinal AI Diagnostic Software, and SigTuple Tech-
nologies. Each AI platform was masked from the others
and randomly assigned labels such as AI 1, AI 2, and AI
3. One Indian AI algorithm declined participation, and an
Food and Drug Administration (FDA)-approved algorithm
was excluded due to low specificity in interim analysis. Two
Indian AI companies approached during the implementation
phase but were not included.
Sociodemographic Details of the Study
Participants
Among the 250 participants in the validation phase, 182 were
recruited at the PHC Khijrabad and 68 from the endocrinol-
ogy clinic. The mean age of the participants was 53.5 (SD 7)
years in the PHC and 47.2 (SD 4) years in the Endocrinology
clinic, respectively. Overall, 87/250 (48.3%) participants in
the PHC group were men and 95 (51.7%) were women, and
those in the Endocrinology group included 38 (55.8%) men
and 30 (44.1%) women. In the implementation phase, 343
participants were recruited. The participants’ mean age was
58.48 (SD 10.41) years, with 202/343 (59%) women and 140
(41%) men (Table 1).

Table 1. Study participants demographic characteristics.
Characteristics Validation phase (n=250) Implementation phase (n=343)
Gender n (%)
  Men 121(48.4%) 141 (41)
  Women 129(51.6%) 202 (59)
Age (years), mean (SD) 54.4 (13.8) 58.4 (10.4)
Duration of diabetes (years), mean (SD) 7.1 (6.1) 6.2 (5.9)
Education, n (%)
  Illiterate 72(28.8) 135(39.4)
  Primary 79(31.6) 125(36.4)
  Matriculation 70(28) 63(18.4)
  Secondary 14(6.8) 8(2.3)
  Graduation and above 15(6) 12(3.5)

Validation Phase
The analysis included 1099 fundus images of 500 eyes from
250 participants. According to the RS, 484 (96·8%) of eyes
were gradable, with 16 (3·2%) being ungradable. AI 1, AI 2,
and AI 3 achieved excellent gradability (100%, 93.8%, and
100%, respectively). The RS detected DR in 133 (27.48%)
of the eyes; AI 1 detected notably more cases of DR in 446
(89.2%) eyes compared with AI 2, 122 (26.22%), and AI 3,
106 (21.2%) (Figure 2).

AI 3 showed the best performance with specificity of
detecting DR, 96.01% (93·24‐97·72); sensitivity, 68.42%
(59·71‐76.05); PPV, 86.67% (78.31‐92.26); accuracy,
88.43%; and agreement with the RS (κ=0·65) and was
selected for implementation (Table S2 in Multimedia

Appendix 1). The validation results have been presented
elsewhere [29].

Based on our study findings and recommendations
from the project technical oversight committee which
comprised ophthalmologists, public health experts, acade-
micians, technologists, and research scientists providing
technical expertise and strategic direction to evaluate, guide,
and strengthen the project’s scientific rigor. The AI com-
pany was recommended to train its algorithm for DR stages,
DME grading, and referral guidelines, incorporating inputs on
camera integration, connectivity, and platform functionality.
Changes were completed within four months, and implemen-
tation began at CHC, with testing images excluded from the
final set (Table S3 in Multimedia Appendix 1). Changes were
incorporated within four months and implemented at CHC.
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Figure 2. Image quality of artificial intelligence (AI) algorithms as compared to the reference standard (RS). DR: diabetic retinopathy.

Implementation Phase
During the implementation phase, 1372 fundus images were
captured from 686 eyes of 343 participants. AI-3 exhibited
slightly higher image gradability (682, 99.5%) than the RS
(336, 92.71%). AI-3 identified 124 (18.2%) of participants
with DR, while the RS detected 189 (28.9%). Moderate
NPDR was most common (AI-3 at 87 (12.8%) and RS at 90
(14.1%). DME detection was lower for AI-3, 11 (1.6%) than
the RS, 34 (5.3%). Referral rates were almost similar, (AI-3:
99; 14.5%) and RS (109, 17.1%) (Figure 3).

Among the 50/686 (7.3%) ungradable eyes graded by HG,
21 (42%) had cataracts, while none labeled as ungradable by
AI had cataract. The sensitivity, specificity, PPV, and NPV of
AI-3 algorithm for DR detection were 99.6%, 64.7%, 87.4%,
and 98.3%, respectively. For DME, specificity, PPV, and
NPV were 99.7%, 81.8%, and 96%, respectively. However,
sensitivity is relatively low (26.5%); for detecting RDR,
sensitivity and specificity were 78.9% and 98.1%. For image
gradability, the AI’s sensitivity was excellent at 100%, but
specificity was low (8%) (Table 2).

Figure 3. Diabetic retinopathy screening outputs of AI as compared to the reference standard at Community Health Center Moga. AI: artificial
intelligence; DME: diabetic macular edeme; DR: diabetic retinopathy; PDR: proliferative diabetic retinopathy; NPDR: nonproliferative diabetic
retinopathy.

Table 2. Sensitivity, specificity, PPVa, NPVb of the AIc algorithm for various outcome variables with a reference standard.
Outcome variables Image gradability DRd grade DMEe grade RDRf

Sensitivity (%) 100 99·6 26·5 78·9
Specificity (%) 8 64·7 99·7 98·1
PPV (%) 93·2 87·4 81·8 89·6
NPV (%) 100 98·3 96 95·7
κ value 0.69 0.72 0.38 0.81

aPPV: Positive predictive value.
bNPV: Negative predictive.
cAI: artificial intelligence.
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dDR: Diabetic retinopathy.
eDME: Diabetic macular edeme.
fRDR: referable diabetic retinopathy.

κ Statistic Variation Across the Study
Period
Figure 4 shows κ variations for image quality and DR grades
over 4.5 months when the health system optometrist captured
the images. κ values of image quality increased from 0 in

February to 0.74 in June, and for DR grade from 0 to 0.71
in June. This steady improvement could be attributed to the
enhanced image quality captured by the optometrist over the
study period and higher; in DR, this increase can be linked to
better image quality and higher detection, with slight dips due
to variation in DR severity or case complexity.

Figure 4. Agreement and kappa statistics for image quality and DR grade between AI and reference standard. AI: artificial intelligence; DR: diabetic
retinopathy; RS: reference standard.

Participant Referral and Follow-Up
Of 64 referred participants, 28 (43.8%) were contacted; only
9 (14%) adhered to referral advice and visited an ophthalmol-
ogist for a review. Of these, 1 received an Optical Coherence
Tomography referral, 5 went to facilities without eye care
services, 1 received eye drops, 1 was advised antivascular
endothelial growth factor injection, 1 left after receiving laser
treatment, and 1 had a follow-up visit.

Reasons for nonadherence included harvesting season
(n=11), lack of family support (n=2), time constraints (n=2),
extended absence from home (n=1), financial dependence on
family (n=2), and comorbidities (n=1).

Discussion
Principal Findings
This study is among the first in India to validate multiple
AI algorithms for DRS, critically assessing their techni-
cal feasibility for integration into real-world public health
settings. We evaluated the best-performing AI algorithm
using images captured by a skilled research optometrist. This
study outlines the Government of India’s efforts to foster
an ecosystem that ensures the integration of responsible AI
technologies before application to end users [35].

In our study, AI system performance during validation
varied significantly: sensitivity (59.7%97.74%), specificity
(14.25%96.01%), PPV (30.16%86.67%), NPV (85%94.34%),
and accuracy (37.19%88.43%). A multicenter study by Lee et
al systematically compared seven AI-based DRS algorithms,
revealing high NPVs (82.72%93.69%) but widely varying
sensitivities (50.98%85.90%) in real-world performance [36].
In pivotal clinical trials for the IDX AI algorithm, the FDA’s

benchmark for superiority was set at 85% sensitivity and
82.5% specificity [13]. Although AI-3 sensitivity (68.3%)
was below the FDA’s >85% threshold, it outperformed other
AIs in other diagnostic metrics: specificity (96.01%), PPV
(86.67%), NPV (88.92%), and accuracy (88.43%). Prospec-
tive validation of a DRS algorithm at two Indian tertiary
eye care hospitals demonstrated 89% sensitivity and 92%
specificity on nonmydriatic images [37].

However, there are challenges in comparing algorithms
using published results due to the variations in study
methodologies [38]. One challenge is the dependence of
an AI algorithm’s accuracy on the quality of the retinal
images obtained [27]. Our study included ungradable images
in validation, contrasting with many studies that prepro-
cess or exclude lower-quality images in their training data
sets [12,13,39-41] (Figure S6 in Multimedia Appendix 1).
Excluding these images fails to reflect real-world settings,
potentially lowering the algorithm’s performance [13,41]. To
date, validation studies demonstrate that most AI algo-
rithms using mydriatic fundus images achieve high diagnos-
tic accuracy [42]. In the validation phase, the dark room
environment facilitated nonmydriatic conditions, yielding 0%
ungradability for AI-1 and AI-3, 6.2% for AI-2, and 3.2% by
human grader, contrasting with 1830% in LMIC settings per a
systematic review [38,42].

Cataracts are a leading cause of ungradable images [28].
However, no images with cataract or other media opaci-
ties were classified as ungradable during implementation,
potentially affecting AI-3 specificity (Table 2). Notably, the
AI-3 algorithm failed to detect 21 (42%) eyes with cataracts,
categorized as gradable. The AI-3 algorithm’s sensitivity
increased significantly from 68.4% to 99.6%, while specific-
ity decreased from 96% to 64.7% between the validation and
implementation phases. The sensitivity likely improved post
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validation due to algorithm training (Table S2 in Multi-
media Appendix 1). The presence of cataracts, affecting
media opacity and gradability, likely could have decreased
specificity by increasing false positives [43]. After algorith-
mic training, AI-3 detected DME (Table 2) and sensitiv-
ity (26.5%), highlighting the need for improved training to
enhance DME sensitivity and subsequently achieve higher
RDR sensitivity (78.9%).

Optometrists serve as frontline eye care providers globally
and are ideally positioned for task-sharing in DRS. Their
integration into DRS and care pathways is well-established
in diverse models worldwide, supporting sustainable and
scalable eye care delivery [44-46]. In this study, a health
system optometrist was trained and engaged in DRS at the
CHC, with oversight from the research team. Over the study
period, image quality and DR detection improved, reflecting
a positive learning curve (Figure 3). These findings high-
light the potential of optometrist-led AI-assisted screening
in strengthening task-shifting models and expanding access
to DR care in resource-limited settings [47-49]. Implement-
ing an opportunistic AI-enabled DRS model holds promise
for enhancing detection rates [47]. However, our study’s
adherence to referral recommendations remains suboptimal,
with approximately 14% of participants attending recom-
mended follow-up visits at an eye care facility. Key barri-
ers to referral adherence include awareness gaps, logistical
challenges (ie, travel, DR related cost), and persisting health
system limitations, including weak referral pathways and poor
patient tracking [48]. Personalized approaches, such as phone
calls, voicemails, and detailed result letters, are shown to be
effective in improving referral adherence [49]. Low referral
adherence underscores the need for effective, coordinated
referral pathways before introducing new screening models,
while recognizing the vital role of teleophthalmology in such
systems [47,50].

A notable strength of this study is its real-time implemen-
tation, conducted during regular clinics by a health system
optometrist within a public health care setting. This marks
a significant milestone that is likely to substantially enhance
DRS services. The study showed that training and monitor-
ing fundus image quality could significantly improve the
effectiveness of the AI-enabled DRS program.

However, several limitations should be considered when
interpreting the results. Using a single fundus camera
may limit generalizability, as AI performance may vary
across camera models and imaging conditions. Additionally,
the study relied on a specific AI algorithm, which may
not account for variations in other models or evolving
AI systems. Setting-specific constraints such as workflow
integration and infrastructure availability could also impact
scalability. Furthermore, potential biases in real-world data,
such as variations in patient demographics, image quality,
and disease prevalence, may influence AI performance and
limit broader applicability. Integrating DRS was feasible;
however, we could monitor the optometrist only for three
months poststudy. Regular monitoring is crucial for program
sustainability and healthcare provider motivation.
Lessons Learnt
Operational challenges in DRS included limited patient
access due to long travel distances, poor transport, and low
awareness; inadequate infrastructure; and ergonomic barriers
affecting both patients and screeners. Uncontrolled lighting
and power issues led to 26% ungradable images. Adaptive
measures, such as transport support, ergonomic adjustments,
darkroom setups, and equipment reinforcements, raised image
gradeability to 95.6% and improved efficiency. Addressing
these barriers through infrastructure upgrades, controlled
environments, and community facilitation is essential for
sustainable DRS in primary health care systems.

In conclusion, this study highlights the essential role of
systematic AI validation in integrating technology responsi-
bly into clinical workflows. By demonstrating AI’s feasibil-
ity for DRS in Indian public health settings, our findings
support scalable solutions to improve health care accessibil-
ity in resource-constrained contexts across the Global South.
However, long-term sustainability and large-scale implemen-
tation will require ongoing funding, a robust workforce,
and effective policy integration. Further research is needed
to evaluate the large-scale deployment of AI-driven screen-
ing strategies, examining their clinical effectiveness, cost-
effectiveness, and the challenges of implementing them in
real-world settings.
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