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Abstract
Background: Adverse drug reactions (ADRs) pose serious risks to patient health, and effectively predicting and managing
them is an important public health challenge. Given the complexity and specificity of biomedical text data, the traditional
context-independent word embedding model, Word2Vec, has limitations in fully reflecting the domain specificity of such data.
Although Bidirectional Encoder Representations from Transformers (BERT)–based models pretrained on biomedical corpora
have demonstrated high performance in ADR-related studies, research using these models to predict previously unknown
drug–side effect relationships remains insufficient.
Objective: This study proposes a method for predicting drug–side effect relationships by leveraging the parametric knowledge
embedded in biomedical BERT models. Through this approach, we predict promising candidates for potential drug–side effect
relationships with unknown causal mechanisms by leveraging parametric knowledge from biomedical BERT models and
embedding vector similarities of known relationships.
Methods: We used 158,096 pairs of drug–side effect relationships from the side effect resource (SIDER) database to generate
an adjacency matrix and calculate the cosine similarity between word embedding vectors of drugs and side effects. Relation
scores were calculated for 8,235,435 drug–side effect pairs using this similarity. To evaluate the prediction accuracy of
drug-side effect relationships, the area under the curve (AUC) value was measured using the calculated relation score and
158,096 known drug–side effect relationships from SIDER.
Results: The clagator/biobert_v1.1 model achieved an AUC of 0.915 at an optimal threshold of 0.289, outperforming the
existing Word2Vec model with an AUC of 0.848. The BERT-based models pretrained on the biomedical corpus outperformed
the vanilla BERT model with an AUC of 0.857. External validation with the FDA (Food and Drug Administration) Adverse
Event Reporting System data, using Fisher exact test based on 8,235,435 predicted drug–side effect pairs and 901,361 known
relationships, confirmed high statistical significance (P<.001) with an odds ratio of 4.822. In addition, a literature review
of predicted drug–side effect relationships not confirmed in the SIDER database revealed that these relationships have been
reported in recent studies published after 2016.
Conclusions: This study introduces a method for extracting drug–side effect relationships embedded in parameters of
language models pretrained on biomedical corpora and using this information to predict previously unknown drug–side
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effect relationships. We found that BERT-based models pretrained with biomedical corpora consider contextual information
and achieve better performance in drug–side effect relationship prediction. External validation using the FDA Adverse Event
Reporting System dataset and the literature review of certain cases confirmed high statistical significance, demonstrating
practical applicability. These results highlight the utility of natural language processing–based approaches for predicting and
managing ADR.
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Introduction
An adverse drug reaction (ADR) is a harmful, unintended
reaction that occurs despite the proper use of medication
[1]. In addition to causing serious health problems, ADRs
are known to be one of the leading causes of prolonged
patient hospitalization and increased health care spending [2].
Approximately 2 million cases of serious ADRs are reported
annually in the United States, resulting in 100,000 deaths [3].
Therefore, early prediction and prevention of ADRs during
drug development is a critical challenge for patient safety and
public health.

Traditionally, ADR prediction has been based on
approaches that analyze the chemical structure, mechanism
of action, and pharmacokinetic properties of drugs [4].
Subsequently, ADR prediction methodologies using machine
learning techniques have been developed [5-7], and with
advances in natural language processing (NLP) techniques,
attempts have been made to automatically extract and predict
drug-side effect relationships from vast amounts of biomed-
ical literature data [8-10]. The prediction of ADRs using
these techniques is accelerating, especially with the advent
of word embedding methods such as Word2Vec [11], which
can effectively vectorize semantic information embedded in
textual data [12,13].

However, biomedical text data are characterized by a much
more specialized and complex set of terms and concepts
compared with the general literature, and the interactions
between them are also highly diverse and dynamic [14]. In
fact, it has been pointed out that traditional word embedding
models such as Word2Vec, which do not consider contextual
information, do not sufficiently represent the relationships
between complex biomedical concepts [15,16]. Therefore,
models that do not adequately reflect domain specificity are
limited in their ability to accurately capture drug–side effect
relationships.

One solution to this problem is to use language mod-
els based on Bidirectional Encoder Representations from
Transformers (BERT) [17] to perform word embedding.

BERT is a language model based on the transformer [18]
architecture, which has recently gained attention; unlike
traditional one-way language models, it has richer language
expressiveness by learning context in both directions. In
addition, because we trained on large corpora, domain-spe-
cific pretrained models using large biomedical corpora can
fully reflect the domain specificity of the biomedical text
data [19-22]. Recently, several BERT-based models have
been proposed that use large biomedical corpora such as
PubMed and PMC for domain-specific pretraining. Examples
include BioBERT [19], BioMedBERT [20], and PharmBERT
[23], which have demonstrated high performances in various
bio-NLP tasks.

BERT models and BERT-based models pretrained on
biomedical corpora have demonstrated high performance in
ADR-related studies [22,24-27]. However, there is a lack
of research leveraging these models to predict previously
unknown drug–side effect relationships. Therefore, this study
aims to use a biomedical domain-specific BERT language
model based on the ADR prediction relation score method-
ology proposed by Seungsoo et al [12]. Specifically, we
calculate the similarity between embedding vectors of known
drug–side effect relationships and derive promising candi-
dates for potential relationships. In other words, our objective
is to efficiently identify drug–side effect relationships whose
causal associations have not yet been clearly established, by
computing relation scores from biomedical language model
embeddings grounded in known relationships. Furthermore,
we examine whether replacing the Word2Vec model with
a BERT-based model leads to an actual improvement in
ADR prediction accuracy, thus validating the performance
advantages of context-dependent language models.

Methods
System Overview
Figure 1 presents an overview of this study and illustrates the
overall research flow from data collection to validation.
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Figure 1. System overview: the predictive performance of drug-side effect relationships was evaluated using area under the curve. AUC: area
under the curve; BERT: Bidirectional Encoder Representations from Transformers; FAERS: FDA (Food and Drug Administration) Adverse Event
Reporting System; SIDER: side effect resource.
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First, we collected and refined the data for this study from
the Side Effect Resource (SIDER), PubMed, and the FDA
Adverse Event Reporting System (FAERS). From the abstract
sentences collected from PubMed, we selectively extracted
only sentences containing drugs and side effects mentioned
in SIDER. These extracted sentences were used to train a
Word2Vec model, from which embedding vectors for drugs
and side effects were derived. Based on the drug–side effect
relationships in SIDER, BERT-based models were used to
derive the embedding vectors of drugs and side effects.

Based on the derived embedding vectors, the cosine
similarity between the drug and side effect pairs was
calculated. Using the cosine similarity of drug and side
effect pairs and existing known drug–side effect relation-
ships, a relation score was calculated for all drug–side
effect combinations. Drug–side effect combinations with high
relation scores were predicted to have a higher likelihood
of being actually related [12]. To evaluate the accuracy
of these predictions, we calculated area under the curve
(AUC) values and compared the results of the Word2Vec
model pipeline with those of the BERT-based model pipeline.
Statistical significance between predicted results and FAERS
was assessed using the Fisher exact test.

Data Collection and Preprocessing
SIDER is a database that provides information on marketed
drugs and their side effects [28]. The drug names recor-
ded in SIDER followed those approved by the Food and
Drug Administration (FDA), and side effect names used
the Medical Dictionary for Regulatory Activities (MedDRA)
terminology [29]. To minimize data leakage that could occur
from the same drug being listed under different names,
we collected and integrated synonyms for each drug using
PubChem compound identifiers provided by SIDER. We also
ensured terminology standardization through MedDRA-based
side effect names.

Using version 4.1 of SIDER, we collected 158,096
unique pairs of drug–side effect relationships after removing
duplicates. To use these 158,096 pairs as input values in the
BERT-based models and for relation score calculations, we
derived an adjacency matrix with drugs as rows and side
effects as columns (Figure 2). In addition, 1345 drug names
and 6123 side effect terms that appeared in the collected
drug–side effect relationships were extracted and used as
dictionaries for drugs and side effects.

Figure 2. Drug-SE adjacency matrix. This is a method to derive an adjacency matrix using drug–side effect relationships in the side effect resource.
The relation R has the value of 1 if the drug–side effect relationship exists and 0 if it does not. SE: side effect.

We collected biomedical literature from PubMed, a biolog-
ical literature database [30]. A total of 42,515,246 paper
abstracts updated on December 8, 2022, were collected, and
for training the Word2Vec model, only sentences in which the
drugs and side effects mentioned in SIDER were mentioned
at least once were extracted [12]. There were 14,289,160
sentences in which a drug was mentioned at least once and
32,107,327 sentences in which a side effect was mentioned at
least once.
Calculating Cosine Similarity
For the 1345 drugs and 6123 side effects recorded in the
adjacency matrix, we performed word embedding using
BERT-based models and calculated the cosine similarity for
all drug and side effect vector pairs. In this case, the cosine
similarity is calculated using equation (1).

CosineSimilarity = A ⋅ BA B = ∑i = 1n Ai × Bi∑i = 1n Ai 2 × ∑i = 1n Bi 21
This process yielded 1,809,025 drug vector pairwise
similarities and 37,491,129 side effect vector pairwise
similarities.
Calculating Relation Score
Figure 3 shows the process of calculating the relation score.
For all drug–side effect pairs embedded as vectors, the cosine
similarity values obtained in the previous step were used to
calculate the drug–side effect’s relation score. The process of
calculating the relation score between a specific Drugα and a
specific side effect SEβ was done using equations (2) to (6).
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Figure 3. Illustration of the computation of the relation score between a specific Drugα and a specific side effect SEβ.

simx = max{ ∼ (Da, Di) ∨ Di ∈ RelatedDrugs} (2)
RelatedDrugs = {Di ∨ Adjacency(SEβ, Di) = 1 for i = 1, 2, .. . , 1345} (3)

simy = max{ ∼ (S Eβ, S Ei) ∨ S E i ∈ RelatedSE} (4)
RelatedSE = {S Ei ∨ Adjacency (Da, S Ei) = 1 for i = 1, 2, .. . , 6123} (5)

Relation score = simx × simy (6)
Similarity simx takes the maximum of the similarity values
of Drugα with Drug Di in RelatedDrugs, the set of drugs
known to be associated with side effect SEβ, using equation

(2). The set RelatedDrugs is obtained using equation (3), and
by referring to the values in the adjacency matrix consisting
of 1345 drugs and 6123 side effects, we construct the set of
drugs associated with that side effect by including in the set
RelatedDrugs those drugs that have side effect SE, and a value
of 1 in the adjacency matrix, out of a total of 1345 drugs. In
other words, the highest similarity value to drugs known to be
associated with side effect SE is called similarity simx.

Figure 4 shows the process of obtaining similarity simx
using equation (2) and equation (3). Based on the values
in the adjacency matrix, the computational process was to
maximize the similarity of only those drugs that were related
to the side effect SE out of the total 1345 drugs. If Drugα
is in the RelatedDrugs set, exclude Drugα from the similarity
calculation.

Figure 4. Process of calculating similarity simx. SE: side effect.

Similarity simy uses equation (4) to take the maximum of the
similarity values of side effects SEβ and SEi in RelatedSE,

a set of side effects known to be related to the Drugα. The
set RelatedSE is obtained using equation (5), and by referring
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to the values of the adjacency matrix mentioned above, we
construct the set of side effects associated with the Drugα out
of the total 6123 side effects by including in the set RelatedSE
the drugs that have a value of 1 in the adjacency matrix with
the Drugα. In other words, the highest similarity value to the
side effects that are known to be related to the drug is called
the similarity simy.

Figure 5 shows the process of obtaining similarity simy
using equation (4) and equation (5). Based on the values in
the adjacency matrix, the computational process is to extract
the similarity of only the side effects that are related to
the Drugα, out of the total 6123 side effects, and take the

maximum value. If an SEβ belongs to the RelatedSE set,
exclude the SEβ from the similarity calculation.

Finally, the relation score between Drug and SE was
obtained by multiplying simx and simy as shown in equation
(6).

We applied the above calculation method to 1345 drugs
and 6123 side effects to calculate the relation scores for
all drug–side effect pairs, resulting in a total of 8,235,435
drug–side effect pairs. Figure 6 illustrates the heatmap of the
calculated relation scores.

Figure 5. Process of calculating similarity simy. SE: side effect.
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Figure 6. Heatmap of calculated relation score for 8,235,435 drug–side effect pairs.

Measuring AUC
In this study, AUC values were measured using 158,096
known drug–side effect relationships provided by SIDER to
evaluate the accuracy of predicting relationships based on
scores calculated for a total of 8,235,435 drug–side effect
pairs. Of the 8,235,435 calculated drug–side effect pairs, we
assigned a class value of true to pairs that belonged to known
drug–side effect relationships in SIDER and false to pairs that
did not. All drug–side effect pairs were sorted by score, and a
single receiver operating characteristic curve was calculated.
The generated receiver operating characteristic curves and
AUC values were used to establish the optimal threshold
for predicting whether a drug–side effect pair had a true
relationship. If the drug–side effect relation score exceeds this
diagnostic threshold, it is predicted that there is a relationship
between the drug and the side effect [12].

Ethical Considerations
This study uses the publicly accessible and anonymized
SIDER and FAERS databases, which contain no personally
identifiable information and do not involve human partici-
pant experimentation. Therefore, institutional review board
approval is not required for this study.

Results
Performance Comparison
The AUCs of the BERT-based models and the Word2Vec
model using the proposed method are compared in Table 1
and Figure 7. The optimal threshold for prediction was set
as the point at which the sum of the sensitivity and specific-
ity was maximized. The models used in this study included
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clagator/biobert_v1.1 [31], BiomedBERT [20], dmis-lab/
biobert_v1.1 [19], PharmBERT-uncased [23], bert-base-
uncased [17], and Word2Vec [11]. dmis-lab/biobert-v1.1 is
the original BioBERT model pretrained on biomedical text,

while clagator/biobert_v1.1 is a model based on it, which has
been additionally fine-tuned on natural language inference
and semantic textual similarity tasks to enhance its ability to
recognize semantic relationships.

Table 1. Performance comparison of Bidirectional Encoder Representations from Transformers (BERT)–based models and Word2Vec model.
Model AUCa Optimal threshold Sensitivity Specificity
clagator/biobert_v1.1 0.915b 0.289 0.870 0.830
BiomedBERTc 0.907 0.925 0.857 0.821
dmis-lab/biobert_v1.1 0.901 0.780 0.851 0.814
PharmBERT-uncased 0.882 0.460 0.817 0.796
bert-base-uncasedd 0.857 0.617 0.769 0.793
Word2Vec 0.848e 0.112 0.762 0.780

aAUC: area under the curve.
bHighest value.
cThe old model was named PubMedBERT.
dVanilla BERT model.
eLowest value.

Figure 7. Receiver operating characteristic curves for Bidirectional Encoder Representations from Transformers (BERT)–based models (left) and
Word2Vec model (right). AUC: area under the curve.

The clagator/biobert _v1.1 model achieved the highest AUC
value of 0.915 at an optimal threshold of 0.289. In con-
trast, the bert-base-uncased model, a vanilla BERT model
pretrained on general corpora, showed an AUC of 0.857 at an
optimal threshold of 0.617. In other words, BERT pretrained
on the biomedical corpus outperformed vanilla BERT. In
addition, the Word2Vec model recorded an AUC of 0.848,
which was lower than those of the BERT-based models and
was the lowest among all models used in this study.

Figure 8 (left) shows the performance comparison results
to evaluate the effectiveness of the cosine similarity-based

extraction approach. The comparison was conducted using the
clagator/biobert_v1.1 model, which achieved the high-
est performance. Other vector similarity-based extraction
methods used for comparison included Euclidean distance,
Manhattan distance, Jaccard similarity, and dot product. The
results demonstrate that the cosine similarity-based relation
extraction method used in this study exhibited the highest
performance with an AUC of 0.915, outperforming all other
methods.

JMIR MEDICAL INFORMATICS Jeon et al

https://medinform.jmir.org/2025/1/e67513 JMIR Med Inform 2025 | vol. 13 | e67513 | p. 8
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e67513


Figure 8. Receiver operating characteristic curves for comparing vector similarity metrics (left) and evaluating the efficacy of our dual-similarity
approach (right). AUC: area under the curve.

Figure 8 (right) evaluates the effectiveness of our dual-simi-
larity approach against single-similarity methods. Using the
same clagator/biobert_v1.1 model, we compared 3 extraction
strategies: using only drug similarity information (Sim_X),
using only side effect similarity information (Sim_Y), and
our dual-similarity approach (relation score). Our dual-simi-
larity approach significantly outperformed single-similarity
methods with an AUC of 0.915 compared with 0.799
and 0.881, demonstrating the effectiveness of leveraging
information from both similarity perspectives.
Validation
To validate the similarity between drug–side effect relation-
ships predicted by our model based on SIDER data and
relationships derived from FAERS data, we extracted drug–
side effect relationships from FAERS, a database not used in
our Methods. FAERS is a database containing adverse event
information for drugs submitted to the FDA [32]. In this
study, we used FAERS data from October 2012 to June 2023.
By leveraging the list of 1345 drugs and 6123 side effects
registered in SIDER to extract relationships from FAERS
data, we obtained a total of 901,361 known relationships.

For validation, we used the results from clagator/bio-
bert_v1.1 [31], which performed best in our study. We
constructed a contingency table using the predicted results
based on relation scores from 8,235,435 drug–side effect
pairs, along with 901,361 known drug–side effect relation-
ships and unknown relationships extracted from FAERS.
However, due to the data imbalance where unknown
relationships outnumbered known relationships, we randomly
sampled unknown relationships to match the number of
known relationships. Based on this selected list of drug–side
effect pairs, we conducted the Fisher exact test between

FAERS data and our study’s predictions, repeating this
process 2000 times and calculating the average of all results.
The results showed a P value of P<.001, confirming that
the drug–side effect relationships predicted in our study were
statistically significant.

Furthermore, the odds ratio, calculated as the ratio of the
odds of an event occurring to the odds of it not occurring,
was 4.822. This means that the odds of our model predicting
a relationship for known relationships in FAERS were 4.822
times higher than the odds of predicting a relationship for
unknown relationships. In other words, relationships reported
in FAERS were significantly more likely to be predicted
as related by our model, demonstrating that our model’s
predictions are reliable when compared with external data.

To validate the utility of our model’s predictions, we
conducted case studies on drug–side effect relationships not
present in the SIDER database that were ranked within the
top 1000 according to relation scores calculated by our model.
For these candidates, we performed literature searches using
Google Scholar and verified whether these relationships had
been mentioned in case reports or research [33]. In addition,
following the input from an author specializing in pharmacoe-
pidemiology, we excluded steroid-class drugs that are used
despite their side effects from a clinical utility perspective,
thereby enhancing the reliability of our ability to detect
meaningful signals in actual clinical environments. Table 2
illustrates the cases of lenalidomide-arthropathy, rosuvastatin-
sleep disturbance, gadolinium-acute pulmonary edema, and
cefazolin-hepatic failure. Upon conducting a literature review
of the drug–side effect relationships presented in Table 2, we
confirmed that these associations were reported in research
findings published after 2016 [34-37].
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Table 2. Case studies of model predictions.
Drug α Side effect β Similarity x Similarity y Relation score Model prediction
Lenalidomide Arthropathy 0.953 0.837 0.799 True
Rosuvastatin Sleep disturbance 0.952 0.825 0.786 True
Gadolinium Acute pulmonary edema 0.891 0.866 0.771 True
Cefazolin Hepatic failure 0.861 0.857 0.738 True

Discussion
Principal Findings
In this study, we propose a method to extract information
about drug–side effect relationships inherent in the pre–
trained parameters of language models and predict relation
scores, indicating the possibility of unknown drug–side effect
relationships. This is accomplished using known drug–side
effect relationship data and embedding vectors from language
models trained on biomedical corpora.

Our study confirmed that BERT-based models demon-
strated superior performance in predicting drug–side effect
relationships. We evaluated the performance of BERT-based
models using the relation score methodology proposed by
Seungsoo et al [12], and the clagator/biobert_v1.1 model [31]
achieved the highest performance with an AUC of 0.915
at an optimal threshold of 0.289. This suggests that BERT-
based models perform better in predicting drug–side effect
relationships compared to the 0.85 AUC achieved by the
Word2Vec model in a previous study. Therefore, our findings
support the notion that context-aware BERT-based models
outperform context-independent Word2Vec models in terms
of embedding performance [38].

In addition, our study demonstrates that BERT models
pretrained on biomedical corpora outperform vanilla BERT
models pretrained on general corpora. Vanilla BERT models,
trained on general corpora, have limitations in fully reflect-
ing the specificity of the biomedical field [20]. In con-
trast, BERT-based models pretrained on large biomedical
corpora, such as PubMed and PMC, more richly reflect
drug mechanisms of action and biological relationships
observed in clinical settings [19-21]. The results of this study
demonstrate that BERT models specialized for biomedical
applications can provide more accurate drug–side effect
relationship predictions based on a deeper understanding of
the domain. This aligns with previous studies that empha-
size the importance of domain-specific models in BERT
model applications [19,23,39]. While this study evaluated
the effectiveness of the proposed extraction method using
BERT-based models, considering the rapid advancements in
the field of NLP, models with different architectures or more
recent models have the potential to understand the complex-
ity of relationships more effectively and provide further
performance improvements.

We performed external validation using FAERS data
and found a high statistical significance (P<.001) between
8,235,435 predicted drug–side effect relationships and
901,361 actual data extracted from FAERS. In addition,

to verify the real-world applicability of the model’s predic-
ted results, we conducted case studies on drug–side effect
relationships that were not confirmed in the SIDER database.
We found that these drug–side effect relationships have been
reported in recent research findings published after 2016.
This suggests that our methodology using the BERT-based
model proposed in this study is applicable to the prediction
of ADRs in practice. Considering this, we expect that our
proposed methodology will allow for earlier detection of
potential ADRs, increasing the likelihood of success in the
drug development process and reducing the time and cost of
ADR studies.

In the field of biomedical NLP, standardized terminol-
ogy systems and synonym processing are important [15,40].
In this study, we minimized the risk of data leakage
by integrating drug synonyms using PubChem compound
identifiers. We used MedDRA-based side effect names to
ensure terminology standardization and reduce the likeli-
hood of the model merely reidentifying variations of known
relationships. However, we have not explicitly integrated
the hierarchical information from MedDRA, and in future
research, we plan to enhance our methodology by actively
using MedDRA hierarchical information to integrate similar
terms, further mitigating the reidentification issue.

In this study, we recognize that non–dose-dependent
adverse reactions present particular challenges for prediction
models, and drug similarity may not necessarily be the main
component in the development of such ADRs. While our
dual-similarity approach partially addresses this by incor-
porating adverse event similarity patterns, future research
would benefit from integrating NLP-based approaches with
the chemical structure and mechanism of action of drugs.
This multimodal approach would leverage literature-derived
contextual relationships, molecular properties, and biological
pathway insights to more accurately classify drug–side effect
relationships and would be particularly valuable for address-
ing current methodological limitations, including novel
compound prediction and idiosyncratic reaction detection.
Limitations
One of the primary limitations of this study is the lack
of up-to-date data in the drug–side effect database used.
The SIDER database was last updated in 2015, meaning
that despite using BERT-based models trained on the latest
biomedical corpus, our prediction process may not fully
reflect current drug–side effect relationships. Consequently,
incorporating more recent drug–side effect data would likely
improve the performance of our prediction model signifi-
cantly.
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Another significant limitation relates to the nature of
case reports themselves. Such reports typically rely on a
single clinically reported case, thereby making it difficult to
establish clear causal relationships between drugs and side
effects. In addition, their small sample sizes often limit their
generalizability. These considerations become particularly
relevant when extending our work to clinical applications,
where patient care involves complex interactions of multi-
ple factors, including diverse reporting patterns and polyphar-
macy. Although our model provides a systematic method for
prioritizing potential associations for further investigation, all
predictions should therefore be interpreted with appropriate
caution and validated through additional pharmacovigilance
methods before clinical application. For this reason, future
research should utilize systematic clinical data or large-scale
cohort studies to enhance the reliability of predictive models.

Furthermore, while our approach shows promise for
identifying potential drug–side effect relationships through
vector space similarities, we recognize 2 additional important
limitations. First, the current methodology provides gener-
alized, population-level predictions and does not account
for idiosyncratic reactions dependent on individual patient
factors. As such, future work should explore integrating
patient-specific data to enable more personalized adverse

event predictions. Second, for entirely novel drug candi-
dates absent from existing literature, the embedding vectors
generated would be based primarily on semantic infer-
ence rather than established knowledge, potentially limiting
prediction reliability. This underscores the importance of
complementary approaches, particularly for new chemical
entities.
Conclusions
This study presents a novel approach for extracting drug–side
effect relationship information embedded within pretrained
language model parameters and leveraging this informa-
tion to predict unknown adverse reactions. Our methodol-
ogy, using context-aware BERT-based language models,
demonstrates that BERT models pretrained on biomedical
corpora outperform vanilla BERT and Word2Vec. These
results highlight how the contextual embedding capabili-
ties of BERT architectures, coupled with domain-specific
adaptation, enhance predictive performance in drug–side
effect relationship tasks. Furthermore, external validation
using FAERS data and a literature review of selected
cases confirmed the practical applicability of the proposed
methodology.
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